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Abstract

We present two new proofs of Simon Henry’s result that the category of simplicial sets admits
a constructive counterpart of the classical Kan–Quillen model structure. Our proofs are entirely
self-contained and avoid complex combinatorial arguments on anodyne extensions. We also give
new constructive proofs of the left and right properness of the model structure.

1. Introduction

The Kan–Quillen model structure on simplicial sets, that is, the model structure in which the fibrant
objects are the Kan complexes and the cofibrations are the monomorphisms [29], has long been
recognized as the cornerstone of modern simplicial homotopy theory [16]. Over the past decade,
however, this model structure has become of great interest also in mathematical logic and the-
oretical computer science, since it provides inspiration for Voevodsky’s Univalent Foundations
programme [36] and Homotopy Type Theory [35]. In particular, it plays an essential role in the
simplicial model of Univalent Foundations [25].

While there are several proofs of the existence of the Kan–Quillen model structure [9, 16, 24,
27, 33], all of them use non-constructive principles, that is, the law of excluded middle (EM)
and the axiom of choice (AC). Since these principles are not generally valid in the internal logic
of a Grothendieck topos, the construction of an analogue of the Kan–Quillen model structure on
simplicial sheaves is very subtle [20, 22]. This situation is also an obstacle to the definition of a
constructive version of the simplicial model of Univalent Foundations, which is still an open prob-
lem. Furthermore, the results in [6] show that some results on Kan fibrations are simply not provable
constructively.
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1308 N. GAMBINO et al.

Recently, Simon Henry obtained a breakthrough result by establishing a constructive counter-
part of the Kan–Quillen model structure [18], namely a model structure whose existence can be
proved using constructive methods but coincides with the usual model structure once EM and AC
are assumed. A key aspect of this model structure is that, in contrast to the classical case, not all
objects are cofibrant, but only those in which degeneracy of simplices is decidable. The existence of
this model structure has already been applied to provide a partial solution to the problem of giving a
constructive simplicial model of Univalent Foundations [12] and suggests the possibility of defining
a newmodel structure on simplicial objects. Indeed, the results in this paper have led to the construc-
tion of a new model structure on categories of simplicial objects in countably lextensive categories,
obtained in collaboration with Simon Henry [13].

The main goal of this paper is to give two new proofs of the existence of the constructive Kan–
Quillen model structure. We believe these proofs to be simpler than Henry’s proof [18], formulated in
clear category-theoretic terms and essentially self-contained. In contrast, Henry’s proof uses subtle
combinatorial arguments on anodyne maps, including results that do not seem to have been known
even in a classical setting, and relies on his earlier work on weak model structures [17]. We also pro-
vide two new proofs of the left and right properness of the constructive Kan–Quillen model structure,
which were also already proved in [18].

Overall, this paper establishes all the results of constructive simplicial homotopy theory needed
for [12]. Indeed, the desire to give self-contained and streamlined proofs of these results was one
of the motivations for this paper, which can then be seen as contributing to the effort to define a
constructive simplicial model of Univalent Foundations. We also give new proofs of some results
in [12] and establish constructive versions of well-known theorems, such as Quillen’s Theorem A.

Cofibrancy considerations play a key role in both of our proofs. On the one hand, we had to check
carefully that the decidability assumptions encapsulated in the notion of cofibrancy allow us to carry
over some classical arguments. This is sometimes subtle, for example when extending results about
the Ex functor to the Ex∞ functor for our first proof and when proving a version of the equivalence
extension property for our second proof. On the other hand, we also had to develop new arguments,
necessary to extend results from the full subcategory of cofibrant simplicial sets to the category of
all simplicial sets, which do not have counterparts in the classical setting. Furthermore, this situation
requires us to work with more notions of weak homotopy equivalence than in the classical setting
and then check that they are mutually consistent.

We should mention that we had to refine the assumptions of the arguments in [33] before we could
apply them in the cofibrant fragment. For example, the category of cofibrant simplicial sets cannot
constructively be shown locally Cartesian closed. However, the exponentials appearing in the proof
of the equivalence extension property nevertheless preserve cofibrancy, and this verification is rather
subtle. For these reasons, we hope that the methods developed in this paper are valuable not only for
obtaining a new model structure on simplicial objects but also for defining other model structures in
which not all objects are cofibrant. We will comment in more detail on the differences between our
proofs and Simon Henry’s proof in Remarks 3.6.6, 4.3.10 and Remark 5.11, after concluding our
proofs of the existence of the model structure and of its properness.

We regret that this paper is longer than we originally intended, but we hope that kind readers
will appreciate that the proofs are given in some detail, hopefully making our results more widely
accessible.
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THE CONSTRUCTIVE KAN–QUILLEN MODEL STRUCTURE: TWO NEW PROOFS 1309

1.1. Outline of the paper

Our development begins in Section 2 with some material useful for both proofs. We begin in Subsec-
tion 2.1 with some remarks on decidable inclusions and split surjections in the category of sets. These
are used in Subsection 2.2 to define the weak factorization systems on simplicial sets of cofibrations
and trivial fibrations and of trivial cofibrations and fibrations. The pushout product properties for
these weak factorization systems are proved in Subsection 2.3. We then identify the weak factoriza-
tion system of cofibrations and trivial fibrations as the Reedy weak factorization system on simplicial
sets induced by the weak factorization system of decidable inclusions and split surjections on sets
in Subsection 2.4. We conclude the section by introducing weak homotopy equivalences in Subsec-
tion 2.5 and proving that, for a cofibrant simplicial set B, the full subcategory of the slice sSet ↓B
spanned by fibrations with cofibrant domain is a fibration category in Subsection 2.6.

Section 3 presents our first proof of the existence of the Kan–Quillen model structure, which is
inspired by classical ideas of simplicial homotopy theory, in particular [26]. The proof is organized
in five steps, each presented in a subsection. In Subsection 3.2, we show that the full subcategory
of sSet spanned by cofibrant simplicial sets admits the structure of a cofibration category. In Sub-
section 3.3, we obtain a constructive proof of the so-called diagonal lemma, asserting that if a map
between cofibrant bisimplicial sets is pointwise a weak homotopy equivalence, then so is its diago-
nal. In Subsection 3.4, we prove counterparts of standard facts on Kan’s Ex∞ functor on cofibrant
simplicial sets. In Subsection 3.5, we prove a version of Quillen’s Theorem A and use it to introduce
a cofibrant replacement functor with good properties. Finally, in Subsection 3.6, we combine these
results to present our first proof of the existence of the model structure.

Section 4 presents our second proof, which is based on the ideas in [14, 33]. The proof is organized
in three subsections. In Subsection 4.1, we establish a restricted version of the Frobenius property,
showing that trivial cofibrations are closed under pullback along fibrations with cofibrant domain.
In Subsection 4.2, we prove the so-called equivalence extension property in the full subcategory of
simplicial sets spanned by cofibrant objects. In Subsection 4.3, we combine these results to establish
the restriction of the model structure to cofibrant objects. We then extend this model structure to all
simplicial sets.

Our two new proofs of the left and right properness of the model structure are presented in
Section 5. Here, it should be noted that, in contrast with the classical setting, left properness is
not immediate since not every object is cofibrant. For right properness, one proof uses Ex∞ functor,
while the other uses the Frobenius property. For left properness, both proofs use an argument dual
to that for right properness using Ex∞.

1.2. Remarks on constructivity

To fix ideas, we shall work in constructive Zermelo–Fraenkel set theory (CZF), a set theory based
on constructive logic [1]. See [2] for more information on CZF. Readers who are unfamiliar with
constructive set theory may think of our category of sets as being an arbitrary Grothendieck topos.
By a finite set, we always mean a set with a bijection to a set of the form {1, . . . ,n} for some n ∈ N.
Equality on such sets is always decidable, which is why they are sometimes referred to also as finite
decidable sets. To simplify our presentation, we adopt an abuse of language and say ‘for all . . . there
exists . . .’ to mean that we have a function giving witnesses for existential quantifiers. In particular,
when we speak of a map having a right (or left) lifting property with respect to a given class of maps
and in particular in the notion of a weak factorization system and a model structure, we mean that
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1310 N. GAMBINO et al.

Table 1. Notation for different classes of morphisms.

the map is equipped with a function providing diagonal fillers for the appropriate class of diagrams.
Here, by a class of maps in a category we mean a class together with a forgetful function to the
class of all maps of the category. However, after we have established the model structure, one can
also derive a variation with subclasses, where for example the fibrations are the subclass of maps for
which there exists a function providing diagonal fillers.

1.3. Notation

We will use distinct notations for various types of morphisms, which are summarized in Table 1 for
the convenience of the readers.

2. Preliminaries

2.1. Decidable inclusions

We begin by verifying some basic properties of the category of sets in our constructive setting. In
particular, we will show that it admits a weak factorization system consisting of decidable inclusions
and split surjections. This will be useful to construct weak factorization systems on simplicial sets in
Subsection 2.2. Recall that a map of sets i : A→ B is a decidable inclusion if there is a map j : C→ B
such that i and j exhibit B as a coproduct of A andC. The map j (or just the setC by abuse of language)
is called the complement of i (or A). A split surjection is a function that admits a section. Note that,
assuming EM, every injective function is a decidable inclusion and, assuming AC, every surjection
is split.

We recall the notion of a van Kampen colimit (sometimes also called descent for colimits) in a
category C with pullbacks. A colimit in C is said to be van Kampen if it is preserved by the bifunctor
C ↓− from Cop to categories whose functorial action is given by reindexing. If C is cocomplete, this
concretely means the following for a colimit colimA: given a natural transformation u : X→ A that
is Cartesian, that is, whose naturality squares are pullbacks, a cocone under X with summit X and
a map X→ colimA cohering with X→A, the cocone with summit X is colimiting if and only if the
square from Xs→ As to X→ colimA is a pullback for each index s. If pullback functors preserve
colimits, such as in Set, then the reverse direction of this equivalence holds.

Certain classes of van Kampen colimits have special names. We call C:

• extensive if coproducts exist and are van Kampen;
• adhesive if pushouts along monomorphisms exist and are van Kampen;
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THE CONSTRUCTIVE KAN–QUILLEN MODEL STRUCTURE: TWO NEW PROOFS 1311

• ω-exhaustive [34] if sequences of monomorphisms (forming ω-indexed diagrams in C) have
colimits that are van Kampen.

The next lemma is well-known classically and essentially straightforward also constructively.

Lemma 2.1.1 The category of sets is

(i) extensive;
(ii) adhesive;
(iii) ω-exhaustive.

Proof. For part (i), the claim is that, given functions Xi→ Ai for i ∈ I, each square

is a pullback. This is immediate.
The remaining parts are consequences of effectivity of quotients of equivalence relations. For

part (ii), by [15, Theorem A], it suffices to show that pushouts along monomorphisms are pullbacks.
Consider a pushout square

with f : A ↪→ B a monomorphism. The pushout P is the quotient of the equivalence relation on BtC
generated by identifying the images of f (a) and g(a) for a ∈ A. Given b ∈ B and c ∈ C mapping to
the same element of P, effectivity of the quotient implies that b and c are related in BtC by the
equivalence relation. A direct calculation using the fact that f is a monomorphism shows that there
exists a unique a ∈ A such that f(a) = b and g(a) = c. This makes the square a pullback.

For part (iii), consider a sequence of monomorphisms (Ai ↪→ Ai+1)i∈ω. The colimit Aω is the
quotient of the equivalence relation on

∐
iAi that identifies aj ∈ Aj and ak ∈ Ak if they coincide in

Amax(j,k). Effectivity of the quotient implies that the coprojections Ai→ Aω are monomorphisms.
Consider now another sequence (Xi→ Xi+1)i∈ω with a Cartesian natural transformation f : X→ A.
In particular, each map Xi→ Xi+1 is a monomorphism, and so we may construct the colimit Xω as
above. Given i ∈ ω, the claim is that the induced square
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1312 N. GAMBINO et al.

is a pullback. Given xω ∈ Xω such that fω(xω) lifts to Ai, we have to show that xω lifts to Xi. By
construction of Xω as a quotient of

∐
jXj, there exists j≥ i such that xω lifts to xj ∈ Xj. Since the

naturality square of f at i→ j is Cartesian, xj lifts to Xi. �

Remark 2.1.2 Categorically, parts (ii) and (iii) of Lemma 2.1.1 say that a Barr-exact category is
adhesive if it is finitely extensive and ω-exhaustive if it is countably extensive. Although this seems
folklore, we were unable to locate precise references. For adhesivity, see [21, Lemma A.2.4.3] for
a related argument in the context of topos theory (using a subobject classifier). For exhaustivity,
see [34] for a criterion (mirroring that of [15, Theorem A] for adhesivity) that we have essentially
followed in our proof.

Remark 2.1.3 Although we liberally use colimits of sets in this paper, all appearing colimits can
be built from countable coproducts. In particular, pushouts along monomorphisms and sequen-
tial colimits of monomorphisms will be considered only for decidable inclusions. This makes the
development independent from the availability of quotients.

The results in the rest of this subsection depend only on the fact that the category of sets
is extensive. The other van Kampen properties established by Lemma 2.1.1 will be used in
Corollary 4.2.7.

Lemma 2.1.4 In the category of sets:

(i) decidable inclusions are monomorphisms;
(ii) decidable inclusions are closed under pullback along arbitrary functions;
(iii) decidable inclusions are closed under retracts.

Proof. All these are consequences of extensivity. Parts (i) and (ii) follow from [8, Proposition 2.6].
Moreover, if i is a retract of a decidable inclusion j, then it is also a pullback of j, and thus part (iii)
is a consequence of part (ii). �

Lemma 2.1.5 In the category of sets, pullbacks commute with coproducts.

Proof. Let Ai→ Bi← Ci be a family of cospans indexed by i ∈ I. In the cube
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THE CONSTRUCTIVE KAN–QUILLEN MODEL STRUCTURE: TWO NEW PROOFS 1313

the left and right faces are pullbacks by construction. The front face is a pullback by extensivity
and thus so is the back one. Using the extensivity once more, we conclude that

∐
iAi×⨿

i Bi

∐
iCi

coincides with
∐

i(Ai×Bi Ci). �

Proposition 2.1.6 Decidable inclusions and split surjections form a weak factorization system. The
weak factorization system is cofibrantly generated by {∅→ 1}.

Proof. Every map f : S→ T factors in an evident way as S→ StT→ T, where the first map is a
decidable inclusion by construction and the second one has a section given by the coproduct inclusion
T→ StT. The lifting properties are immediate.

