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Abstract—Intervals have frequently been used in the literature
to represent uncertainty in data, from eliciting uncertain judge-
ments from experts to representing uncertainty in sensor mea-
surements. This widespread use of intervals has led to research
on interval statistics to help understand the data. However, even
seemingly trivial statistics (such as variance) cannot be calculated
on interval-valued data using the same approach as for point data
without incurring substantial loss of precision to a level which
can make results close to useless. This loss of precision makes
it challenging for decision makers to appropriately interpret
interval-valued data using familiar statistics. Although there
exist several approaches to computing statistics such as variance,
these are all developed for specific properties of the data, and
there is no general-case method. In addition, there are many
statistical measures for which no efficient and accurate method
exist. For such cases, we can use a Monte Carlo sampling
approach to generate approximate statistics. While sampling does
not generally produce exact solutions, it can provide a useful and
efficient approximation to a desired degree of accuracy given
sufficient computational resources. In this paper, we focus on the
application of Monte Carlo sampling to generate statistics for
interval-valued data. Specifically, we explore the optimum sample
size required to calculate statistics on interval-valued data for a
given degree of accuracy desired. We compare different sizes of
data and different sampling methods to demonstrate how these
affect the choice of an optimum sample size.

I. INTRODUCTION

Intervals have frequently been used in the literature to

represent uncertainty in data. For example, when eliciting

expert judgements, an expert may find it difficult to give a

precise response but find it easier or more appropriate to give

a range. Intervals have been used most commonly to represent

uncertainty in engineering [1]. No sensor is perfect and all

sensors are limited in their precision. For example, consider a

sonar sensor that has an error of 0.1cm. If the sensor measures

an object 10cm away, the correct distance of the object is

not 10cm with absolute certainty, but is in fact somewhere

in range [9.9, 10.1]cm. This interval is typically treated as a

uniform distribution as we cannot be certain that the centre is

any more likely to be correct than any other value.

The widespread use of intervals for representing uncertainty

has led to research on statistics for interval-valued data to bet-

ter understand said data. As the data are intervals, any statistic

is also represented as an interval to reflect the uncertainty

of the statistic; for example, the variance of interval-valued
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data will be an interval V = [V , V ]. However, it has been

found that if methods for calculating statistics on point data

are directly applied to interval-valued data, the result often

has excessive width [2]; that is, the interval-valued statistic

contains the correct answer but is excessively wide, providing

a poor quality estimate of the actual uncertainty. For example,

given data X = {[57.0, 63.0], [37.0, 43.0]}, the true variance

of X is [98.0, 338.0]; note that the exact variance can be

calculated for a small set of data using a brute force approach

[3]. If the formula for variance on point data is applied directly

to the intervals, the result is [32.0, 512.0]. While the former

accurate result is a subset of the interval arithmetic result, the

latter is so wide that in practice it is effectively useless.

Excessive width is a common problem in interval computa-

tions. Using interval arithmetic, any operation on two intervals

works on the assumption that the intervals are independent.

However, while sometimes it may be true that they are inde-

pendent, this is not always the case. For example, consider two

intervals x = [0, 4] and y = [0, 4]. If x and y are independent,

x − y = [−4, 4] (we subtract every value in y from every

value in x). If we calculate x − x then, intuitively, the result

should be 0 because it is an operation on identical variables.

However, we generally do not know if the intervals operated

on are dependent or otherwise, so we always treat x− x as if

it were x − y. As a result of this, when intervals are related,

the result of an operation may be too wide [2]. This excessive

width in the statistical result is undesirable because decision

makers may be reluctant to make a decision when the analysis

of the data contains considerably more uncertainty than if a

more accurate method was used. Therefore, it is necessary to

find a more accurate method than a straightforward interval

arithmetic approach.

