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Abstract— Vertical Cavity Surface Emitting Lasers (VCSELs) 

have demonstrated suitability for data transmission in indoor 

optical wireless communication (OWC) systems due to the   high 

modulation bandwidth and low manufacturing cost of these 

sources. Specifically, resource allocation is one of the major 

challenges that can affect the performance of multi-user optical 

wireless systems. In this paper, an optimisation problem is 

formulated to optimally assign each user to an optical access point 

(AP) composed of multiple VCSELs within a VCSEL array at a 

certain time to maximise the signal to interference plus noise ratio 

(SINR).  In this context, a mixed-integer linear programming 

(MILP) model is introduced to solve this optimisation problem. 

Despite the optimality of the MILP model, it is considered 

impractical due to its high complexity, high memory and full 

system information requirements. Therefore, reinforcement 

Learning (RL) is considered, which recently has been widely 

investigated as a practical solution for various optimisation 

problems in cellular networks due to its ability to interact with 

environments with no previous experience. In particular, a Q-

learning (QL) algorithm is investigated to perform resource 

management in a steerable VCSEL-based OWC systems. The 

results demonstrate the ability of the QL algorithm to achieve 

optimal solutions close to the MILP model. Moreover, the 

adoption of beam steering, using holograms implemented by 

exploiting liquid crystal devices, results in further enhancement in 

the performance of the network considered.  

Keywords—VCSEL, OWC, resource allocation, MILP, and 

reinforcement learning. 

I. INTRODUCTION  

The spectrum limitations in radio-based wireless 

communication networks has led researchers towards 

investigating the use of optical spectrum for new generations of 

wireless networks. Two types of optical wireless 

communication (OWC) systems are suitable for deployment in 

indoor environments: visible light communication (VLC) and 

infrared-based (IR) communication systems. In VLC systems, 

high data rates can be achieved using the wide-angle beams of 

white light emitting diodes (LEDs), which can be used for 

illumination and data communication simultaneously [1] – [6].  

In contrast, infrared (IR)-based wireless  systems provide higher 

data rates which can reach to  tens of gigabits per second using 

the narrow beams of laser diodes (LDs) [7]. Besides, OWC 

systems can provide higher security in the physical layer 

compared to radio-based wireless systems due the confined 

coverage area of optical APs [8], [9]. 

The current off-the-shelf white LED has low modulation 

bandwidth (10s of MHz), which might limit the transmission 

rate that can be achieved using the visible light spectrum. 

Alternatively, using the narrow beam of vertical cavity surface 

emitting laser (VCSEL) for data transmission might unlock   

terabit per second rates in indoor OWC systems due its high 

modulation bandwidth, in addition to its high efficiency in terms 

of power conversion. In [10], it has been shown that VCSELs 

can provide an aggregate data rate that exceeds 1 terabit per 

second in the indoor environment under eye safety constraints. 

Furthermore, VCSELs can be implemented for uplink 

transmissions using various beam steering methods [11], [12]. 

Several techniques have been used to enhance the 

performance of OWC systems. Firstly, diversity technologies 

can improve the signal to interference plus noise ratio (SINR) in 

[13] – [21]. Secondly, adaptation techniques have been 

considered to enhance the performance and capacity of 

downlink channels using beam angle, beam power and beam 

delay adaptations in [22] – [30]. Thirdly, multiple access 

techniques such as multi-carrier code division multiple access 

(MC-CDMA) [22], [30], non-orthogonal multiple access 

(NOMA) [22] and wavelength division multiple access 

(WDMA) [33], [34] have been investigated to serve multiple 

users maximizing the spectral efficiency. Finally, various 

resource allocation (RA) techniques have been proposed to 

optimally utilise the resources of the network including 

wavelength, power, time, and frequency through formulating  

different  optimisation problems [34] - [36].  