For the claim on cofibrant generation, first note that ∅→ 1 is a decidable inclusion. Also, a
map X→Y with the right lifting property with respect to ∅→ 1 is a split surjection. Indeed,
it has the right lifting property also with respect to ∅→ Y since that map is the coproduct∐

y∈Y∅→
∐

y∈Y 1. �

Since decidable inclusions A→B are monomorphisms by part (i) of Lemma 2.1.4, they can be
seen as subobjects of B. Subobjects corresponding to decidable inclusions will be called decidable
subsets. We now establish some closure properties of decidable subsets.

Lemma 2.1.7

(i) Decidable subsets are closed under finite unions.
(ii) Decidable inclusions are closed under finite limits, that is, if X→Y is a natural transformation

between finite diagrams of sets that is a levelwise decidable inclusion, then so is the induced
function limX→ limY.

Proof. For part (i), let B be an arbitrary set. The nullary case is clear since ∅ is a decidable subset
of B. For the binary case, consider decidable subsets A0 and A1 with complements C0 and C1. The
intersection and the union of A0 and A1 are given by the pullback square on the left and the pushout
square on the right:

By the extensivity of the category of sets, we have an isomorphism B∼= (A0×B A1)t (A0×B C1)t
(C0×B A1)t (C0×B C1), where the first summand is A∅. Call the other three C′

0, C
′
1 and C′

01. Then
the map A01→ B is isomorphic to

A∅ tC′
0 tC′

1→ A∅ tC′
0 tC′

1 tC′
01,

which is a decidable inclusion. The case of general finite unions follows by induction.
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1314 N. GAMBINO et al.

For part (ii), the conclusion holds trivially for terminal objects and so it will be enough to verify
it for pullbacks. (See [3, Proposition 5.21].) Consider X and Y as cospans indexed over 0→ 01← 1
and assume that X0→ Y0, X1→ Y1 and X01→ Y01 are decidable inclusions. First, we treat the case
when both X0→ Y0 and X1→ Y1 are isomorphisms. In this case, the rows of the diagram

are coproduct diagrams. Since pullbacks commute with coproducts by Lemma 2.1.5, the induced
diagram X0×X01 X1→ Y0×Y01 Y1←∅×C01 ∅ is also a coproduct. The map on the left is therefore a
decidable inclusion. Next, assume only that X0→ Y0 is an isomorphism. We pull back the coproduct
diagram X1→ Y1← C1 along Y0→ Y01, which yields the coproduct diagram Y0×Y01 X1→ Y0×Y01

Y1← Y0×Y01 C1. By the preceding case, X0×X01 X1→ Y0×Y01 X1 is a decidable inclusion and thus
the composite X0×X01 X1→ Y0×Y01 Y1 is a decidable inclusion. The general statement is reduced to
this case in the same way. �

Another approach to proving part (ii) above reduces limits in the arrow category to limits in slice
categories. Let I denote the indexing category; we only require that I has a finite set of objects. In the
slice over limY, the object limX is the limit of limY×Yi Xi over i ∈ I. The maps limY×Yi Xi→ limY
are decidable inclusions by part (ii) of Lemma 2.1.4, in particular monomorphisms by part (i) of
Lemma 2.1.4. As subobjects of limY, their limit is isomorphic to their intersection. But decidable
subsets are closed under finite intersection by the dual version of part (i).

2.2. Simplicial sets and the weak factorization systems

We now move on to consider the category of simplicial sets and define the two weak factorization
systems that will be part of the constructive Kan–Quillen model structure. For this, let us fix some
notation and terminology. We write ∆ for the category of simplices, that is, of non-empty finite
ordinals, written [n], for n ∈ N, and order-preservingmaps, to which we refer as simplicial operators.
This category is a Reedy category [19, Chapter 5]. Morphisms of its direct part ∆] are called face
operators, with generators denoted δi : [n− 1]→ [n] (omitting i); morphisms of its inverse part∆[ are
called degeneracy operators, with generators denoted σi : [n+ 1]→ [n] (identifying i and i+ 1). For
a simplicial operator ϕ, we write ϕ= ϕ]ϕ[ for its unique decomposition into a degeneracy operator
followed by a face operator.

The category of simplicial sets sSet is the category of presheaves over ∆. We write ∆[m] for the
representable simplicial set represented by [m]. Our convention is that simplicial operators act on
the right, that is, if X ∈ sSet, x ∈ Xn and ϕ : [m]→ [n], then the image of x under the action of ϕ is
denoted by xϕ.
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THE CONSTRUCTIVE KAN–QUILLEN MODEL STRUCTURE: TWO NEW PROOFS 1315

Being a presheaf category, sSet admits all (small) limits and colimits and is locally Cartesian
closed. For M ∈ sSet, we write sSet ↓M for the slice category over M. With a slight abuse of nota-
tion, we sometimes refer to an object p : X→M of sSet ↓M simply by its domain and call p its
structure map. For a map f : M→ N, we write

for the induced pullback functor and its right adjoint, to which we refer as the dependent product
along f.

For the following statement, recall the discussion of van Kampen colimits in Subsection 2.1.

Lemma 2.2.1 The category of simplicial sets is extensive, adhesive and ω-exhaustive.

Proof. The category of sets satisfies these properties by Lemma 2.1.1. Thus so does the cate-
gory of simplicial sets since monomorphisms, pullbacks and colimits of presheaves are determined
pointwise. �

Denote the inclusions {0} ↪→∆[1] and {1} ↪→∆[1] by ι0 and ι1, respectively. The simplex ∆[1]
will serve as an interval object, but we will occasionally use other intervals (such as J in the proof of
Lemma 2.4.15) with endpoint inclusions also denoted by ι0 and ι1. The cylinder on a simplicial set
X is the product X×∆[1]. Let f and g simplicial maps X→Y. A homotopy from f to g is a simplicial
mapH : X×∆[1]→ Y such that f= H(X× ι0) and g= H(X× ι1) (wewill usually abbreviate these to
Hι0 andHι1). Simplicial maps f,g : X→ Y are homotopic, written f∼ g, if they can be connected by a
zigzag of homotopies. The constant homotopy on f : X→ Y is the composite fπwhereπ : X×∆[1]→
X is the projection. If X and Y are simplicial sets over M, then a homotopy H as above is fibrewise
(over M) if it becomes constant when composed with the structure map Y→M.

For m≥ 0, the boundary inclusion ∂∆[m] ↪→∆[m] corresponds to the sieve on [m] of all maps
that lift through δj : [m− 1]→ [m] for some j. We write I for the set of boundary inclusions. We say
that a map is a trivial fibration if it has the right lifting property with respect to I and that a map is
a cofibration if it has the left lifting property with respect to trivial fibrations. A simplicial set X is
cofibrant if the map ∅→ X is a cofibration.

For m> 0 and 0≤ i≤ m, the horn inclusion Λi[m] ↪→∆[m] corresponds to the sieve on [m] of all
maps that lift through δj : [m− 1]→ [m] for some j 6= i. We write J for the set of horn inclusions. We
say that a map is a Kan fibration if it has the right lifting property with respect to J and that a map
is a trivial cofibration if it has the left lifting property with respect to Kan fibrations. By definition,
a simplicial set is a Kan complex if the map X→∆[0] is a Kan fibration.

Given a set of maps K, a K-cell complex of height α≤ ω is an α-composition of pushouts of
coproducts of maps in K.

Lemma 2.2.2 Every trivial cofibration is a cofibration and every trivial fibration is a fibration.

Proof. It suffices to verify that every horn inclusion is a cofibration. Indeed, a horn inclusion is an
I-cell complex of height 2. �
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1316 N. GAMBINO et al.

In order to define the weak factorization systems, we adopt a slight variation of the well-known
small object argument. For this, we need a few results about colimits of diagrams of (trivial) fibrations
that will be needed also later on. In our constructive setting, these statements are somewhat more
delicate than usual to prove. Recall that a fibration is a map together with choice of lifts (from
the right) against horn inclusions. A structure morphism of fibrations from X� Y to X′ � Y′ is a
commuting square

such that for any lifting problem of a horn inclusion Λi[m] ↪→∆[m] against X� Y, the following
diagram of chosen lifts commutes:

The notion of structure morphism of trivial fibrations is defined similarly. For the benefit of the
readers, we remark that the use of these notions is confined to this subsection and to the derivation
of the fibration extension property in Corollary 4.2.7.

Lemma 2.2.3

(i) Let p be a sequential diagram of (trivial) fibrations pk : Xk � Yk such that the naturality squares
of p are structure morphisms. Then colimX→ colimY is a (trivial) fibration.

(ii) Let p be a diagram of (trivial) fibrations pk : Xk � Yk such that the naturality squares of p
are structure morphisms and are pullbacks. Assume that the induced square from Xk→ Yk to
colimX→ colimY is a pullback. Then colimX→ colimY is a (trivial) fibration.

Proof. Part (i) is a formal consequence of the fact that Λi[m] and ∆[m] are finite colimits of rep-
resentables, hence finitely presented, that is, mapping out of them preserves filtered colimits, and
that pullbacks commute with filtered colimits; we provide the details of the case of fibrations for the
convenience of the readers. We wish to construct a section of the map

sSet(∆[m],colimX)→ sSet(∆[m],colimY)×sSet(Λi[m],colimY) sSet(Λ
i[m],colimX).

Since Λi[m] and ∆[m] are finitely presented, this is

colimk sSet(∆[m],Xk)→ (colimk sSet(∆[m],Yk))×colimk sSet(Λi[m],Yk) (colimk sSet(Λi[m],Xk)).
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THE CONSTRUCTIVE KAN–QUILLEN MODEL STRUCTURE: TWO NEW PROOFS 1317

Since pullbacks commute with sequential colimits, this is

colimk sSet(∆[m],Xk)→ colimk sSet(∆[m],Yk)×sSet(Λi[m],Yk) sSet(Λ
i[m],Xk).

By functoriality of colimits, it thus suffices to have sections of

sSet(∆[m],Xk)→ sSet(∆[m],Yk)×sSet(Λi[m],Yk) sSet(Λ
i[m],Xk),

naturally in k. We have such a section for each k since Xk→ Yk is a fibration and they are natural
since the naturality squares of p are structure morphisms of fibrations.

Part (ii) is a formal consequence of the fact that mapping out of∆[m] preserves arbitrary colimits.
Again, we do the case of fibrations in detail. We wish to construct a section of the map

sSet(∆[m],colimX)→ sSet(∆[m],colimY)×sSet(Λi[m],colimY) sSet(Λ
i[m],colimX).

Since mapping out of the representable ∆[m] preserves colimits, this is

colimk sSet(∆[m],Xk)→ (colimk sSet(∆[m],Yk))×sSet(Λi[m],colimY) sSet(Λ
i[m],colimX).

Since pullbacks preserve colimits, this is

colimk sSet(∆[m],Xk)→ colimk sSet(∆[m],Yk)×sSet(Λi[m],colimY) sSet(Λ
i[m],colimX).

By assumption, colimX pulls back along Yk→ colimY to Xk, so this is

colimk sSet(∆[m],Xk)→ colimk sSet(∆[m],Yk)×sSet(Λi[m],Yk) sSet(Λ
i[m],Xk).

From here, we conclude as in part (i). �

Lemma 2.2.4 In any commuting square

with X→Y and X′→ Y′ (trivial) fibrations and X→ X′ and Y→ Y′ levelwise decidable inclusions,
there is a replacement for the choice of lifts of X′→ Y′ such that the square forms a structure
morphism.

Proof. We only discuss the case of fibrations. Since Λi[m] is a finitely presented, the inclu-
sion sSet(Λi[m],X)→ sSet(Λi[m],X′) is decidable by part (ii) of Lemma 2.1.7 and so is
sSet(∆[m],Y)→ sSet(∆[m],Y′). If we now consider the set of lifting problems of horn inclusions
against X′→ Y′, its subset consisting of those lifting problems that factor via the given square is a
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1318 N. GAMBINO et al.

decidable subset. Thus, given a lifting problem of a horn inclusion against X′→ Y′, we may perform
a case distinction and pick the lift given by either the fibration X→Y or the fibration X′→ Y′. �

Proposition 2.2.5 Let p be an sequential diagram of (trivial) fibrations pk : Xk � Yk where Xk→
Xk+1 and Yk→ Yk+1 are levelwise decidable inclusions for k≥ 0. Then colimX→ colimY is a
(trivial) fibration.

Proof. Recursively in k, we apply Lemma 2.2.4 to the naturality square of p at k→ k+ 1 to put a
new choice of lifts on Xk+1→ Yk+1 such that this square becomes a structure morphism. Then the
conclusion follows from part (i) of Lemma 2.2.3. �

Lemma 2.2.6 Let p be a sequential diagram of objects pk : Xk→ Y over Y where Xk→ Xk+1 is lev-
elwise decidable inclusion for k≥ 0. Assume that for each horn inclusion (boundary inclusion)
A→B, we have lifts for any lifting problem against Xk+1→ Y that factors through Xk→ Xk+1. Then
colimX→ Y is a (trivial) fibration.

Proof. We have a sequential diagram of triangles

each of which has relative right lifts against A→B, meaning that for any lifting problem of A→B
against the left map, the induced lifting problem against the right map has a lift. Since A is finitely
presented, the maps sSet(A,Xk)→ sSet(A,Xk+1) are decidable inclusion. Thus, as in Lemma 2.2.4,
we can choose relative right lifts at stage k+ 1 that cohere with those at stage k whenever the relative
lifting problem factors. Recursively in k, as in Proposition 2.2.5, we obtain a choice of relative right
lifts for (1) that is natural in k. Taking the sequential colimit as in part (i) of Lemma 2.2.3, we obtain
relative right lifts for

that is, lifts of A→B against colimX→ Y. �

For the next statement, recall the sets I of boundary inclusions and J of horn inclusions.

Proposition 2.2.7 (Weak factorization systems).

(i) Every map X→Y factors functorially as a cofibration followed by a trivial fibration. Every
cofibration is a codomain retract of a relative I-cell complex of height ω.
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THE CONSTRUCTIVE KAN–QUILLEN MODEL STRUCTURE: TWO NEW PROOFS 1319

(ii) Every map X→Y factors functorially as a trivial cofibration followed by a fibration. Every
trivial cofibration is a codomain retract of a relative J-cell complex of height ω.