It is possible to compute the exact statistic for a small

number of intervals, but the computational complexity of this

calculation increases exponentially as the number of intervals

increases, and quickly becoming infeasible [4], [5]. In recent

years, efficient methods have been developed to accurately cal-

culate a variety of interval statistics [6], including variance [7]

and covariance [8]. However, accurate and efficient methods

do not as of yet exist for all interval statistics, as the research

area is still growing. For example, while many algorithms have

been developed to compute the upper bound of the variance

of intervals (V ), there is no general method for solving V for

all cases. Specifically, efficient methods are developed based



on the properties of the intervals. Such properties include if

the intervals are all narrow [9], if there is no partial overlap

(i.e., any two intervals are either disjoint or identical) [10],

[11], or there is only a small degree of overlap where small

is predefined [9]. A different method is required to efficiently

compute V in each of these cases, and there is no common

method to satisfy all of these criteria.

A Monte Carlo approach could be applicable to intervals

with differing properties, i.e. disjoint vs overlapping, of identi-

cal vs varying widths. Therefore, a Monte Carlo approach may

be promising as a general approach to interval statistics where

an efficient method does not yet exist [12]. One potential

method for using a Monte Carlo approach on interval-valued

data involves reducing the intervals to random samples of point

data. For example, Fig. 1 shows two intervals and a random

sample of points within those intervals. A statistical test can

be used on these points without needing to rely on interval

arithmetic.

When using samples of points to analyse interval data,

it is important that a sufficiently large sample size is used.

If too few point samples are used, then these samples are

less likely to find a good approximation of the correct result.

However, if enough samples are used, a useful approximation

of the interval statistic can be obtained. As more samples are

taken, the accuracy of the result will increase, but so will the

computational time to calculate the result. If the sample size

is too large, the calculation may take an unreasonable amount

of time for only a small gain in result accuracy.

We wish to find the optimum sample size, at which sufficient

accuracy in the result is achieved without taking excessive

computational time. It is expected that the optimum sample

size will increase exponentially with the total number of

intervals. That is, if a given problem needs n samples to

achieve a certain level of accuracy for a single variable, a total

of nk samples would be needed to achieve the same sample

density for k variables [13].

This paper aims to assess how a Monte Carlo approach can

be used to calculate descriptive statistics on intervals. We do

so by investigating the optimum sample size and sampling

method required for calculating the variance of different sets

of intervals. We explore how the most favourable sample size

is affected by the total number of intervals in the data and the

method of sampling used. We aim to find the smallest sample

size that gives a good accurate result, such that increasing

the sample size is unsuitable when considering both the small

increase in accuracy and large increase in computational time

that it brings. Using these results, we aim to demonstrate how

a Monte Carlo approach can be effectively applied to calculate

interval statistics for data where a specific-case algorithm does

not exist.

II. METHODS

To inform the optimum sample size for a Monte Carlo

approach to interval statistics, we focus on the problem of

calculating variance. Multiple methods for calculating variance

on interval-valued data have been published, which take into
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Fig. 1. An example of two intervals and a sample of points within the intervals

account different properties of the data, such as narrow or wide

intervals and overlapping or disjoint intervals [2], [9], [10],

[11]. By focusing on the problem of measuring variance, we

have a ground truth result that our Monte Carlo approximations

can be compared against. Specifically, we can observe how

close the Monte Carlo approximations reach the correct result

for different sample sizes. These results can then be used

to help choose an appropriate sample size for calculating an

interval statistic for which an efficient, exact method is not

known. This is important as there is no general method to

solving the upper-bound of a statistic on interval-valued data

in a feasible amount of time [2].

Let X be a set of k unordered intervals X = {x1, ..., xk}
where xi = [xi, xi]. In Monte Carlo sampling, for each

sample, we reduce X from a set of intervals to a set of points

X ′ = {x′
1
, ..., x′

k} where x′
i is a pseudo-randomly chosen

value satisfying the constraint xi ≤ x′
i ≤ xi. The variance

of X ′ will be a point value.

Each time we generate a new sample of points X ′, the vari-

ance for this given sample will be different. We calculate the

variance for a total of n different samples, resulting in n dif-

ferent measurements of variance {v1, ..., vn} in respect to the

original intervals. We can then obtain an interval-valued vari-

ance on X using the smallest and largest variances across the

samples; i.e. V = [V , V ] = [min(v1, ..., vn),max(v1, ..., vn)].