For the resource management, mixed-integer linear 

programming (MILP) optimisation can be used to solve 

different problems with various objective functions providing 

optimal solutions [34], [35]. However, MILP has two issues 

that make it unsuitable for many practical scenarios.  First, 

MILP requires full knowledge of the network, which is not easy 

to provide in practical systems. Second, the time complexity 

and storage requirements increase with the increase in the 

dimensions of the network, i.e. the number of transmitters and 

receivers.  

Reinforcement learning (RL) has attracted massive  

attention for solving such optimisation problems due to its 

ability to interact with many different systems without any prior 

knowledge [37]. Basically, RL works on trial and error basis to 

make decisions within a system aiming to maximise a certain 

reward [38]. Recently, many studies adopted different RL 

techniques for solving many optimisation problems with 

different objectives in a variety of communication networks 

such as Heterogeneous Cellular Networks (HetNets) [39], 

Cognitive Radio Networks (CRANs) [40], Mobile Edge 

Computing (MEC) [41] and Software Defined Networks 

(SDNs). For OWC systems, the work in [42] introduced a RL-

based resource allocation solution for integrated VLC and VLC 

positioning (VLCP) systems to maximise the sum-rate of users. 

In [43], time-slots are allocated intelligently using RL in order 

to maximise the spectral efficiency of VLC systems where a 

dynamic time-division multiplexing (DTDMA) scheme was 

considered. The Q-learning algorithm was also adopted in [36] 

to solve an optimisation problem for resource allocation in a 



WDM-based VLC system. It is shown that the RL has the 

ability to produce sub-optimal solutions achieving a high 

quality of service (QoS) that satisfies the requirements of users. 

In contrast to the works in the literature. In this paper, the 

resource allocation problem is addressed in steerable laser-

based optical wireless networks. We first formulate   an 

optimisation problem that can be solved using MILP with the 

aim of maximizing the overall SNR of the network.  

Subsequently, the optimisation problem is reformulated from 

the RL perspective to avoid the limitations of MILP, while 

providing sub-optimal solution. To further enhance the overall 

SNR of the network, beam steering using liquid crystal 

holograms is considered where more power is focused / steered 

towards the users. Simulation results show the optimality of the 

RL model. Moreover, the SINR is significantly improved when 

beam steering is implemented.   

The remainder of this paper is organised as follows: the 

system model is discussed in Section II. The resource allocation 

optimisation problem is formulated using MILP and Q-learning 

in Section III. The simulation configuration and results are 

presented and discussed in Section IV. Finally, the conclusions 

are provided in Section V. 

II. SYSTEM MODEL 

An OWC system is considered in  an empty room with 

dimensions Width (𝑥), Length (𝑦), and Height (𝑧) as shown in 

Fig. 1. On the ceiling,  𝐿 VCSEL arrays are deployed  to serve 𝐾  users uniformly distributed on the receiving plane. Each 

array is composed of  𝑁 access points (APs)  to serve  multiple 

users simultaneously. It is worth mentioning that each AP 

comprises multiple VCSELs that jointly serve only one user at 

a given time to avoid the multi-user interference. An optical line 

terminal (OLT) that connects all the arrays together is located 

on the middle of the ceiling with the responsibility of resource 

management. Each user is equipped with a single-wide field of 

view (wFOV) receiver in order to collect, filter, and extract the 

desired data.  

The optical channel is composed of Line-of-Sight (LoS) and 

diffuse (Non-LoS) components. In particular, the LoS 

component denotes the direct link between the user and 

transmitter, while the diffuse component is received due to the 

reflections from the walls and ceiling of the room. Thus, the 

optical channel between user 𝑘 and AP  𝑛 can be expressed as ℎ[𝑘,𝑙,𝑛] = ℎ𝐿𝑜𝑆[𝑘,𝑙,𝑛] + ℎ𝑑𝑖𝑓𝑓(𝑓)𝑒−𝑗2𝜋𝑓ΔT, (1) 

where ℎ𝐿𝑜𝑆[𝑘,𝑛]
 denotes the LoS channel, ℎ𝑑𝑖𝑓𝑓  is the diffuse 

channel and Δ𝑇 is the delay between both components. Notice 

that, each VCSEL illuminates a confined area limited to a few 

centimetres. In addition, the implementation of beam steering 

results in focusing the transmitted power towards the users. 