Proof. We prove this by a constructive version of the small object argument. We take X0 = X and
Xk→ Xk+1 as the pushout of a coproduct of horn inclusions (boundary inclusions) indexed by
lifting problems against Xk→ Y. Importantly, since horn inclusions (boundary inclusions) are lev-
elwise decidable inclusions and these are closed under coproducts and pushout, so is Xk→ Xk+1.
That means we can use Lemma 2.2.6 to conclude that Xω→ Y is a (trivial) fibration. The rela-
tive cell complex X→ Xω is a trivial cofibration (cofibration) by standard saturation properties of
the left lifting closure. The claim about trivial cofibrations (cofibrations) follows from the retract
argument. �

For any simplicial setM, the weak factorization systems of Proposition 2.2.7 induce weak factor-
ization systems in the slice sSet ↓M. A map over M will be called a (trivial) (co)fibration if it is a
(trivial) (co)fibration in sSet.

Remark 2.2.8 A map is acyclic if it is a weak equivalence in a context-dependent sense of fibrewise
homotopy equivalence of Subsection 2.6 or weak homotopy equivalence of Subsections 3.1 and 4.3.
In particular, an acyclic (co)fibration is a (co)fibration that is also a weak equivalence. We will be
careful about the distinction between the notions of acyclic (co)fibrations and trivial (co)fibrations
until they are proved equivalent. The notation introduced in Table 1 is intended to help readers keep
track of the different notions.

We conclude this subsection with two short but critical lemmas.

Lemma 2.2.9 Both ∆[m] and ∂∆[m] are cofibrant for all m. In fact, ∂∆[m] is a cell complex with
respect to {∂∆[k]→∆[k] | k< m}.

Proof. For ∂∆[m] consider a filtration X(−1) ↪→ X(0) ↪→ . . .X(m−1) where

X(k)
i = {ϕ : [i]→ [m] | ϕ factors through [k]} .

Then we have X(−1) =∅, X(m−1) = ∂∆[m] and for each k ∈ {0, . . . ,m− 1} there is a pushout square

so ∂∆[m] is indeed a cell complex with respect to {∂∆[k]→∆[k] | k< m}. It follows that ∆[m] is
cofibrant as well. �

As a consequence we derive a cancellation property for trivial fibrations, which is crucially used
in later arguments to extend certain results about cofibrant simplicial sets to all simplicial sets.
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1320 N. GAMBINO et al.

Lemma 2.2.10 If f : X→ Y and g : Y→ Z are simplicial maps such that f and gf are trivial fibrations,
then so is g.

Proof. Consider a lifting problem

Since ∂∆[m] is cofibrant by Lemma 2.2.9, u lifts along f :

This leads to a lifting problem

Call its solution w̃ : ∆[m]→ X, then w= fw̃ is a solution to the original problem. Indeed,

gw= gfw̃= v and wi= fw̃i= fũ= u. �

2.3. Pushout product properties

We now establish that the weak factorization systems of cofibrations and trivial fibrations and of
trivial cofibrations and fibrations satisfy various forms of the pushout product property. In order to
do this, we need to introduce some notation. Given M ∈ sSet and two objects X→M and Y→M
in the slice category sSet ↓M, we write expM(X,Y)→M for their exponential in sSet ↓M. The
category sSet ↓M is also a sSet-enriched category in a canonical way and we write homM(X,Y)
for the simplicial hom-object. When considering slices over the terminal object ∆[0] of sSet, we
often drop the subscript and write YX for the common value of exp∆[0](X,Y) and hom∆[0](X,Y). As
a sSet-enriched category, sSet ↓M admits tensors and cotensors. For A ∈ sSet and X ∈ sSet ↓M,
the tensor is written A�X ∈ sSet ↓M and is given by the Cartesian product A×X (the structure
map is the composite of the product projection and the structure map of X). The cotensor is written
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THE CONSTRUCTIVE KAN–QUILLEN MODEL STRUCTURE: TWO NEW PROOFS 1321

AtX ∈ sSet ↓M and is given by the pullback of XA→MA along the map M→MA (the adjoint
transpose of the product projection). For maps i : A→ B and p : X→ Y, we write

for their pushout product and their pullback exponential, respectively. Analogous notation is used
when we consider the tensor and cotensor functors instead of the product and exponential functors.

The following proposition is well-known and easy to prove in classical logic. However, it is less
trivial constructively due to the delicate nature of cofibrations and thus we provide a complete proof.

Proposition 2.3.1 Let M ∈ sSet.

(i) If i : A� B and j : C� D are cofibrations in sSet ↓M, then so is their pushout product i×̂Mj.
(ii) If i : A� B is a cofibration and p : X→→p Y is a trivial fibration in sSet ↓M, then their pullback

exponential êxpM(i,p) is also a trivial fibration. In particular, if A is cofibrant and p : X→→p Y is
a trivial fibration, then expM(A,p) is a trivial fibration.

Proof. For part (i), it suffices to verify that for any pair of simplices ∆[m]→M and ∆[n]→M the
pushout product of ∂∆[m]→∆[m] and ∂∆[n]→∆[n] is a cofibration. Indeed, there is a filtration

∂∆[m]×M ∆[n]∪∆[m]×M ∂∆[n] = X(−1) ↪→ X(0) ↪→ . . . ↪→ X(m+n) =∆[m]×M ∆[n]

where X(k) is formed iteratively by taking pushouts

with

Sk = {(ϕ,ψ) ∈∆[m]×M ∆[n] | at least one of ϕ : [k]→ [m] or ψ : [k]→ [n] is surjective

and (ϕ,ψ) : [k]→ [m]× [n] is injective.}

Part (ii) follows from part (i) by adjointness. �

Corollary 2.3.2 If A→B is a simplicial map with A cofibrant, then the induced pullback functor
sSet ↓B→ sSet ↓A preserves cofibrations.

Proof. If X� Y is a cofibration over B, then the induced map A×B X→ A×B Y coincides with
the pushout product (in sSet ↓B) of ∅� A and X� Y. The conclusion follows from part (i) of
Proposition 2.3.1. �
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1322 N. GAMBINO et al.

Proposition 2.3.3

(i) If i : A�p B is a trivial cofibration and j : C� D is a cofibration then their pushout product i×̂j
is a trivial cofibration.

(ii) If i : A� B is a cofibration and p : X� Y is a Kan fibration, then their pullback exponential
ĥom(i,p) is a Kan fibration. In particular, if i : C� D is a cofibration and K a Kan complex,
then hom(i,K) is a Kan fibration. In particular, if A is cofibrant and K is a Kan complex, then
KA is a Kan complex.

(iii) If i : A�p B is a trivial cofibration and p : X� Y is a Kan fibration, then their pullback expo-
nential ĥom(i,p) is a trivial fibration. In particular, if i : A�p B is a trivial cofibration and K a
Kan complex, then hom(i,K) is a trivial fibration.

Proof. Part (i) is proved in [11, Proposition IV.2.2] with a constructive argument. Parts (ii) and (ii)
follow by adjointness. �

Corollary 2.3.4

(i) If j : A� B is a cofibration and i : C�p D is a trivial cofibration over M, then their pushout
tensor j�̂i is a trivial cofibration.

(ii) If i : A�p B is a trivial cofibration and j : C� D is a cofibration over M, then their pushout
tensor i�̂j is a trivial cofibration.

(iii) If i : A� B is a cofibration and p : X� Y is a Kan fibration overM, then their pullback cotensor
it̂p is a Kan fibration.

(iv) If j : A�p B is a trivial cofibration and p : X� Y is a Kan fibration over M, then their pullback
cotensor jt̂p is a trivial fibration.

Proof. Parts (i) and (ii) follow from Part (i) of Proposition 2.3.3 since the underlying map of
the pushout tensor is the ordinary pushout product. Parts (iii) and (iv) follow from these by
adjointness. �

2.4. Cofibrations as Reedy decidable inclusions

The aim of this subsection is to exhibit the weak factorization system of cofibrations and trivial
fibrations on simplicial sets of Proposition 2.2.7 as the Reedy weak factorization system induced
by the weak factorization system of decidable inclusions and split surjections on sets and use this
fact to give streamlined proofs of several closure properties of cofibrations and cofibrant objects. For
background on Reedy weak factorization systems, and in particular the definition of latching and
matching objects, we refer to [19, Chapter 5] and [32].

A simplicial map A→B is a Reedy decidable inclusion if for all m the relative latching map
Am tLmA LmB→ Bm is a decidable inclusion. Dually, a simplicial map X→Y is a Reedy split sur-
jection if all its relative matching maps Xm→ Ym×MmY MmX are split surjections. We define Reedy
decidable inclusions of cosimplicial sets similarly.

Lemma 2.4.1 Reedy decidable inclusions coincide with cofibrations, and Reedy split surjections
coincide with trivial fibrations.
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THE CONSTRUCTIVE KAN–QUILLEN MODEL STRUCTURE: TWO NEW PROOFS 1323

Proof. This follows from Proposition 2.1.6 and the fact that the associated Reedy weak factorization
system of a cofibrantly generated weak factorization system is also cofibrantly generated with gener-
ators given by pushout products of the original generators and boundary inclusions of representable
functors. See [32, Lemmas 7.3 and 7.4 and Corollary 6.7] for details. �

Lemma 2.4.2 Let X be a simplicial set.

(i) Every degeneracy operator [m] _ [n] acts by a monomorphism Xn→ Xm.
(ii) The latching map LmX→ Xm is a monomorphism. Moreover, as a subset of Xm, LmX is the union

of the subsets Xn indexed over non-identity degeneracy operators [m] _ [n].

Let A→B be a monomorphism of simplicial sets.

(iii) For every degeneracy operator [m] _ [n], the set An is the intersection of the subobjects Am and
Bn of Bm.

(iv) LmA is the intersection of the subobjects Am and LmB of Bm.

Proof. Part (i) holds since [m] _ [n] has a section.
For part (ii), we use the fact that every span of degeneracy operators in∆ has an absolute pushout1

(that is, one that is preserved by all functors) which is proven in [24, Theorem 1.2.1]. It follows that
each latching diagram (∂([m] ↓∆[))

op→ Set induced by X sends pushouts in ∂([m] ↓∆[) to pull-
backs, and hence the family of subsets Xn→ Xm (as [m] _ [n] varies over non-identity degeneracy
operators with source [m]) is closed under intersection. Thus, its union coincides with its colimit LmX
in the slice over Xm. In particular, LmX→ Xm is a monomorphism.

For part (iii), we need to show that the square

is a pullback. Indeed, let X be a set and u : X→ Am and v : X→ Bn be maps such that vσ = imu. Let
δ : [n]→ [m] be a section of σ. Then, by a direct calculation, w= uδ : X→ An is the unique map such
that wσ = u and inw= v.

Part (iv) follows from parts (ii) and (iii) using the fact that intersecting with Am preserves
unions. �

Lemma 2.4.2 implies that Lemma 2.4.1 is a special case of [17, Proposition 5.1.4], there proved
without explicit reference to Reedy weak factorization systems.

Given a simplicial set A and a cosimplicial set W, the set A×∆ W is defined as the coend
´ k

Ak×
Wk. This set is also known as the weighted colimit of A with weight W. While the following two
statements do not depend on the theory of weighted colimits and their pushout constructions, readers
familiar with it may find it useful to think of them in these terms (cf. [32]).

1This means that ∆ is an elegant Reedy category in the sense of [5].
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1324 N. GAMBINO et al.

Lemma 2.4.3 The bifunctor A,W 7→ A×∆ W satisfies the pushout product property with respect to
Reedy decidable inclusions, that is, if A→B and V→Ware Reedy decidable inclusions of simplicial
and cosimplicial sets, respectively, then A×∆ WtA×∆V B×∆ V→ B×∆ W is a decidable inclusion.

Proof. It suffices to verify this property on generators. ([32, Corollary 6.7] implies that cosim-
plicial Reedy decidable inclusions are generated by {Lm∆([m],−)→∆([m],−) | m ∈ N}.) Apply-
ing the construction to ∂∆[n]→∆[n] and Lm∆([m],−)→∆([m],−) yields the inclusion of
{ϕ ∈∆([m], [n]) | ϕ 6= id} into ∆([m], [n]), which is decidable. �

We will now prove a useful characterization of cofibrations.

Proposition 2.4.4 The following are equivalent for a simplicial map A→B:

(i) A→B is a cofibration,
(ii) A0→ B0 is a decidable inclusion and, for each generating degeneracy operator [n+ 1] _ [n],

the induced map An+1 tAn Bn→ Bn+1 is a decidable inclusion.
(iii) A→B is a levelwise decidable inclusion and, for each degeneracy operator [m] _ [n], the

induced map Am tAn Bn→ Bm is a decidable inclusion.

Proof. We go from (i) to (ii). The Reedy condition in dimension 0 means that A0→ B0 is a decid-
able inclusion. Next, take a degeneracy operator σ : [m]→ [n]. We will check that the induced
map of cosimplicial sets ∆([n],−)→∆([m],−) is a Reedy decidable inclusion. Indeed, for each
k, the map ∆([n], [k])→∆([m], [k]) is (isomorphic to) the inclusion of the subset of those simplicial
operators [m]→ [k] that factor through σ, which is decidable. For each a, note that Lk∆([a],−)→
∆([a], [k]) is the (decidable) subset of non-surjective operators. Thus, Lk∆([n],−) is the intersec-
tion over ∆([m], [k]) of Lk∆([m],−) and ∆([n], [k]). It follows by part (i) of Lemma 2.1.7 that
∆([n], [k])tLk∆([n],−) Lk∆([m],−)→∆([m], [k]) is a decidable inclusion. The map Am tAn Bn→ Bm

coincides with A×∆ ∆([m],−)tA×∆∆([n],−) B×∆ ∆([n],−)→ B×∆ ∆([m],−) induced by A→B
and ∆([n],−)→∆([m],−), so it is a decidable inclusion by Lemma 2.4.3.

We go from (ii) to (iii). Each degeneracy operator [m] _ [n] is a finite composition of generators.
Thus, Am tAn Bn→ Bm is a finite composition of pushouts ofmapsAk+1 tAk Bk→ Bk+1 for generators
σi : [k+ 1]→ [k] and hence is a decidable inclusion. For each m, the map Am→ Bm factors as Am→
Am tA0 B0→ Bm (where the first map is a pushout of A0→ B0) using the degeneracy operator [m] _
[0] and hence is a decidable inclusion.