In this paper, we test how the result V differs for different

values of n. We start with a small sample n = 10 and calculate

the result V . As the sample X is pseudo-randomly chosen,

different runs of the test where n = 10 will produce different

results. We therefore run 100 tests, keeping the number of

samples n constant, to observe how much the result may differ

for a single sample size. We note the minimum, mean and

maximum result across the 100 tests for the given sample size.

For a given set of data, we test a large range of sample

sizes, where in each new experiment the value of n is double

the previous value; i.e. n ∈ {10, 20, ..., 655360, 1310720}.

We consider two different methods of generating the sample

point data. The first method is to use pseudo-random numbers

with which no effort is made to ensure an even distribution

of samples in the design. We achieve this using the rand

function in Octave. In the second method, we use maximin

Latin Hypercube Sampling (maximin-LHS) to ensure an even

distribution of point values are sampled across the data. We

achieve this using the stk sampling maximinLHS function

in the STK toolbox for Octave. The maximin-LHS method

optimises the sample space by choosing a design (i.e. a

selection of samples) that maximises the distances between all

possible pairs, whilst minimising the number of pairs separated



by a given distance. It is generally expected that the maximin-

LHS design is more likely to find a better approximation

with fewer samples than non-optimised sampling. However, an

LHS-approach will also be more computationally expensive.

In the next section, we analyse the effects of sample size

and the two different methods on three different synthetic data

sets containing a total of 2, 3 and 10 intervals.

III. RESULTS

In this section, we demonstrate variance measured on three

different examples of data using different sample sizes and

sampling methods. To maintain consistency throughout the

examples, the mean of the interval midpoints in each of the

three example sets is 50, and the width of each interval is 6.

Therefore, the interval mean of each example is [47.0, 53.0].
In addition, the variance of the interval midpoints in each

example is kept constant at 10. Note, however, that while the

variance of the midpoints is constant across the examples, the

variance of the full intervals differs as the total number of

intervals in each example differs.

Example 1 (Two intervals): Let X be a set of two intervals

as follows:

X = {[57.0, 63.0], [37.0, 43.0]}

The exact variance of X is [98.0, 338.0]. Fig. 2 shows the

approximated results of the lower-bound and upper-bound of

the variance of X using different sample sizes and the two

different methods of generating random numbers. Each sample

size is tested 100 times. The average result is shown with a

solid line, and the minimum and maximum results are shown

with red dashed lines. The exact lower and upper bounds of

variance are shown with a black solid horizontal line. Note

that while we tested up to a sample size of n = 1310720,

the figure only shows results up to n = 20480 because at

higher samples there is no visual difference in the results at this

resolution. The results show that as the sample size increases,

the approximated result using the Monte Carlo method gets

closer to the exact result.

It is generally expected that the optimised sample points (us-

ing maximin-LHS) should perform better than non-optimised

samples (using rand) for small sample sizes. Fig. 2(c) shows

the results of both sampling methods together. We can see

that maximin-LHS appears to perform better than rand at

small sample sizes; that is, it gets closer to the exact variance.

Comparing the results from the 100 runs of the two methods

for each sample size using the Mann-Whitney U test, we find

there is only a significant difference when the sample size

was 10. For higher sample sizes, there was no statistically

significant difference in the estimated bounds of the variance

between the two methods. As it is unlikely that a sample size

of 10 will give a result with a desired degree of accuracy,

these results suggest it is unnecessary to choose an optimised

sample design over one that is not optimised.

To further analyse the difference between the sampling

methods, we can measure how well the sample designs fill

the sample space. We use the φp(S) criterion function [14],
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Fig. 2. The lower-bound (V ) and upper-bound (V ) of the variance calculated
using (a) rand, (b) rand maximinlhs and (c) both across different sample sizes
for example 1 (two intervals).