Therefore, the diffuse component can be neglected, for the sake 

of simplicity, where most of the received power is due to the 

LoS component. 

The transmitted power of the VCSEL can be determined 

based on the beam waist 𝑊0, the wavelength 𝜆 and the distance 𝑑 between the ceiling and the receiving plane. Therefore, the 

beam radius of the VCSEL at user 𝑘 located on the receiving 

plane is defined as a function of 𝑊0, 𝜆 and 𝑑. Notice that, the 

VCSEL has a Gaussian beam profile. Thus, the intensity of the 

VCSEL can be determined from the radial distance 𝑟 from the 

centre of the beam spot and the distance 𝑑, finding the spatial 

distribution of the intensity of VCSEL over the transverse 

plane.  

In this work, the performance metric considered is SINR. 

Two sources of noise are considered. The first source is the 

thermal noise at the preamplifier of the receiver. The second 

source is the electrical interference power received from other 

neighbouring arrays, represented by the dashed lines in Fig. 1. 

For simplicity, we denote all the types of noise at user 𝑘 by 𝜎𝑘.  

At this point, each user assigned to an AP receives interference 

from the neighbouring APs of the same array.    The interference 

is the power received due to data transmission from the 

neighbouring APs to other users. Thus, the SINR of user 𝑘 

assigned to AP 𝑛 of array 𝑙 is given by   

 𝑆𝐼𝑁𝑅𝑘,𝑛,𝑙 = 𝑃𝑘,𝑛,𝑙∑ 𝑃𝑘,𝑛′,𝑙𝑛′∈𝑁𝑛′≠𝑛 + 𝜎𝑘2 (2) 

 

where 𝑃𝑘,𝑛,𝑙  is the electrical signal power received by user 𝑘 

from AP 𝑛 of array 𝑙. Notice that, in our optimisation problem 

in Section III, we define a constraint that allows each user to be 

assigned to an exclusive AP in the array.  However, the 

interference among the multiple APs of an array must be 

managed. Given this point, the bandwidth is divided into 𝑁 

slots, assigning each slot to an AP. Therefore, the coverage area 

of an array comprises 𝑁 sectors, allowing a user served by a 

sector to manage the interference received due to the 

transmission from the neighbouring sectors as noise. Besides, 

beam steering using liquid crystal based holograms similar to 

[3], [11], [12] and [46] is considered to focus the power of each 

AP towards its assigned user, and therefore, the interference can 

be minimised, enhancing the performance of the system in 

terms of the SINR.  

 

 
Fig. 1. System Model 

III. PROBLEM FORMULATION 

In general, the SINR is an important metric in cellular 

networks that must be addressed to achieve high performance. 

In optical wireless networks, users usually experience low 

SINR due to the large number of overlapping APs required to 

ensure coverage. In the following, a MILP model is formulated 



to maximise the SINR by assigning each user exclusively to the 

best available AP of an array, while managing the received 

power from other arrays as noise. To provide a reliable and 

practical solution, the problem is reformulated such that it can 

be solved using the QL algorithm.  

A. MILP-based Resource Allocation. 

In this sub-section, a MILP model is developed to optimise 

the resource allocation based on maximising the sum SINR of 

all users in the room. In this sense, the objective function is 

represented by 𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 ∑ ∑ ∑ 𝑆𝐼𝑁𝑅𝑘,𝑙,𝑛n∈N  𝑙∈𝐿  .𝑘∈𝐾  (3) 

 

To maximise this objective functions, we define three 

constraints that play a major role in the optimisation problem. 