We go from (iii) to (i). Given m and working over Bm, we have to show that Am tLmA LmB is a
decidable subobject. Recall from part (ii) of Lemma 2.4.2 that LmB is the finite union of Bn indexed
over non-identity degeneracy operators [m] _ [n]. By part (iii) of Lemma 2.4.2, Am tAn Bn is the
union of the subobjects Am and Bn. Similarly, by part (iv) of Lemma 2.4.2, Am tLmA LmB is the
union of the subobjects Am and LmB. Distributing unions, it follows that Am tLmA LmB is the union
of the decidable subobject Am with the finite union of decidable subobjects Am tAn Bn and hence is a
decidable subobject by part (i) of Lemma 2.1.4. �

Corollary 2.4.5 A simplicial set is cofibrant if and only if all (generating) degeneracy operators
act on it by decidable inclusions.

Proof. This is Proposition 2.4.4 for a map with initial domain. �
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Corollary 2.4.6

(i) Every cofibration is a levelwise decidable inclusion.
(ii) A levelwise decidable inclusion with cofibrant codomain is a cofibration.

In particular, a map between cofibrant objects is a cofibration if and only if it is a levelwise decidable
inclusion.

Proof. Part (i) was shown in Proposition 2.4.4. For part (ii), let A→B be a levelwise decidable
inclusion and let B be cofibrant. Then, for any degeneracy operator [m] _ [n], the map Bn→ Bm is
a decidable inclusion by Corollary 2.4.5. Thus part (i) of Lemma 2.1.7 implies that Am tAn Bn is a
decidable subobject of Bm as the union of decidable subobjects Bn and Am. The conclusion follows
from Corollary 2.4.5. �

Next, we obtain some closure properties of cofibrations and cofibrant objects.

Lemma 2.4.7 Cofibrant objects are closed under finite limits.

Proof. This follows from part (ii) of Lemma 2.1.7 and Corollary 2.4.5. �

Lemma 2.4.8 If A ↪→ B is a monomorphism and B is cofibrant, then so is A.

Proof. Let [m] _ [n] be a degeneracy operator. The map Bn→ Bm is a decidable inclusion by Corol-
lary 2.4.5. The map An→ Am is a pullback of Bn→ Bm by part (iii) of Lemma 2.4.2 and hence is a
decidable inclusion by part (ii) of Lemma 2.1.4. Using Corollary 2.4.5 again, we conclude that A is
cofibrant. �

The above statement is a special case of the closure of cofibrations under pullback along
monomorphisms. However, we will not need that more general fact.

Remark 2.4.9 The notion of cofibration and the associated statements in this subsection up to
Lemma 2.4.8 generalize, with the same arguments, to presheaves over an elegant Reedy category
(of countable height) with decidable identities (as defined below), finite slices of face operators and
finite coslices of degeneracy operators. In Subsection 3.3, we will need the case of bisimplicial sets,
where a cofibration is defined as a Reedy decidable inclusion of presheaves over the elegant Reedy
category ∆×∆. There, we will use bisimplicial versions of the current simplicial statements. In
particular, a bisimplicial set is cofibrant if and only if all degeneracy operators act on it by decidable
inclusions. (For this, it suffices to separately examine the two cases of a degeneracy operator that is
an identity in one of the two directions.)

Corollary 2.4.10 Every horn Λi[m] is cofibrant.

Proof. The horn inclusion Λi[m]→∆[m] is a cofibration by Lemma 2.2.2 and thus the horn Λi[m]
is cofibrant by Lemma 2.4.8. �

As a consequence of the characterization of cofibrant objects of Corollary 2.4.5 we can distinguish
a class of categories with cofibrant nerves, whichwill be useful in Section 3. Let us say that a category
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J has decidable identities if the function obJ→morJ that sends each object to its identity morphism
is a decidable inclusion. A functor I→ J is a decidable inclusion if both functions ob I→ obJ and
mor I→morJ are decidable inclusions. For example, the category ∆ and its wide subcategories ∆[

and ∆] have decidable identities.

Lemma 2.4.11

(i) If J is a category with decidable identities, then NJ is cofibrant.
(ii) If I→ J is a decidable inclusion, thenN I→ NJ is a levelwise decidable inclusion. In particular,

if I and J have moreover decidable identities, then N I→ NJ is a cofibration.

Proof. For part (i), for eachm the set (NJ)m is the iteratedm-fold pullback morJ×obJ . . .×obJ morJ.
By Corollary 2.4.5, it will be enough to check that each generating degeneracy operator σi : [m+
1]→ [m] acts by a decidable inclusion. The set (NJ)m + 1 is the iterated (m+ 1)-fold pullback mor
J ×ob J … ×ob J mor J. The set (NJ)m can be seen as an analogous (m+ 1)-fold pullback with the i-th
occurrence of mor J replaced by ob J. Then the action of σi is induced by a transformation of these
limit diagrams that consists of identities and the map obJ→morJ. The conclusion follows by part
(ii) of Lemma 2.1.7.

Part (ii) is a direct consequence of part (ii) of Lemma 2.1.7, using the pullback presentation of N I
and NJ as in the proof of part (i). �

Given a presheaf F on a category C, we write C ↓F for the category of elements of F.

Lemma 2.4.12 Let F be a presheaf on a category C. If C has decidable identities, then so does C ↓F.

Proof. We form the below diagram, in which the right square is a pullback:

By pullback pasting, the left square is also a pullback. Since the identity structure map of C ↓F is a
pullback of the identity structure map of C, it is a decidable inclusion by part (ii) of Lemma 2.1.4. �

For the reader familiar with discrete Grothendieck fibrations, we note that the above lemma has
a natural phrasing in terms of a discrete Grothendieck fibration E → C.

In order to prove closure of cofibrant objects under certain exponentials, we need some prelim-
inary lemmas. A simplicial map A→B is called a generalised degeneracy if for every cofibrant
simplicial set X the induced map sSet(B,X)→ sSet(A,X) is a decidable inclusion.

Lemma 2.4.13 The class of generalized degeneracies contains the degeneracy operators and is
closed under composition, finite colimits, pushouts along arbitrary maps and retracts.
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Proof. Degeneracy operators are generalized degeneracies by Corollary 2.4.5. The closure properties
hold since the class of decidable inclusions satisfies the dual closure properties by Lemmas 2.1.4
and 2.1.7. �

Lemma 2.4.14 If a simplicial set A is a finite colimit of representables, then the product projection
A×∆[1]→ A is a generalized degeneracy.

Proof. Since A is a finite colimit of representables, the claim reduces to the case A=∆[m] by
Lemma 2.4.13. The projection ∆[m]×∆[1]→∆[m] is the row-wise colimit of the diagram

(where all unlabelled morphisms are identities), that is, it is a finite colimit of degeneracy operators
and identity maps. Hence the conclusion follows from Lemma 2.4.13. �

A deformation section of a map f : A→ B is a map s : B→ A such that fs= idY and there is a
zigzag of fibrewise homotopies from sf to idA over A. A map that admits a deformation section is
called shrinkable. Note that shrinkability is an entirely fibrewise notion. It follows that shrinkable
maps are closed under pullback.

Lemma 2.4.15 A shrinkable map between simplicial sets that are finite colimits of representables is
a generalized degeneracy.

Proof. Let f : A→ B be a shrinkable map with a deformation section s. A zigzag of homotopies
connecting sf to idA can be represented as a map H : A× J→ A where J is its indexing zigzag, that
is, a colimit of a finite number of copies of ∆[1] attached to each other at their endpoints in the
directions matching the directions of the homotopies. The product projection A× J→ A is a finite
colimit of projections A×∆[1]→ A (and identity maps) and thus it is a generalized degeneracy by
Lemmas 2.4.13 and 2.4.14. In the diagram

the left square is a pushout by construction and so is the outer rectangle since the horizontal com-
posites are identities. Thus the right square is also a pushout. Moreover, H exhibits f a retract of
BtA (A× J)→ B and thus Lemma 2.4.13 completes the proof. �

Lemma 2.4.16 Any degeneracy operator σ : ∆[m]→∆[n] is shrinkable.
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1328 N. GAMBINO et al.

Proof. Let δ : ∆[n]→∆[m] be the minimal section of σ. Then we have δσ(i)≤ i for each i ∈ [m],
which induces a fibrewise homotopy from δσ to id∆[m]. �

Corollary 2.4.17 Let A→B be a pullback of a degeneracy operator∆[m]→∆[n] with B a finite
colimit of representables. Then A→B is a generalized degeneracy.

Proof. Simplicial sets that are finite colimits of representables are closed under finite limits, in par-
ticular pullback. It follows that also A is a finite colimit of representables. Since ∆[m]→∆[n] is
shrinkable by Lemma 2.4.16, so is its pullback A→B. Then A→B is a generalized degeneracy by
Lemma 2.4.15. �

Corollary 2.4.18 Let A be a finite colimit of simplices. Exponentiation with A preserves cofibrant
simplicial sets.

Proof. Let X be a cofibrant simplicial set. To show that XA is cofibrant, it suffices to show for
every degeneracy operator ∆[m]→∆[n] that A×∆[m]→ A×∆[n] is a generalized degeneracy.
Since simplicial sets that are finite colimits of representables are closed under finite limits, in
particular products, A×∆[n] is a finite colimit of representables. Then the claim is given by
Corollary 2.4.17. �

We can alternatively derive Corollary 2.4.18 from the following, more general statement.

Proposition 2.4.19 Let f : X→ Y be a map such that Y is cofibrant and the pullback of X along
every map∆[n]→ Y is a finite colimit of representables. Then the dependent productΠf : sSet ↓X→
sSet ↓Y preserves cofibrant objects.

Proof. Consider A→X with A cofibrant. Take a degeneracy operator σ : [m] _ [n] and a sim-
plex y ∈ Yn. By assumption, f∗∆[n] is a finite colimit of representables, so f∗∆[m]→ f∗∆[n]
is a generalized degeneracy by Corollary 2.4.17. Thus, sSet( f∗∆[n],A)→ sSet( f∗∆[m],A) and
sSet( f∗∆[n],X)→ sSet( f∗∆[m],X) are decidable inclusions. Since (sSet ↓X)( f∗∆[n],A) is a fibre
of sSet( f∗∆[n],A)→ sSet( f∗∆[n],X) and similarly for m, the case for pullbacks of part (ii) of
Lemma 2.1.7 implies that

(sSet ↓X)( f∗∆[n],A)→ (sSet ↓X)( f∗∆[m],A)

is a decidable inclusion. Finally, we have

(ΠfA)n =
∐
y∈Yn

(sSet ↓X)( f∗∆[n],A)

and similarly for m, hence (ΠfA)n→ (ΠfA)m decomposes into a coproduct of decidable inclusions
followed by a decidable inclusion induced by Yn→ Ym and thus is a decidable inclusion itself. �

The following statement is also proved in [12, Lemma 5.1] by different methods.
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Corollary 2.4.20 Let i : X→ Y be a cofibration between cofibrant objects. Then the dependent
product Πi : sSet ↓X→ sSet ↓Y preserves cofibrant objects.

Proof. This reduces to Proposition 2.4.19 once we verify for every map ∆[n]→ Y that i∗∆[n] is a
finite colimit of representables. By Corollary 2.3.2, the map i∗∆[n]→∆[n] is a cofibration. Finally,
a levelwise decidable subobject of a finite colimit of representables is again a finite colimit of
representables. �

Remark 2.4.21 We limited ourselves to proving only the facts on cofibrations needed for the con-
structive Kan–Quillen model structure, but more can be said. For example, a map over a cofibrant
simplicial set X is a cofibration if and only if its pullback along every map∆[m]→ X is a cofibration.

2.5. Homotopies and homotopy equivalences

The issue of defining the weak equivalences of the Kan–Quillen model structure is fairly delicate in
the constructive framework. In fact, our two proofs use different definitions that are only concluded
to agree once both arguments are complete. However, in both cases the definitions ultimately go
back to the notion of a homotopy equivalence between cofibrant Kan complexes. In this section we
establish some basic properties of homotopy equivalences common to both approaches.

Lemma 2.5.1 Let f, g and h be maps X→Y and let G and H be homotopies from f to g and from
f to h respectively. If X is cofibrant and there is a Kan fibration p : Y�M such that pG= pH (in
particular, pg= ph), then there is a fibrewise homotopy from g to h over M.

Proof. There is a commutative square

which has a diagonal filler J by part (i) of Proposition 2.3.3. Then Jδ0 is a homotopy from g to h
over M. �

Using Lemma 2.5.1, note that maps f,g : X→ Y from a cofibrant object X to a fibrant object Y are
homotopic if and only if there is a homotopy from f to g or vice versa, that is, the homotopy relation
is witnessed by single-step homotopies. A similar remark applies to fibrewise homotopies. We will
frequently use this without further reference.

A simplicial map f : X→ Y is a homotopy equivalence if there is a map g : Y→ X such that gf is
homotopic to idX and fg is homotopic to idY. If X and Y are both cofibrant and fibrant, this means
there is a homotopy from gf to idX and from fg to idY.
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1330 N. GAMBINO et al.

Lemma 2.5.2 Homotopy equivalences satisfy:

(i) 2-out-of-6 and
(ii) closure under retracts.

Proof. Recall that the homotopy relation forms a congruence. A map is a homotopy equivalence if
and only if it is an isomorphism under this congruence. Since isomorphisms satisfy 2-out-of-6 and
closure under retracts, so do homotopy equivalences. �

Lemma 2.5.3 If a simplicial map f : X→ Y is a homotopy equivalence, then for all simplicial sets Z
so is the induced map ZY→ ZX.

Proof. The functor Z(−) is simplicial and thus preserves homotopies. �

Dually to the definition of a shrinkable map of the preceding section, a strong deformation retrac-
tion of a map f : X→ Y is a map r : Y→ X such that rf= idX and there is a homotopy H from fr to
idY under X, that is, Hf is constant.

Lemma 2.5.4

(i) A trivial fibration between cofibrant simplicial sets is shrinkable. In particular, it is a fibrewise
homotopy equivalence over its codomain.

(ii) A trivial cofibration between fibrant simplicial admits a strong deformation retraction. In
particular, it is a homotopy equivalence.