[15] to rank a sampling design S. The smaller the value of φp

the better the space-filling properties of S. This is given as

φp(S) =
(

∑

1≤i<j≤m

d
−p
ij

)1/p

(1)

where dij is the distance between sample points i and j in the

sorted design S. In this paper, we use p = 50.

In Fig. 3, we show φp for the two methods of sampling

where the sample size is 10, 160 and 5120. We compare φp

against the error in variance (as a percentage of how far the

estimated variance is from the actual variance). Note that the

errors for V and V are shown together in the figure. For

each sample size, maximin-LHS produced a better selection

of samples than rand according to φp. However, there is no
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Fig. 3. The error in variance and the space filling criterion φp (see eq. 1) of
each sample result for (a) 10 samples, (b) 160 samples and (c) 5120 samples
for example 1 (two intervals) using rand (green circles) and maximin-LHS
(orange squares).

clear correlation between a good sample design and a low

error in variance. This may be because even a poor sample

design can find a good approximation of variance by chance.

It is also clear from the figure that using maximin-LHS gave

a smaller maximum error compared to rand when the sample

size was 10, but there is no clear difference in the maximum

error between the two methods when the sample size is 160 or

5120. Specifically, there is no correlation between how well

the sample design fills the space and the size of error in the

approximated variance.

Note that for both methods, as the sample size increases φp

increases. This is because we calculate the sum of distances

between sample points and, therefore, as more sample points

are used the sum of their distances must increase. This is why

the scales of φp are different within each plot in Fig. 3.

We aim to find the smallest sample size that maximises

result accuracy and minimises computational time. We first

investigate if the accuracy of the results significantly in-

creases as we double the sample size. We want to know

if results from a given sample size get significantly closer

to the exact result when the sample size is doubled. We

therefore compare consecutive sample sizes within the list

n = {10, 20, ..., 655360, 1310720} to test, for example, if

using 20 samples provides a significant improvement in result

accuracy compared to 10 samples, and if 1,310,720 samples

provides an improvement over 655,360 samples. We test this

using the Mann-Whitney U test. We find that in all tests,

the results significantly improved when the sample size was

doubled. However, subjectively, the improvement in accuracy

may be considered small at high sample sizes. For example,

using rand, when the sample size was at least 163,840 we

obtained an error of no more than 0.002% in V and no more

than 0.01% in V .

We next demonstrate the effect of increasing the number of

intervals.

Example 2 (Three intervals): Let X be a set of three

intervals as follows:

X = {[60.0, 66.0], [36.0, 42.0], [44.0, 50.0]}

The exact variance of these intervals is [81.333, 241.335].
Fig. 4 shows the results of the lower-bound and upper-bound

of the variance of X using different samples sizes and the

two different methods of generating random numbers. As with

example 1, we find that as the number of samples increases, the

approximated results approach the exact results. Comparing

the 100 test results of a given sample size n against the results

for 2n, we find a statistically significant improvement for all

n up to 1,310,720. Using rand at a sample size of 655,360, we

obtained an error of no more than 0.01% in V and V . At lower

sample sizes, the error was larger. Compared to the previous

example, we have needed to use more samples to achieve the

same degree of accuracy. In the previous example, a sample

size 163,840 was sufficient to obtain an error no higher than

0.01%.

While there is some visual difference between the two

sampling methods for small sample sizes (see Fig. 4(c)) this

is not statistically significant.

Example 3 (Ten intervals): Let X be a set of ten intervals

as follows:

X = {[47.0, 53.0], [58.0, 64.0], [47.0, 53.0], [55.0, 61.0],

[48.0, 54.0], [20.0, 26.0], [49.0, 55.0], [48.0, 54.0],

[43.0, 49.0], [56.0, 62.0]}

The exact variance of X is [77.0, 164.0].
Fig. 5 shows the Monte Carlo results of the lower-bound and

upper-bound of the variance of X using different samples sizes

and the two different methods of generating random numbers.