First, each user must be assigned to only one AP of an array 

using the following constraint. 

 ∑ ∑ 𝑥𝑘,𝑙,𝑛 = 1,             ∀ 𝑘 ∈ 𝐾.𝑙∈𝐿𝑛∈𝑁  (4) 

 

Second, each AP must serve a maximum of one user. It can be 

can guaranteed using the following constraint  ∑ 𝑥𝑘,𝑙,𝑛 ≤ 1,    ∀𝑘∈𝐾 𝑛 ∈ 𝑁, ∀ 𝑙 ∈ 𝐿. (5) 

 

To ensure that each user experiences a high SINR that can 

satisfy the demands in terms of the QoS, a minimum SINR for 

each user, which is 15.6 dB in this work [35], must be assured 

by the constraint  𝑆𝐼𝑁𝑅𝑘,𝑙,𝑛 ≥ 15.6 𝑑𝐵 ∀ 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿, 𝑛 ∈ 𝑁. (6) 

 

This MILP model was be solved using CPLEX 12.10. 

B. Intelligent Resource Allocation using Q-learning. 

In order to apply the objective function and constraints of the 

proposed MILP model using reinforcement learning, the 

optimisation problem is reformulated as a Markov Decision 

Process (MDP) problem [47]. The MDP problem is used to 

represent stochastic decision-making problems and can be 

solved using dynamic programming and reinforcement learning 

algorithms [37], [38]. Any MDP problem can be represented 

using five components: agent, environment, state-space 𝑆 , 

action-space 𝐴, and reward 𝑅.  

In this context, the environment represents the OWC system 

that we are aiming to maximise its SINR and the agent is a 

software located in the control unit that performs the resource 

allocation decision. Each state 𝑠 ∈ 𝑆  in our environment is 

defined using a binary vector with length given by the total 

number of users, 𝐾,  (𝑠 = {𝑄𝑜𝑆1, … , 𝑄𝑜𝑆𝐾}). If the minimum 

quality of service required by user 𝑘 ∈ 𝐾 is met, its associated 

field 𝑄𝑜𝑆𝑘 will be equal to 1, otherwise it is 0. That is   

 𝑄𝑜𝑆𝑘 =  { 1,    𝑆𝐼𝑁𝑅𝑘,𝑙,𝑛 ≥ 15.6 𝑑𝐵0,                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,∀ 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿, 𝑛 ∈ 𝑁 

(7) 

Notice that, solutions might be considered only if they lead to a 

state where all the fields of the users are equal to 1 in order to 

guarantee the demands of the users. More requirements such as 

fairness and power consumption can be considered in the 

future. 

The action-space 𝐴 represents all possible solutions that are 

considered for the optimisation problem. Each action 𝑎 ∈ 𝐴 is 

a binary matrix 𝑥 that indicates the association between an AP 

of an array and a user. For instance, If user 𝑘 ∈ 𝐾 is assigned to 

AP 𝑛 ∈ 𝑁 of  array 𝑙 ∈ 𝐿, their association variable 𝑥𝑘,𝑙,𝑛 will 

be equal to 1, otherwise it will be equal to 0. To reduce the time 

and memory complexity, pre-processing is done on the action-

space to eliminate actions that do not meet the constraints (4) 

and (5). RL aims to find the optimal policy 𝜋∗ that maximises 

a certain reward. Since the main objective in our work is to 

maximise the aggregate SINR, the instantaneous reward 

function 𝑅 is represented by 

 𝑅 =  ∑ 𝑆𝐼𝑁𝑅𝑘,𝑙,𝑛 .𝑘∈𝐾  (8) 

 