Proof. We only do part (i) as part (ii) is dual. Let p : X→ Y be a trivial fibration. Consider the square

which has a lift s : Y→ X since Y is cofibrant. Then there is a square

which also admits a lift H : X×∆[1]→ X by part (i) of Proposition 2.3.3 since X is cofibrant.
Therefore, s is a deformation section of p. �

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/73/4/1307/6572522 by guest on 17 M
ay 2023



THE CONSTRUCTIVE KAN–QUILLEN MODEL STRUCTURE: TWO NEW PROOFS 1331

2.6. The fibration category of Kan fibrations over a base in cofibrant simplicial sets

In this final subsection of Section 2, we establish that if M is a cofibrant simplicial set, then the
full subcategory of cofibrant simplicial sets over M spanned by fibrant objects admits a fibration
category structure (Theorem 2.6.5). This result completes the preliminaries needed to carry out our
proofs of the existence of the constructive Kan–Quillen model structure. Let us begin by recalling
that a fibration category is a category C equipped with a subcategory of weak equivalences (denoted
by →̃) and a subcategory of fibrations (denoted by �) subject to the axioms (F1–4) listed below;
note that a fibration is called acyclic if it is a weak equivalence.

(F1) C has a terminal object 1 and all objects are fibrant.
(F2) Pullbacks along fibrations exist in C and (acyclic) fibrations are stable under pullback.
(F3) Every morphism factors as a weak equivalence followed by a fibration.
(F4) Weak equivalences satisfy the 2-out-of-6 property.

Let M be a simplicial set and X and Y simplicial sets over M. A simplicial map f : X→ Y over
M is a fibrewise homotopy equivalence if there is a map g : Y→ X over M such that gf is fibrewise
homotopic to idX and fg is fibrewise homotopic to idY. In this subsection, we call a map in sSetcof ↓↓M
acyclic if it is a fibrewise homotopy equivalence.

Lemma 2.6.1 If a simplicial map f : X→ Y is a homotopy equivalence, then for all simplicial sets Z
over M the map ftZ : YtZ→ XtZ is a fibrewise homotopy equivalence.

Proof. The functor −tZ is simplicial and thus carries homotopies to fibrewise homotopies. �

Let sSetcof be the full subcategory of sSet spanned by the cofibrant simplicial sets and let
sSetcof ↓↓M be the full subcategory of sSetcof ↓M spanned by Kan fibrations over M. Recall the
notion of a shrinkable map from Subsection 2.4.

Lemma 2.6.2 An acyclic Kan fibration in sSetcof ↓↓M is shrinkable.

Proof. Let K and L be objects of sSetcof ↓↓M and let p : K→ L be an acyclic Kan fibration over M.

Since p is a homotopy equivalence, there exist a map s̃ : L→ K and homotopies H̃ from p̃s to idL and
G̃ from s̃p to idK. The commutative square

admits a lift H : L×∆[1]→ K by part (i) of Proposition 2.3.3. Set s= Hι1 so that H is a homotopy
from s̃ to s. Then we have ps= pHι1 = H̃ι1 = idL. Moreover, sp∼ s̃p so we can pick a direct homo-
topy Ĝ from sp to idK by Lemma 2.5.1. Now, spĜ is a homotopy from spsp= sp to sp and we also
have pspĜ= pĜ. Thus by Lemma 2.5.1 there is a homotopy G from ps to idK over L. �
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1332 N. GAMBINO et al.

Note that the proof above only used the assumption that p is a homotopy equivalence, which
is in general weaker than a fibrewise homotopy equivalence. This argument implies that these two
notions coincide for fibrations, but in the current section we put emphasis on fibrewise homotopy
equivalence.

Lemma 2.6.3 A shrinkable Kan fibration is trivial.

Proof. Assume that p : K→ L is a shrinkable fibration with a deformation section s : L→ K with
ps= idL and a zigzag of homotopies from sp to idK over L. Let this zigzag be represented by H : K×
J→ K with J as its indexing zigzag. Consider a cofibration i : A� B and the first of the following
two squares.

Set w̃= sv. Then w̃i= svi= spu, so Hu is a zigzag of homotopies from w̃i to u over L. Moreover,
pw̃= psv= v and so the right square above commutes and admits a lift G : B× J→ K by part (i) of
Proposition 2.3.3 (note that the inclusion of an endpoint into J is a trivial cofibration). Set w= Gι1.
Then pw= pGι1 = vπι1 = v andwi= Gι1i= Giι1 = Huι1 = u so thatw is a lift in the original square
and hence p is a trivial fibration. �

Alternatively, Lemma 2.6.3 can be concluded as a special case of Lemma 4.1.1, at least for shrink-
able maps with homotopies indexed over∆[1], which is sufficient for our purposes (see Remark 4.1.2
for the general case). Indeed, such a shrinkable Kan fibration is a strong homotopy equivalence and
hence a retract of its pullback exponential with {0}→∆[1], which is a trivial fibration by Proposition
2.3.3. However, we gave a self-contained proof above for the sake of clarity.

Corollary 2.6.4 A morphism in sSetcof ↓↓M is an acyclic Kan fibration if and only if it is a trivial
fibration.

Proof. An acyclic Kan fibration is trivial by Lemmas 2.6.2 and 2.6.3. Conversely, a trivial fibration
is a Kan fibration by Lemma 2.2.2. Moreover, it is shrinkable by part (i) of Lemma 2.5.4. Hence it
is a fibrewise homotopy equivalence over its codomain and thus also over M. �

Theorem 2.6.5 If M is cofibrant, the category sSetcof ↓↓Mwith fibrewise homotopy equivalences and
(underlying) Kan fibrations is a fibration category. The acyclic fibrations are the trivial fibrations.

Proof. Axiom (F1) holds since idM is the terminal object and all objects are fibrant by definition.
For axiom (F2), Kan fibrations are stable under pullback since they are defined by a right lifting
property (and cofibrancy is preserved by Lemma 2.4.7). The same argument applies to acyclic
fibrations, which are the trivial fibrations by Corollary 2.6.4. To verify axiom (F3) it suffices
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(by [7, p. 421, Factorization lemma]) to factor the diagonal map K→ K×M K. In the factoriza-
tion K→∆[1]tK→ ∂∆[1]tK∼= K×M K, the first map is a fibrewise homotopy equivalence by
Lemma 2.6.1 (since ∆[1]→∆[0] is a homotopy equivalence) and the second one is a Kan fibration
by part (iii) of Corollary 2.3.4. Note that∆[1]tK is cofibrant by Corollary 2.4.18 and Lemma 2.4.7.
Fibrewise homotopy equivalences satisfy the 2-out-of-6 property (axiom F4) by the same argument
as in the proof of part (i) of Lemma 2.5.2. �

3. The model structure via the Ex∞ functor

In this section we present the first proof of our main theorem. Our approach follows closely classical
simplicial homotopy theory, and readers familiar with that area will recognize many standard con-
cepts and ideas such as Kan’s Ex functor (following the treatment of Latch–Thomason–Wilson [26]),
diagonals of bisimplicial sets or Quillen’s Theorem A. Constructively, however, much of that theory
is valid only for cofibrant simplicial sets and requires more delicate arguments, which occupy most
of this section. It is only in the final subsection where we are able to go beyond cofibrant objects and
establish enough of their properties to construct the full Kan–Quillen model structure.

3.1. The weak homotopy equivalences

Recall that in Section 2we defined the fibrations and cofibrations of the Kan–Quillenmodel structure.
We now move on to introduce its weak equivalences, called weak homotopy equivalences. However,
we do not give a direct general definition. Instead, we split it into four cases, each building on the
previous one.

Some of these definitions will depend on the notion of a strong cofibrant replacement of a sim-
plicial set X, which is a cofibrant simplicial set X̃ equipped with a trivial fibration X̃→ X. A strong
cofibrant replacement of a simplicial map f : X→ Y is a simplicial map f̃ : X̃→ Ỹ equipped with a
square

where X̃ and Ỹ are cofibrant and both horizontal maps are trivial fibrations. A strong cofibrant
replacement always exists by Proposition 2.2.7.

Let f : X→ Y be a simplicial map.

(W1) If X and Y are cofibrant Kan complexes, then f is a weak homotopy equivalence if it is a
homotopy equivalence.

(W2) If X and Y are Kan complexes, then f is a weak homotopy equivalence if it has a strong cofibrant
replacement that is a weak homotopy equivalence in the sense of (W1).

(W3) If X and Y are cofibrant, then f is a weak homotopy equivalence if for every Kan complex K
the induced map f∗ : KY→ KX is a weak homotopy equivalence in the sense of (W2). Note that
this is a valid definition since KX and KY are Kan complexes by part (ii) of Proposition 2.3.3.
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1334 N. GAMBINO et al.

(W4) If X and Y are arbitrary, then f is a weak homotopy equivalence if it has a strong cofibrant
replacement that is a weak homotopy equivalence in the sense of (W3).

We collect some basic properties of definition (W1).

Lemma 3.1.1 In the category of cofibrant Kan complexes:

(i) weak homotopy equivalences in the sense of (W2) satisfy 2-out-of-6;
(ii) weak homotopy equivalences in the sense of (W2) are closed under retracts;
(iii) every trivial fibration satisfies (W2).

Proof. Parts (i) and (ii) were verified in Lemma 2.5.2. Part (iii) was verified in part (i) of
Lemma 2.5.4. �

We proceed to establish the analogous properties of the remaining definitions. Having done that,
we will be able to show, in Proposition 3.1.8 below, that these apparently different notions are
mutually consistent.

Lemma 3.1.2 Definition (W2) does not depend on the choice of strong cofibrant replacements.

Proof. Let f : X→ Y be a map between Kan complexes and let f̃ and f̃′ be strong cofibrant
replacements of it. Form a diagram

where the top and bottom squares are pullbacks and the square on the left is another strong cofibrant
replacement. Then the maps X̃′′→ X̃ and X̃′′→ X̃′ (as well as their counterparts for Y) are trivial
fibrations between cofibrant Kan complexes and hence satisfy (W1) by part (iii) of Lemma 3.1.1.
Thus, by part (i) of Lemma 3.1.1, f̃ satisfies Lemma (W1) if and only if f̃′ does. �

Lemma 3.1.3 In the category of all Kan complexes:

(i) weak homotopy equivalences in the sense of (W2) satisfy 2-out-of-6;
(ii) weak homotopy equivalences in the sense of (W2) are closed under retracts;
(iii) every trivial fibration satisfies (W2);
(iv) every homotopy equivalence satisfies (W2).
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Proof. For parts (i) and (ii), it follows from functorial cofibrant replacement (as given by Proposition
2.2.7) and Lemma 3.1.2 that weak homotopy equivalences in the sense of (W2) are created by a
functor from weak homotopy equivalences in the sense of (W1). The latter satisfy 2-out-of-6 and
closure under retracts by parts (i) and (ii) of Lemma 3.1.1 and hence so do the former.

For part (iii), if f : X→ Y is a trivial fibration between Kan complexes, pick a strong cofibrant
replacement X̃→→p X. The identity on X̃ is a strong cofibrant replacement of f, which therefore satisfies
(W2).

For part (iv), first note that the endpoint projections X∆[1]→ X of path objects are trivial fibrations
by part (iii) of Proposition 2.3.3 and hence weak homotopy equivalences by part (iii). Next, every
map homotopic to a weak homotopy equivalence is a weak homotopy equivalence. For this, we use
2-out-of-3 to see that in every diagram

if one of the maps X→Y is a weak homotopy equivalence, then so is the other. Finally, let f : X→ Y
be a map with a homotopy inverse g. Since gf and fg are homotopic to identities, they are weak
homotopy equivalences. Then f is a weak homotopy equivalence by 2-out-of-6. �

Remark 3.1.4 One may avoid using functoriality of cofibrant replacements in the proof of
Lemma 3.1.3 by using Reedy cofibrant replacements. For this, we note that the indexing categories
of the respective diagrams ([3] in part (i) and the walking retract in part (ii)) are Reedy categories.

Lemma 3.1.5 In the category of cofibrant simplicial sets:

(i) weak homotopy equivalences in the sense of (W3) satisfy 2-out-of-6;
(ii) weak homotopy equivalences in the sense of (W3) are closed under retracts;
(iii) every trivial fibration satisfies (W3);
(iv) every homotopy equivalence satisfies (W3).

Proof. Parts (i) and (ii) reduce to the respective parts of Lemma 3.1.3. We prove part (iv) before
dealing with part (iii). If f : X→ Y is a homotopy equivalence with X and Y are cofibrant and K is a
Kan complex, then f∗ : KY→ KX is a homotopy equivalence by Lemma 2.5.3. Thus, it satisfies (W2)
by part (iv) of Lemma 3.1.3, and so f satisfies (W3). For part (iii), a trivial fibration between cofibrant
simplicial sets is a homotopy equivalence by part (iii) of Lemma 3.1.1 and thus it satisfies (W3) by
part (iv). �

Lemma 3.1.6 Definition (W4) does not depend on the choice of strong cofibrant replacements.

Proof. This follows by the same argument as Lemma 3.1.2, using Lemma 3.1.5 instead of
Lemma 3.1.1. �

Lemma 3.1.7 In the category of all simplicial sets:
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1336 N. GAMBINO et al.

(i) weak homotopy equivalences in the sense of (W4) satisfy 2-out-of-6;
(ii) weak homotopy equivalences in the sense of (W4) are closed under retracts;
(iii) every trivial fibration satisfies (W4);
(iv) every homotopy equivalence satisfies (W4).

Proof. Parts (i), (ii) and (iii) follow by the arguments for the respective parts of Lemma 3.1.3, with
Lemmas 3.1.5 and 3.1.6 used in the place of Lemmas 3.1.1 and 3.1.2. For part (iv), pick a strong
cofibrant replacement X̃→ X. Then the square

is a strong cofibrant replacement of the projectionX∆[1]→ X (for either endpoint) by Corollary 2.4.18
and part (ii) of Proposition 2.3.1. The projection X̃∆[1]→ X̃ satisfies (W3) by part (iv) of Lemma 3.1.5
since it is a homotopy equivalence by Lemma 2.5.3, so X∆[1]→ X satisfies (W4) (and similarly for
Y). Therefore, f also satisfies (W4) by part (i) and the argument of part (iv) of Lemma 3.1.3. �

Proposition 3.1.8 Let f : X→ Y be a simplicial map.

(i) If X and Y are cofibrant Kan complexes, then f satisfies (W1) if and only if it satisfies (W2).
(ii) If X and Y are cofibrant Kan complexes, then f satisfies (W1) if and only if it satisfies (W3).
(iii) If X and Y are Kan complexes, then f satisfies (W2) if and only if it satisfies (W4).
(iv) If X and Y are cofibrant simplicial sets, then f satisfies (W3) if and only if it satisfies (W4).