It is clear that the approximated results are much further from

the exact results compared to examples 1 and 2 where there
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Fig. 4. The lower-bound (V ) and upper-bound (V ) of the variance calculated
using (a) rand, (b) rand maximinlhs and (c) both across different sample sizes
for example 2 (three intervals).

were fewer intervals. Also, looking at both sampling methods

together in Fig. 5(c), there is no noticeable difference — both

methods appear to perform equally poor. Note that a much

higher sample size than that shown is required to obtain a

result that is as accurate as achieved in examples 1 and 2.

Next, we compare the results across the three examples.

Fig. 6 shows how close the approximated variance reaches the

actual variance (as a relative percentage of error) across each

of the three examples. It is clear that, for a given sample size, a

smaller error is achieved when measuring fewer intervals. It is

therefore also clear that to achieve a given degree of accuracy,

the sample size must significantly increase as the number of

intervals increases.

Next, we consider the computation time to calculate vari-
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Fig. 5. The lower-bound (V ) and upper-bound (V ) of the variance calculated
using (a) rand, (b) rand maximinlhs and (c) both across different sample sizes
for example 3 (10 intervals).

ance for a given sample size. It is obvious that as we increase

the sample size, the computational time will also increase.

How much it increases will depend on the method of sampling

used. If arbitrary pseudo-random samples are used, the in-

crease will be linear. If a method that ensures an even sampling

of the space is taken (e.g. LHS methods) the computation time

is expected to grow as the number of samples increases — the

more samples there are the longer it will take to ensure they

cover the sample space effectively.

Fig. 7 shows the average time in seconds taken to cal-

culate variance for a given sample size for data containing

two, three and ten intervals (from examples 1, 2 and 3),

using the two methods of generating pseudo-random numbers

(rand and maximin-LHS). Using rand, as the sample size
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Fig. 6. The relative error in variance approximation for examples 1 (solid), 2
(dashed) and 3 (dotted) for (a) V using rand; (b) V using rand; (c) V using

maximin-LHS; (d) V using maximin-LHS.
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Fig. 7. The average time (in seconds) taken to calculate variance with a given
sample size using the rand (green circles) and maximin-LHS (orange squares)
methods for (a) example 1, (b) example 2 and (c) example 3.

doubles, the computational time also doubles, as expected

(note, however, that it is much faster than maximin-LHS and

therefore this does not show in the figure). Using maximin-

LHS, the computational time to select samples is noticeably

increased compared to rand, increasing exponentially as the

sample size increases. As the number of intervals increases,

the computational time also increases, but this has much less

of an effect compared to increasing sample size.

IV. CONCLUSIONS

Using straightforward methods of calculating statistics on

intervals leads to excessive width in the result. While it is

possible to measure the statistic with perfect accuracy, the

problem is NP-hard, and soon takes an infeasible amount

of time to compute given enough intervals. There have been



developments in approximating some statistical measures on

intervals that have specific properties, but there is no method

for the general case, and efficient approximations do not exist

for all statistical measures.

In this paper, we explore if Monte Carlo sampling can be

used to approximate statistical measures on intervals. While

we demonstrate using sampling to calculate variance, this

technique can be used to calculate any statistic on intervals.

We show that the sample size required increases, as expected,

as the total number of intervals increases. We demonstrate

that for two intervals approximately 104 samples are required

for high accuracy, for three intervals at least 105 samples are

required, and for 10 intervals much more than 106 samples

(beyond what was tested) are required to achieve the same

level of accuracy. The number of samples required for a given

degree of accuracy increases exponentially with the number

of intervals. This may take an infeasible amount of time

to compute as the number of intervals increases. We also

show that using a maximin-LHS sample design only provided

improved results over using a non-optimised design for low

sample sizes, at which accuracy was poor for both methods.

We therefore envisage little practical benefit to this design.

These results demonstrate that a Monte Carlo method alone

is not sufficient to calculate an accurate approximation of

certain descriptive statistics—specifically the variance—on a

large number of intervals (k > 10). There is a need for

sampling to be combined with more complex optimisation

methods, beyond optimising the design of the sample space.
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