In the Q-learning algorithm, the total expected reward from 

taking an action 𝑎 ∈ 𝐴  in any state 𝑠 ∈ 𝑆  can be measured 

using Q-values 𝑄𝜋(𝑠, 𝑎).  These values provide guidance to the 

controller to decide the best action to take.  Initially, all Q-

values are set to zero as the agent has no prior knowledge of the 

network. Therefore, the Q-learning algorithm uses an 𝜖-greedy 

algorithm to balance the exploration/exploitation trade-off. The 

exploration factor 𝜖 is initially set to 1 for the agent to explore 

the Q-values of new actions. During the learning process, the 

value of 𝜖 gradually decreases and another value 𝑧 in the range 

“0” to “1” is randomly chosen. If the value of 𝑧 is greater than 𝜖 , the agent will decide to exploit the best learnt Q-value, 

otherwise, it will explore a new action and update its associated 

Q-value using the bellman equation in (9).  𝑄𝜋𝑛𝑒𝑤(𝑠, 𝑎) = (1 − 𝛼)𝑄𝜋(𝑠, 𝑎) + 𝛼[𝑟(𝑠, 𝑎)+  𝛾 max𝑎 𝑄𝜋(𝑠′, 𝑎)],  (9) 

where 𝛼 is the pre-defined learning rate that can have a value in 

the range “0” to “1”. The purpose of using 𝛼 is to describe how 

much did the agent learn about the environment when this Q-

value is known. In other words, if 𝛼  has a large value that 

approaches “1”, the agent will converge quickly while the 

solution provided will be inaccurate. On the other hand, if 𝛼 has 

a very small value that approaches 0, the agent will take a very 

long time to converge to an accurate optimal solution. 

Therefore, the value of 𝛼 must be chosen carefully to find  a 

balance between the learning time and the optimality of the 

solution. Since our system is continuous, the discount rate 𝛾 

must  be defined with a value smaller than “1” in order to allow 
convergence of the total expected reward. This process is done 

recursively until the all Q-values within the Q-table converge 

to an approximate value (reaching the optimal policy 𝜋∗) or the 

number of iterations exceeds a pre-defined threshold. After the 

learning process is finished, the optimal policy is chosen by 

selecting the action that provides the best Q-value 𝑄∗(𝑠, 𝑎), i.e.,  𝜋∗ = max𝑎 𝑄∗(𝑠, 𝑎) (10) 



IV. SIMULATION SETUP AND RESULTS 

The room considered in the simulation contains 𝐿 = 4 VCSEL 

arrays, each with 𝑁 = 4 APs , on the ceiling serving  𝐾 = 4 

users distributed on the communication plane (1m above the 

floor). Two different user distribution scenarios are considered. 

1) Users are uniformly distributed on the communication plane, 

where each user is located right below one of the arrays. This 

scenario is defined as the best-case. 2) Users are very close to 

each other crowded under one of the arrays, which is defined as 

the worst-case. Both scenarios are tested with and without the 

deployment of beam steering. All the other parameters such as 

Room dimensions, transmitter and receiver characteristics, etc., 

are given in Table 1. It should be noted that the VCSEL power 

in Table 1 was selected based on the eye safety study in [48]. 

TABLE I.  SIMULATION CONFIGURATION 

Simulation Parameters 

Room Dimensions (𝑥, 𝑦, 𝑧) 4𝑚 × 4𝑚 × 3𝑚 
Transmitter Parameters 

Number of access points per array 4 

Number of VCSELs per access point 4 

VCSEL wavelength 850 𝑛𝑚 

Total transmitted power of each VCSEL 5 𝑚𝑊 

Beam steering angle  4° 

Transmitter Locations 

Array (1) 

Array (2) 
Array (3) 

Array (4) 

(1,1,3) 

(1,3,3) 
(3,1,3) 

(3,3,3) 
Receiver Parameters 

Photodetector FOV 40° 

Photodetector Bandwidth 5 𝐺𝐻𝑧 

Noise spectral density 4.47 𝑝𝐴/√𝐻𝑧 [4] 

Photodetector area 55 𝑚𝑚2 × 55 𝑚𝑚2 

Responsivity of the receiver 0.54 𝐴/𝑊 

Receivers Locations (Scenario 1) 