Proof. Parts (i) and (iv) follow from Lemmas 3.1.2 and 3.1.6, respectively. Part (iii) is a consequence
of part (i).

It remains to check part (ii). If f satisfies (W1), then it satisfies (W3) by Lemma 2.5.3 and part (iv)
of Lemma 3.1.5. Conversely, assume that f satisfies (W3) and pick a strong cofibrant replacement of
f∗ : XY→ XX:

so that f̃ : EY→ EX is a homotopy equivalence. Let ϕ : EX→ EY be its homotopy inverse. Since uX is
a trivial fibration, we can pick i ∈ EX such that uXi= idX. If we set g= uYϕi : Y→ X, then we have

gf= f∗g= f∗uYϕi= uX̃fϕi∼ uXi= idX .

Next, choose a strong cofibrant replacement of f∗ : YY→ YX:
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with ϕ′ : E′
X→ E′

Y a homotopy inverse of f̃′. Since u′Y is a trivial fibration, we can pick i′, j′ ∈ E′
Y such

that u′Yi
′ = idY and u′Yj

′ = fg. Then we have u′X̃f
′i′ = f∗u′Yi

′ = f∗ idY = f and u′X̃f
′j′ = f∗u′Yj

′ = f∗( fg) =
fgf. However, we already know that gf∼ idX, and thus fgf∼ f. Since u′X is a trivial fibration, the latter
homotopy lifts to f̃′j′ ∼ f̃′i′, and hence

fg= u′Yj
′ ∼ u′Yϕ

′̃f′j′ ∼ u′Yϕ
′̃f′i′ ∼ u′Yi

′ = idY .

Therefore, g is a homotopy inverse of f, that is, f satisfies (W1). �

Having established that our definitions of weak homotopy equivalences are mutually compatible,
we will use them interchangeably, often without comment. In particular, ‘acyclic (co)fibration’ will
refer to a (co)fibration that is also a weak homotopy equivalence. See Table 1 for the notation used
to denote these maps.

We conclude the subsection with an observation that will be useful later. The following statements
hold also without the cofibrancy assumption since strong cofibrant replacements are closed under
product (as cofibrant objects and trivial fibrations are). However, we will not need that stronger
statement.

Corollary 3.1.9 If f : X→ Y is a weak homotopy equivalence between cofibrant simplicial sets and
A is a cofibrant simplicial set, then f ×A is a weak homotopy equivalence.

Proof. For any Kan complex K, we have a commutative square

By part (ii) of Proposition 2.3.3, KA is a Kan complex, and therefore f∗ is a weak homotopy equiv-
alence (in the sense of (W2)). Hence so is ( f×A)∗, and thus f ×A is a weak homotopy equivalence
(in the sense of (W3)). �

3.2. The (co)fibration category of (co)fibrant simplicial sets

In this subsection, we establish the fibration category of fibrant simplicial sets (that is, Kan
complexes) and the cofibration category of cofibrant simplicial sets. This will give us sufficient
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1338 N. GAMBINO et al.

understanding of constructive simplicial homotopy theory to prove a number of intermediate results
in the following subsections. We will then use these results to derive the full model structure. The
case of the fibration category reduces directly to Theorem 2.6.5 (specialized to M=∆[0]).

Proposition 3.2.1 A simplicial map between Kan complexes is an acyclic Kan fibration if and only
if it is a trivial fibration.

Proof. Let f : X→ Y be an acyclic Kan fibration between Kan complexes. Choose a strong cofibrant
replacement Ỹ→→p Y, take a pullback and another strong cofibrant replacement:

Then both X̃→ X and Ỹ→ Y are trivial fibrations, and so is the composite X̃→ Ỹ by Corollary 2.6.4.
It follows that f is also a trivial fibration by Lemma 2.2.10.

Conversely, a trivial fibration is a Kan fibration by Lemma 2.2.2. Moreover, it is acyclic by part
(iii) of Lemma 3.1.3. �

The fibration category of Kan complexes established in the next theorem satisfies certain addi-
tional axioms beyond (F1–4) given in Subsection 2.6, listed below. They assert that certain infinite
limits exist and are well-behaved with respect to fibrations and acyclic fibrations. Such a fibration
category is called complete. The only reason why the fibration category of Theorem 2.6.5 is not
complete is that cofibrant objects are not generally closed under infinite limits.

(F5) C has products and (acyclic) fibrations are stable under products.
(F6) C has limits of countable towers of fibrations and (acyclic) fibrations are stable under such limits.

Theorem 3.2.2 The category of Kan complexes (that is, the full subcategory of the category of
simplicial sets spanned by the Kan complexes) with weak homotopy equivalences (in the sense of
(W2)) and Kan fibrations is a complete fibration category.

Proof. Axiom (F1) holds since ∆[0] is the terminal Kan complex and all Kan complexes are fibrant
by definition. For axiom (F2), Kan fibrations are stable under pullback since they are defined by
a right lifting property. The same argument applies to acyclic fibrations by Proposition 3.2.1. For
axiom (F3), it suffices (by [7, p. 421, Factorization lemma]) to factor the diagonal map K→ K×K.
In the factorization K→ K∆[1]→ K×K, the first map is a homotopy equivalence by Lemma 2.5.3
and hence a weak homotopy equivalence by part (iv) of Lemma 3.1.3 and the second one is a Kan
fibration by part (ii) of Proposition 2.3.3. For axiom (F4), weak homotopy equivalences satisfy the
2-out-of-6 property by part (i) of Lemma 3.1.3. Finally, axioms (F5) and (F6) follow by the same
argument as axiom (F2). �

We go on to show that the category of cofibrant simplicial sets carries a structure of a cocomplete
cofibration category, that is, it satisfies axioms (C1–6) dual to the axioms (F1–4) of Subsection 2.6
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THE CONSTRUCTIVE KAN–QUILLEN MODEL STRUCTURE: TWO NEW PROOFS 1339

and (F5–6) above. As usual, the critical difficulty lies in showing that acyclic cofibrations are closed
under pushout. In contrast to the arguments of Theorems 2.6.5 and 3.2.2, we do not establish any
lifting property of acyclic cofibrations. Instead, the theorem below is proved by reduction to Theo-
rem 3.2.2 via the exponential functors K(−) for all Kan complexes K (which justifies the choice of
(W3) as the definition of weak homotopy equivalences between cofibrant objects). Later, in Propo-
sition 3.6.4, we will show that acyclic cofibrations coincide with trivial cofibrations and thus are
characterized by a lifting property.

Theorem 3.2.3 The category of cofibrant simplicial sets with weak homotopy equivalences (in the
sense of (W3)) and cofibrations is a cocomplete cofibration category.

Proof. Axiom (C1) holds since ∅ is the initial cofibrant simplicial sets and all objects are cofibrant
by definition. For axiom (C2), cofibrations are stable under pushout since they are defined by a
left lifting property. To verify that acyclic cofibrations are stable under pushout, consider a pushout
square

where i is an acyclic cofibration (and all objects are cofibrant). Then for any Kan complex K there
is an induced pullback square of Kan complexes (by part (ii) of Proposition 2.3.3)

where i∗ is a Kan fibration by part (ii) of Proposition 2.3.3 and a weak homotopy equivalence by
definition. Thus j∗ is a weak homotopy equivalence by Theorem 3.2.2, and hence j is a weak homo-
topy equivalence. To verify axiom (C3), it suffices (by [7, p. 421, Factorization lemma]) to factor the
codiagonal map XtX→ X. In the factorization XtX→ X×∆[1]→ X, the first map is a cofibration
by part (i) of Proposition 2.3.1 and the second one is a weak homotopy equivalence by part (iv) of
Lemma 3.1.5. For axiom (C4), weak homotopy equivalences satisfy the 2-out-of-6 property by part
(i) of Lemma 3.1.5. Axioms (C5) and (C6) follow by the same argument as (C2). �

3.3. Diagonals of bisimplicial sets

In this subsection we prove Proposition 3.3.5, a constructive version of the classical result saying that
the diagonal of a bisimplicial map that is a levelwise weak homotopy equivalence is itself a weak
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1340 N. GAMBINO et al.

homotopy equivalence. We can establish this only under a suitable cofibrancy assumption, but our
argument follows a standard approach (that is, as in [16, Proposition 1.9]), which relies only on the
cocomplete cofibration category of cofibrant simplicial sets that we constructed in Theorem 3.2.3.

For purposes of the present subsection, we consider bisimplicial sets as simplicial objects in the
category of simplicial sets. In particular, we will use the fact that a cofibration of bisimplicial sets
(that is, a Reedy decidable inclusion over ∆×∆) is the same thing as a Reedy cofibration over ∆
with respect to cofibrations of simplicial sets (see [32, Example 4.6]). If A and B are simplicial sets,
then their external product is the bisimplicial set A×−B given as (A×−B)m,n = Am×Bn.

The k-th skeleton of a bisimplicial set X is the coend SkkX=
´ [m]∈∆

Xm×−(Sk
k∆[m]) where

Skk∆[m] stands for the simplicial subset of ∆[m] spanned by its k-simplices. For completeness,
we will establish a few basic facts about skeleta, a more abstract discussion can be found in [32,
Section 6].

Lemma 3.3.1 The skeleta of a bisimplicial set X come with canonical morphisms SkkX→ SklX for
all l≥ k≥−1. These morphisms exhibit X as the colimit of the resulting sequence

Sk−1X→ Sk0X→ Sk1X→ . . .

Proof. The functors in the definition of the skeleta come with maps

Sk−1∆[−]→ Sk0∆[−]→ Sk1∆[−]→ . . .

and the colimit of this sequence is ∆[−]. Thus the colimit of

Sk−1X→ Sk0X→ Sk1X→ . . .

is
´ [m]

Xm×−∆[m]∼= X. �

Lemma 3.3.2 For all natural numbers k, m and n, the square

is a pushout.

Proof. The set ∂∆([k],−) is the boundary of the cosimplicial set∆([k],−), that is, ∂∆([k],−)n con-
sists of simplicial operators α : [k]→ [n] such that α[ 6= id[k]. Similarly, ∂∆[k]m consists of operators
β : [m]→ [k] such that β] 6= id[k]. Thus the union in the upper left corner is the set of pairs (β,α) such
that the composite αβ factors through [k− 1]. The conclusion follows since Skk∆[n]m is the set of
operators [m]→ [n] that factor through [k] and Skk−1∆[n]m is the set of those that factor through
[k− 1]. �
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THE CONSTRUCTIVE KAN–QUILLEN MODEL STRUCTURE: TWO NEW PROOFS 1341

Corollary 3.3.3 For any bisimplicial set X the square

is a pushout.

Proof. When m and n vary in the square of the preceding lemma, we obtain a pushout square of

functors ∆→ sSet. Applying the coend
´ [m]

Xm×−(−)m yields the required pushout square. �

In the remainder of this section, wewill freely use the cocomplete cofibration category of cofibrant
simplicial sets established in Theorem 3.2.3 in order to invoke some standard results from [31].

Lemma 3.3.4 If X→Y is a map between cofibrant bisimplicial sets such that Xk→ Yk is a weak
homotopy equivalence for all k, then the induced map LkX→ LkY is also a weak homotopy
equivalence for all k.

Proof. The latching object LkX can be written as a colimit over ∂([k] ↓∆[)
op (the opposite of the

latching category). That category is direct and the diagram (sending [k] _ [l] to Xl) is Reedy cofibrant
since X is (as follows from the fact that the latching categories of ∂([k] ↓∆[) are isomorphic to the
latching categories of ∆[). Thus the conclusion follows from [31, Theorem 9.3.5 (1c)]. �

Proposition 3.3.5 If X→Y is a map between cofibrant bisimplicial sets such that Xk→ Yk is a
weak homotopy equivalence for all k, then the induced map diagX→ diagY is also a weak homotopy
equivalence.

Proof. First, we will prove by induction with respect to k that the induced map diagSkkX→
diagSkkY is a weak homotopy equivalence.

For k=−1, both diagSkkX and diagSkkY are empty, so the statement holds. For k≥ 0, consider
the cube
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1342 N. GAMBINO et al.

of which the top and bottom squares arise by applying diag to the squares of Corollary 3.3.3 since
diag carries external products to products. These squares are pushouts since diag preserves pushouts.

The map LkX→ LkY is a weak homotopy equivalence by Lemma 3.3.4 and therefore so are
LkX×∆[k]→ LkY×∆[k] and LkX× ∂∆[k]→ LkY× ∂∆[k] as well as Xk× ∂∆[k]→ Yk× ∂∆[k] by
Corollary 3.1.9. Thus the left vertical map in the back of the cube is a weak homotopy equivalence
by the Gluing Lemma [31, Lemma 1.4.1 (1b)] (using the fact that X and Y are cofibrant as well as
part (i) of Proposition 2.3.3). The map Xk×∆[k]→ Yk×∆[k] is a weak homotopy equivalence by
Corollary 3.1.9 and so is diagSkk−1X→ diagSkk−1Y by the inductive hypothesis. Moreover, the
diagonal maps on the left of the cube are cofibrations by cofibrancy of X and Y and part (i) of Propo-
sition 2.3.1. Thus the Gluing Lemma [31, Lemma 1.4.1 (1b)] implies that diagSkkX→ diagSkkY is
a weak homotopy equivalence.

It also follows that the diagonal maps on the right are cofibrations. Hence, Lemma 3.3.1 and [31,
Theorem 9.3.5 (1c)] imply that diagX→ diagY is a weak homotopy equivalence. �

3.4. The Ex∞ functor

We turn to the constructive treatment of the Ex∞ functor. Classically, it is a fibrant replacement func-
tor with some convenient properties, most notably preservation of finite limits and Kan fibrations.
In the constructive setting, we are only able to show that it is a fibrant replacement functor in the
subcategory of cofibrant simplicial sets. Some of the material below is treated also in [18, Section 3].
However, we do not need to establish some of the more intricate results on trivial cofibrations proved
therein.