User (1) 
User (2) 

User (3) 

User (4) 

(1,1,1) 
(1,3,1) 

(3,1,1) 

(3,3,1) 

Receiver Locations (Scenario 2) 

User (1) 

User (2) 

User (3) 
User (4) 

(3.5,3.5,1) 

(3.5,2.5,1) 

(2.5,3.5,1) 
(2.5,2.5,1) 

 

The optimisation problem is solved using MILP and QL 

without considering the implementation of beam steering as 

demonstrated in Figs. 2 and 3. It is shown that the QL algorithm 

without any prior knowledge of the network achieves optimal 

solutions significantly close to the output of the MILP model, 

which requires full knowledge of the environment. Specifically, 

Fig. 2 shows that the QL algorithm achieves a high SINR close 

to the MILP model in the scenario where all the users are 

uniformly distributed on the communication plane. In the worst 

scenario when the users are located very close to each other 

below a VCSEL array, it is shown that the users experience a 

lower SINR regardless of the optimality of the QL algorithm 

and MILP model due to the fact that all the users are served by 

an array on different AP generating high noise among them. 

Furthermore, Table 2 shows that the allocation resulting 

from the QL algorithm is similar to the allocation of the MILP 

model in scenario 1. While the solution of the QL algorithm is 

slightly different from the MILP model in scenario 2. However, 

it can be seen that the overall SINR of the QL algorithm is 

similar to the MILP model as shown in Fig. 3.  

 

 

 

Fig. 2. SINR per user. (a) Scenario 1. (b) Scenario 2. 

TABLE II.  RESOURCE ALLOCATION RESULTS 

Resource Allocation Results 

User  

# 

Scenario 1 Scenario 2 

MILP QL MILP QL 

Array AP Array AP Array AP Array AP 

1 1 1 1 1 4 3 4 4 

2 2 1 2 1 4 1 4 2 

3 3 1 3 1 4 4 4 1 

4 4 1 4 1 4 2 4 3 

 

 
Fig. 3. The sum SINR considering two scenarios 1 and 2. 

In Fig. 4, beam steering using liquid crystal based holograms is 

adopted after assigning the users in order to further enhance the 

SINR of the network. It can be seen that by steering the power 



of the  APs towards their users within  a  4°  angle, the SINR of 

each user is significantly improved for both scenarios compared 

to APs with  free beams.     

 

 

Fig. 4. SINR per user with and without beam steering. (a) Scenario 1. 

(b) Scenario 2 

It is worth pointing out that the QL algorithm can achieve 
optimal solutions similar to the output of the MILP without the 
need for prior information. However, the QL algorithm has high 
computation complexity and memory requirements that must be 
taken into consideration in future studies. Advanced 
reinforcement learning techniques such as deep reinforcement 
learning will be adopted as a promising tool in order to relax the 
demands in terms of the time and memory. In addition, various 
optimisation problems with different contexts will be formulated 
to address resources such as time, frequency, and power to 
maximise the sum rate of OWC systems.  

CONCLUSIONS  

In this paper, a MILP model and QL-based algorithm for 
resource allocation in a steerable laser-based OWC system is 
investigated. First, an optimisation problem is formulated as a 
MILP model. Then, it is reformulated in order to use the QL 
algorithm as a practical solution. Both techniques aim to assign 
users to a certain AP within a VCSEL array optimally to achieve 
the best possible SINR. The results demonstrated that the QL 
algorithm can achieve solutions with a high SINR similar to the 
MILP model without prior knowledge of the network. Finally, 
beam steering using liquid crystal based holograms is 
implemented to focus the transmitted power towards the users. 
Therefore, the SINR is improved considerably.  In the future, 
more efficient reinforcement learning techniques with different 
contexts will be proposed for steerable VCSEL-based systems 
taking into consideration the complexity and memory 
requirements.  
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