If P is a poset, then let sdP denote the poset of finite, non-empty, totally ordered subsets of
P ordered by inclusion. (This defines a functor sd : Pos→ Pos.) Let maxP : sdP→ P denote the
(natural, order-preserving) map sending a finite, non-empty, totally ordered subset of P to its max-
imal element. Let Sd: sSet→ sSet be the essentially unique colimit-preserving functor such that
Sd∆[m] = Nsd[m] (as functors ∆→ sSet) and µ : Sd→ idsSet be the natural transformation such
that µ∆[m] = Nmax[m] (up to isomorphism, there is a unique such transformation since Sd is the left
Kan extension of the functor NSd: ∆→ sSet along the Yoneda embedding). For a poset P, we have
a natural isomorphism SdNP∼= NsdP. Moreover, if K is a simplicial subset of NP, then SdK is
a simplicial subset of NsdP; it consists of those simplices whose vertices lie in K (when seen as
non-degenerate simplices of NP).

Before discussing homotopy theoretic properties of the subdivision, we establish two prelimi-
nary lemmas needed for the verification of cofibrancy of various simplicial and bisimplicial sets
constructed later in this section.

Lemma 3.4.1 If σ : [m] _ [n] is a degeneracy operator, then the induced map Sd∆[m]→ Sd∆[n] is
a generalized degeneracy.

Proof. Let δ : [n]→ [m] be a section of σ. Then Sdδ is a section of Sdσ and we will show that it
is a deformation section. Let f : sd[m]→ sd[n] be given by A 7→ A∪ δσA for every finite non-empty
subset A⊆ [m]. Then we have A⊆ fA⊇ (sdδ)(sdσ)A, which induces a zigzag of fibrewise homo-
topies idSd∆[m]→ N f← (Sdδ)(Sdσ). Thus, Sdσ is shrinkable and hence a generalized degeneracy
by Lemma 2.4.15. �
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THE CONSTRUCTIVE KAN–QUILLEN MODEL STRUCTURE: TWO NEW PROOFS 1343

Lemma 3.4.2 For every m, the map µ∆[m] : Sd∆[m]→∆[m] is shrinkable. In particular, it is a
homotopy equivalence and a generalized degeneracy.

Proof. Define an order-preserving map ι[m] : [m]→ sd[m] by ι[m](i) = {0, . . . , i}. Then max[m] ι[m] =
id[m] and ι[m]max[m] ⊇ idsd[m] so thatNι[m] is a deformation section of µ∆[m]. Thus µ∆[m] is shrinkable
and a homotopy equivalence. It is a generalized degeneracy by Lemma 2.4.15. �

The subdivision functor Sd: sSet→ sSet has a right adjoint denoted by Ex, which can be con-
structed as (ExX)m = sSet(Sd∆[m],X). Under this adjunction, µ : Sd→ idsSet corresponds to a
natural transformation idsSet→ Ex, which will be denoted by ν.

Proposition 3.4.3 The functor Ex satisfies the following conditions.

(i) It preserves limits.
(ii) It preserves Kan fibrations.
(iii) It preserves trivial fibrations.
(iv) If X is cofibrant, then νX is a cofibration. In particular, ExX is cofibrant.

Proof. Part (i) holds since Ex is a right adjoint.
For part (ii), it suffices to show that Sd carries horn inclusions to trivial cofibrations. Note that

any permutation of [m] induces a simplicial automorphism of Sd∆[m] that carries horns to horns.
Thus, it is enough to check that SdΛ0[m] ↪→ Sd∆[m] is a trivial cofibration. SdΛ0[m] is the nerve
of the subposet of sd[m] spanned by all elements except [m] and [m] \ {0}. Thus, the inclusion in
question factors as SdΛ0[m] ↪→ SdΛ0[m]∪X ↪→ Sd∆[m] where X is the nerve of the subposet of
sd[m] spanned by all elements S⊆ [m] such that 0 ∈ S. Moreover, let Y be the nerve of the subposet
of sd[m] spanned by all elements except {0}. Then there are pushout squares

In the left one, SdΛ0[m]∩X is the nerve of the subposet of sd[m] spanned by all elements S⊆ [m]
such that 0 ∈ S except [m]. Thus SdΛ0[m]∩X ↪→ X can be identified with them-fold pushout product
of Λ0[1]→∆[1] and so it is a trivial cofibration by part (i) of Proposition 2.3.3. Hence SdΛ0[m] ↪→
SdΛ0[m]∪X is also a trivial cofibration. Similarly, in the right square, (SdΛ0[m]∪X)∩Y ↪→ Y can
be identified with the pushout product ofΛ1[1] ↪→∆[1] and Sd∂∆[m− 1] ↪→ Sd∆[m− 1] and so it is
a trivial cofibration by part (i) of Proposition 2.3.3. (Under this identification, ∆[m− 1] corresponds
to the face δ0 : ∆[m− 1] ↪→∆[m].) Hence, SdΛ0[m]∪X ↪→ Sd∆[m] is also a trivial cofibration and
thus so is SdΛ0[m] ↪→ Sd∆[m].

For part (iii), we need to verify for all m that the map Sd∂∆i[m]→ Sd∆[m] is a cofibration.
This follows by Lemma 2.4.11 since it is the nerve of a decidable inclusion between categories with
decidable identities.

For part (iv), we first check that ExX is cofibrant. Indeed, by Corollary 2.4.5 it is enough to
check that each degeneracy operator [m] _ [n] induces a decidable inclusion (ExX)n→ (ExX)m.
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1344 N. GAMBINO et al.

This inclusion is induced by Sd∆[m]→ Sd∆[n], so the conclusion follows from Lemma 3.4.1. Next,
by Corollary 2.4.6 it suffices to verify that νX : X→ ExX is a levelwise decidable inclusion. This is
a consequence of Lemma 3.4.2 since Xm→ (ExX)m is induced by µ∆[m] : Sd∆[m]→∆[m]. �

For a simplicial set X, we define Ex∞X to be the colimit of the sequence

We write ν∞X : X→ Ex∞X for the resulting natural map.
Proposition 3.4.4 below extends some properties of the Ex functor to the Ex∞ functor.

Proposition 3.4.4 The functor Ex∞ satisfies the following conditions:

(i) It preserves finite limits.
(ii) It preserves Kan fibrations between cofibrant objects.
(iii) It preserves trivial fibrations between cofibrant objects.
(iv) If X is cofibrant, then ν∞X is a cofibration. In particular Ex∞X is cofibrant. Moreover, Ex∞X

is a Kan complex.

Proof. For part (i), observe that Ex∞ is a filtered colimit of functors and each of these functors
preserve limits by part (i) of Proposition 3.4.3. Hence it preserves finite limits itself.

Parts (ii) and (iii) follow by Proposition 2.2.5 from the corresponding parts (ii) and (iii) of Propo-
sition 3.4.3 using part (iv) of Proposition 3.4.3 to satisfy the requirement that the step maps in the
colimit are cofibrations.

For part (iv), ν∞X is a cofibration by part (iv) of Proposition 3.4.3 and thus Ex∞X is cofibrant.
To show that it is a Kan complex, we appeal to Lemma 2.2.6. The step maps ExkX→ Exk+1X are
cofibrations by part (iv) and hence levelwise decidable. It remains to construct the indicated lift in
any lifting problem

It suffices to have this only for k≥ 1. Then by adjointness this problem rewrites as

For this, it will suffice to construct the dashed map ϕ. We do so by first defining a map
ϕ : Sd2∆[m]→ Sd∆[m], showing that its image is in SdΛi[m] and finally checking the required
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THE CONSTRUCTIVE KAN–QUILLEN MODEL STRUCTURE: TWO NEW PROOFS 1345

commutativity. All simplicial sets in the left triangle are nerves of finite posets, so it will be enough
to define ϕ on the underlying posets. First, for a finite non-empty subset A⊆ [m], define

µ′A=

{
i if A ∈ {[m], [m] \ {i}},
maxA otherwise.

We then let

ϕ(A0 ⊂ . . .⊂ Ap) = {µ′A0, . . . ,µ
′Ap}, (2)

so that ϕ is an order-preserving map. We verify that the image of ϕ lies in SdΛi[m]. Since SdΛi[m]
is the nerve of the poset of the faces of Λi[m] and Λi[m] ↪→∆[m] is a levelwise decidable inclu-
sion by Lemma 2.2.2 and Corollary 2.4.6, we can do so by ruling out two cases. The first is
that ϕ(A0 ⊂ . . .⊂ Ap) = [m] \ {i}. In this case, we have i 6∈ ϕ(A0 ⊂ . . .⊂ Ap) so that ϕ(A0 ⊂ . . .⊂
Ap) = {maxA0, . . . ,maxAp} and [m] \ {i} ⊆ Ap. This implies that i ∈ ϕ(A0 ⊂ . . .⊂ Ap) and that is
not possible. The second case is that ϕ(A0 ⊂ . . .⊂ Ap) = [m]. But then we would have p=m and
ϕ(A0 ⊂ . . .⊂ Am−1) = [m] \ {i}, which is also not possible, as above. Finally, by the very definition
in (2), ϕ restricts to SdµΛi[m], as required. �

Proposition 3.4.5 For a cofibrant simplicial set X, the map νX : X→ ExX is a weak homotopy
equivalence.

Proof. We use the argument of [26, Theorem 4.1] enhanced with cofibrancy checks necessary to
make it constructive. We begin by noticing that Ex preserves homotopies. Indeed, a homotopy X×
∆[1]→ Y gives a map ExX×∆[1]→ ExX×Ex∆[1]→ ExY. Thus, Ex also preserves homotopy
equivalences.

Consider the commutative square

in the category of sets, which becomes a square of bisimplicial sets whenm and n vary. Wewill verify
that all these are cofibrant. By Remark 2.4.9, it is enough to verify that all degeneracy operators act on
them via decidable inclusions. For the left objects, this amounts to cofibrancy of X and ExX (part (iv)
of Proposition 3.4.3). For the right objects, this reduces to cofibrancy of X∆[m], XSd∆[m], X∆[n] and
Ex(X∆[n]), which follows from Corollary 2.4.18 and part (iv) of Proposition 3.4.3. Since bisimplicial
Reedy cofibrancy coincides with iterated simplicial Reedy cofibrancy, all these bisimplicial sets are
Reedy cofibrant simplicial objects in sSet in both directions.

By fixing either m or n we obtain two squares of simplicial sets
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1346 N. GAMBINO et al.

where the right map in the left square is a homotopy equivalence as the image of the homotopy equiv-
alence Sd∆[m]→∆[m] of Lemma 3.4.2 under X(−), the top map in the right square is a homotopy
equivalence as the image of the homotopy equivalence ∆[n]→∆[0] under X(−) and then the bot-
tom map in the right square is a homotopy equivalence since Ex preserves homotopy equivalences
as noted above. In the first two cases we use Lemma 2.5.3 to show that X(−) preserves homotopy
equivalences.

Homotopy equivalences are weak homotopy equivalences by part (iv) of Lemma 3.1.5 and, con-
sequently, taking the diagonal simplicial sets in the original square (that is, setting m= n) yields

in which the horizontal and right vertical maps are weak homotopy equivalences by Proposition
3.3.5. Thus, X→ ExX is also a weak homotopy equivalence by the 2-out-of-3 property. �

Proposition 3.4.6 For a cofibrant simplicial set X the map ν∞X : X→ Ex∞X is a weak homotopy
equivalence.

Proof. This follows from part (iv) of Proposition 3.4.3, Proposition 3.4.5 and [31, Theorem 9.3.5
(1c)]. �

3.5. An explicit cofibrant replacement functor

Up to this point, we have developed a fair amount of homotopy theory of cofibrant simplicial sets.
To move beyond cofibrant objects, we need a sufficiently well-behaved cofibrant replacement func-
tor. (Specifically, we need it to preserve pushouts and cofibrations.) There are a few functors that
are suitable. We use a functor T where TX is defined as the nerve of the category of simplices of
X. However, even to prove all necessary facts about T, we implicitly use another cofibrant replace-
ment functor which is the variation of T using the subcategory of face operators of the category of
simplices. Yet another cofibrant replacement functor, denoted LU and obtained from an adjunction
between simplicial and semisimplicial sets, will be discussed in Section 5.

To deal with homotopy theory of nerves of categories, we employ the classical Theorem A of
Quillen. As usual, the standard proof technique [30, p. 93] is applicable but only for cofibrant objects.

A simplicial set is contractible if the map X→∆[0] is a homotopy equivalence. It is weakly
contractible if X→∆[0] is a weak homotopy equivalence.
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Theorem 3.5.1 (Quillen’s Theorem A) Let f : I→ J be a functor between categories with decidable
identities. If for every y ∈ J the nerveN( f ↓ y) is weakly contractible, then the induced mapN I→ NJ
is a weak homotopy equivalence.

Proof. Let Sf be a bisimplicial set whose (m, n)-bisimplices are triples (x,y,ϕ) where x : [m]→ I,
y : [n]→ J and ϕ : fxm→ y0. It comes with two bisimplicial maps

NI×∆[0]←− Sf−→∆[0]×NJ.

All the bisimplicial sets in this diagram are cofibrant. For the codomains, recall that N I and NJ are
cofibrant by part (i) of Lemma 2.4.11. Part (ii) of Lemma 2.1.7, Corollary 2.4.5 and Remark 2.4.9
imply that the external product (defined in Subsection 3.3) of cofibrant simplicial sets is cofibrant.
For Sf, the set of (m, n)-bisimplices can be written as the pullback (N I)m×obJ morJ×obJ (N I)n, and
so the cofibrancy of Sf follows from cofibrancy of N I and NJ and part (ii) of Lemma 2.1.7.

For a fixed m, the left map becomes

which is a weak homotopy equivalence since each N( fxm ↓ J) is contractible (as fxm ↓ J has an initial
object). For a fixed n, the left map becomes

which is a weak homotopy equivalence since each N( f ↓ y0) is contractible by assumption. (Here, we
use the fact that weak homotopy equivalences between cofibrant objects are closed under coproducts,
see Theorem 3.2.3.)

Thus, by taking diagonals we obtain the diagram

where all horizontal maps are weak homotopy equivalences by Proposition 3.3.5 (using the fact that
idNJ satisfies the hypotheses of the theorem). The left map is N f and the right one is idNJ. It follows
by 2-out-of-3 that N f is a weak homotopy equivalence. �

For a simplicial set X, set TX= N(∆ ↓X). There is a natural map τX : TX→ X given as follows.
An m-simplex of TX is a functor [m]→∆ ↓X, that is, a sequence of simplices ∆[k0]→∆[k1]→
. . .∆[km]→ X. Write ϕi for the map [ki]→ [km] of this sequence and let ϕ̄ : [m]→ [km] be given by
ϕ̄i= ϕiki. Then τX sends the simplex above to ∆[m]→∆[km]→ X induced by ϕ̄.
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1348 N. GAMBINO et al.

Lemma 3.5.2 The functor T carries homotopy equivalences to weak homotopy equivalences.

Proof. For a simplicial set X, consider the projection p : X×∆[1]→ X and the induced functor
p∗ : ∆ ↓ (X×∆[1])→∆ ↓X. We will begin by verifying that it satisfies the hypothesis of Theo-
rem 3.5.1. Note that all categories involved have decidable identities by Lemma 2.4.12. Moreover,
p is a pullback of ∆[1]→∆[0] and thus a slice of p∗ over x : ∆[m]→ X coincides with the slice of
the induced functor ∆ ↓ [1]→∆ over [m]. The latter slice is isomorphic to ∆ ↓ ([m]× [1]) so it suf-
fices to show that the nerve of this category is contractible. Let s : ∆ ↓ ([m]× [1])→∆ ↓ ([m]× [1])
be a functor that sends (ϕ,ψ) : [k]→ [m]× [1] to (ϕ′,ψ′) : [k+ 1]→ [m]× [1] where ϕ′i= ϕi and
ψ′i= ψi for i ∈ [k] while ϕ′(k+ 1) = m and ψ′(k+ 1) = 1. This functor admits natural transfor-
mations cm,1→ s← id∆↓([m]×[1]) where cm,1 is the constant functor at (m,1) : [0]→ [m]× [1] which
proves the claim.

Theorem 3.5.1 implies that Np∗ = Tp is a weak homotopy equivalence. Consequently, T also
carries the cylinder inclusions X→ X×∆[1] to weak homotopy equivalences, and thus it carries all
homotopy equivalences to weak homotopy equivalences. �

Lemma 3.5.3 For every simplicial set X, the inclusion functor jX : ∆] ↓X→∆ ↓X induces a weak
homotopy equivalence on the nerves.

Proof. As a preliminary step, we verify that the nerve of j ↓ [m] is contractible where j is the inclusion
∆]→∆. Indeed, let s be an endofunctor of that category given by sϕ= ϕ′ where ϕ′0= 0 and
ϕ′i= ϕ(i+ 1) (assuming ϕ : [k]→ [m] so that ϕ′ : [1+ k]→ [m]). Then the diagram

exhibits natural transformations c0→ s← idj↓[m] where c0 is the constant functor at 0 : [0]→ [m].
Thus, N(j ↓ [m]) is contractible as claimed.

Finally, note that for each x ∈ Xm, seen as an object of∆ ↓X, the slice category jX ↓ x is isomorphic
to j ↓ [m] (since a morphism jXy→ x is uniquely determined by a simplicial operator [n]→ [m] for any
y ∈ Xn). Hence the conclusion follows from Theorem 3.5.1 (note that∆] ↓X has decidable identities
by Lemma 2.4.12 since the projection to ∆] is a discrete Grothendieck fibration). �

Lemma 3.5.4 The functor T carries trivial fibrations to weak homotopy equivalences.

Proof. Let p : X→ Y be a trivial fibration. By Lemma 3.5.3, it will be enough to show that p∗ : ∆] ↓
X→∆] ↓Y induces a weak homotopy equivalence on the nerves.

First, we construct a section s of p∗ as follows. Given y : ∆[m]→ Y, assume inductively that s has
been already defined on all object of degree less than m (and morphisms between them). We define
sy as the solution to the lifting problem
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THE CONSTRUCTIVE KAN–QUILLEN MODEL STRUCTURE: TWO NEW PROOFS 1349

where functoriality is guaranteed by the commutativity of the upper triangle.
Similarly, we define a ‘homotopy’ H : ∆] ↓X→∆] ↓ (X∆[1]) from sp∗ to id∆♯↓X that is fibrewise

in the sense that it becomes the ‘constant homotopy’ at p∗ when composed with the functor ∆] ↓
(X∆[1])→∆] ↓ (Y∆[1]) induced by p. Assuming that H was defined at objects of degree less than m
and given x : [m]→ X, we set Hx to be the solution to the lifting problem

(which exists by part (i) of Proposition 2.3.1).
To conclude the proof, we note that Lemmas 3.5.2 and 3.5.3 imply that both projections ∆] ↓

(X∆[1])→∆] ↓X induce weak homotopy equivalences on the nerves. Therefore, by an argument
analogous to part (iv) of Lemma 3.1.3, Np∗ is also a weak homotopy equivalence. �

All properties of the functor T that will be needed later in the paper are summarized in the fol-
lowing proposition. (Although we will not use it, the functor N(∆] ↓−) appearing above satisfies
the same properties.)

Proposition 3.5.5 The functor T satisfies the following conditions.

(i) It preserves colimits.
(ii) It takes values in cofibrant simplicial sets.
(iii) It preserves cofibrations.
(iv) For every simplicial set X, τX : TX→ X is a weak homotopy equivalence.

Proof. Part (i) follows from the fact that we can write

(TX)m =
∐

[k0]→...→[km]

Xkm .

Part (ii) is a consequence of part (i) of Lemma 2.4.11 and Lemma 2.4.12.
For Part (iii), it is enough to check that T∂∆[m]→ T∆[m] is a cofibration. By the previous part

and Part (ii) of Lemma 2.4.11, it is sufficient to verify that ∆ ↓ ∂∆[m]→∆ ↓∆[m] is a decidable
inclusion. That in turn follows from the fact that ∂∆[m]→∆[m] is a levelwise decidable inclusion.

We now prove part (iv). First, observe that T∆[m] is the nerve of a category with a terminal object
and hence is contractible. Therefore, τ∆[m] is a weak homotopy equivalence. Next, we show that
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1350 N. GAMBINO et al.

τΛi[m] is a weak homotopy equivalence by induction. By Lemma 2.2.9, ∂∆[m] is a cell complex with
respect to {∂∆[k]→∆[k] | k< m}. By the inductive hypothesis and the preceding observation, τ is
a weak homotopy equivalence on the domains and codomains of maps in this set. Since T preserves
colimits and cofibrations, Theorem 3.2.3 and the Gluing Lemma [31, Lemma 1.4.1 (1b)] imply that
τΛi[m] is a weak homotopy equivalence as well. The same argument shows that τX is a weak homotopy
equivalence for all I-cell complexes X (where I= {∂∆[m] ↪→∆[m] | m≥ 0}). Since weak homotopy
equivalences are closed under retracts by part (ii) of Lemma 3.1.5, the same holds for all cofibrant
X. Finally, the conclusion follows for arbitrary X by Lemma 3.5.4. �

3.6. Conclusion of the first proof

We are now ready to establish the Kan–Quillen model structure. We need to show that acyclic fibra-
tions coincide with trivial fibrations. In Proposition 3.2.1, we have already verified this for maps
between Kan complexes. We follow the argument in [28, Section 17.6], attributed by the authors to
Bousfield, to extend this result to maps between arbitrary simplicial sets. This uses the Ex∞ functor,
but our situation is more subtle due to the fact that it is a fibrant replacement on cofibrant objects
only.

We also need to verify that acyclic cofibrations coincide with trivial cofibrations, which will fol-
low by a general retract argument as soon as we know that trivial cofibrations are weak homotopy
equivalences. This is, however, non-trivial for maps between non-cofibrant objects and relies on
good properties of the cofibrant replacement functor T.

Lemma 3.6.1 If X and Y are cofibrant and p : X� Y is an acyclic Kan fibration, then all fibres of p
are contractible.

Proof. For each y ∈ Y0, form the diagram

where the back square is a pullback that exhibits Fy as the fibre of p over y. The front square is also a
pullback by part (i) of Proposition 3.4.4 and all back-to-front maps are weak homotopy equivalences
by Proposition 3.4.6. Since p is acyclic, Ex∞ p is an acyclic Kan fibration by part (ii) of Proposition
3.4.4 and part (i) of Lemma 3.1.5. Moreover, all objects in the front face are Kan complexes by
part (iv) of Proposition 3.4.4, and hence Ex∞Fy→ Ex∞∆[0] is a weak homotopy equivalence by
Theorem 3.2.2. Thus, so is Fy→∆[0], that is, Fy is contractible. �

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/73/4/1307/6572522 by guest on 17 M
ay 2023



THE CONSTRUCTIVE KAN–QUILLEN MODEL STRUCTURE: TWO NEW PROOFS 1351

Lemma 3.6.2 A Kan fibration with contractible fibres is trivial.

Proof. Let p : X→ Y be a Kan fibration with contractible fibres. Consider a lifting problem

LetH : ∆[m]×∆[1]→∆[m] be a homotopy from the constant map at 0 to the identity map. It yields
another lifting problem

which has a solution G̃ : ∂∆[m]×∆[1]→ X by part (i) of Proposition 2.3.3. Such G̃ is a homotopy
from ũ to u and the former factors through the fibre Fv0 of p over v0 to yield a diagram

The left square of this diagram has a lift since Fv0 is contractible. (Since ∆[0] and Fv0 are Kan
complexes, the acyclic fibration Fv0 →∆[0] is trivial by Proposition 3.2.1.) Let w̃ : ∆[m]→ X denote
the resulting composite, which leads to yet another lifting problem

Again, the left map is a trivial cofibration by part (i) of Proposition 2.3.3, so there is a solution
G : ∆[m]×∆[1]→ X, which is a homotopy from w̃ to w. That w is a solution to the original lifting
problem. Indeed, pw= pGι1 = vHι1 = v and w|∂∆[m] = Gι1|∂∆[m] = G̃ι1 = u. �
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1352 N. GAMBINO et al.

Proposition 3.6.3 A simplicial map is an acyclic Kan fibration if and only if it is a trivial fibration.

Proof. This follows by the same argument as Proposition 3.2.1 except it uses Lemmas 3.6.1 and
3.6.2 in the place of Corollary 2.6.4 and Lemma 3.1.7 in the place of Lemma 3.1.3. �

Proposition 3.6.4 A simplicial map is an acyclic cofibration if and only if it is a trivial cofibration.

Proof. An acyclic cofibration is a cofibration by Lemma 2.2.2.
First, we check the acyclicity in the subcategory of cofibrant objects. Let f : X�p Y be a trivial

cofibration between cofibrant simplicial sets. For any Kan complex K, the map f∗ : KY→ KX is a
trivial fibration between Kan complexes by parts (ii) and (ii) of Proposition 2.3.3. Thus, f∗ is a weak
homotopy equivalence in the sense of (W2) by part (iii) of Lemma 3.1.3, and it follows that f is a
weak homotopy equivalence in the sense of (W3).

In the general case, note that the class of cofibrations i such that Ti is a weak homotopy equivalence
is closed under coproducts, pushouts, sequential colimits and retracts by Theorem 3.2.3 and part (ii)
of Lemma 3.1.7 and since T preserves colimits and cofibrations and takes values in cofibrant objects
(Proposition 3.5.5). By the preceding argument, this class also contains the horn inclusions and hence
all trivial cofibrations by part (ii) of Proposition 2.2.7.

Conversely, let f be an acyclic cofibration and pick a factorization

where i is a trivial cofibration and p is a Kan fibration. Then i is a weak homotopy equivalence by the
argument above and thus so is p by 2-out-of-3. Hence, p is a trivial fibration by Proposition 3.6.3.
This implies that the lifting problem

has a solution, which exhibits f as a retract of i. The former is thus a trivial cofibration. �

Theorem 3.6.5 The cofibrations, Kan fibrations and weak homotopy equivalences form a model
structure on simplicial sets.

Proof. Weak homotopy equivalences satisfy 2-out-of-6 by part (i) of Lemma 3.1.7. By Proposition
2.2.7, we have weak factorization systems of cofibrations and trivial fibrations and of trivial cofibra-
tions and Kan fibrations. By Proposition 3.6.3, acyclic fibrations coincide with trivial fibrations. By
Proposition 3.6.4, trivial cofibrations coincide with acyclic cofibrations. �
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Remark 3.6.6 Let us briefly highlight the differences between our first proof and Simon Henry’s
proof in [18]. First of all, the definitions of the weak equivalences are different. Indeed, Henry
first introduces weak equivalences only between objects that are either fibrant or cofibrant using the
homotopy category, as in his work on weak model categories [17], and then extends this definition
to all objects using the adjunction to the category of semisimplicial sets and a weak model structure
on it. Secondly, the two proofs are organized in very different ways. In particular, Henry’s proof first
establishes the existence of a model structure with the required weak equivalences and cofibrations
[18, Theorem 2.2.8] and then exploits Ex∞ to show that the fibrations of the model structure are
the Kan fibrations. This second step is particularly complex since it relies on an intricate auxiliary
notion of a P-structure introduced in [27]. Moreover, it depends on the theory of degeneracy quotients
(called collapses by Joyal [23]), which we replace by the closely related, but less technical, theory
of generalized degeneracies. (Every degeneracy quotient between finite colimits of simplices is a
generalized degeneracy.)

4. The model structure via the equivalence extension property

In this section, we present our second proof of the existence of the constructive Kan–Quillen model
structure. It is based on the development in [14, 33]. The strategy of the approach is as follows. We
first build the restriction of the model structure to cofibrant objects. For this, we follow the approach
of [33] in the setting of cofibrant simplicial sets. We then obtain the extension to simplicial sets using
formal reasoning.

The development of the model structure in cofibrant simplicial sets occupies most of this section.
The cornerstones are the Frobenius property (Proposition 4.1.6) in Subsection 4.1 and the trivial
fibration extension (Corollary 4.2.5) and fibration extension (Corollary 4.2.7) properties in Sub-
section 4.2. The latter two statements are consequences of the equivalence extension property
(Proposition 4.2.3), which is the namesake of Subsection 4.2. (Although we refer to all these state-
ments as properties, we recall that constructively we ought to think of them as operations.) In
Subsection 4.3, we define notions of weak homotopy equivalences and verify the model structure
properties, first in cofibrant objects and then in all of simplicial sets. This subsection is entirely
formal and uses from the earlier two subsections only the three statements referred to above.

4.1. The Frobenius property

The first step is to prove a restricted version of the Frobenius property for the weak factorization
system of trivial cofibrations and fibrations, asserting that pullback along a fibration with cofibrant
domain preserves trivial cofibrations. For this, we follow [14], but make explicit the cofibrancy
assumption on the domain of the fibration (cf the proof of Lemma 4.1.5).

We begin by recalling from [14] the notion of a strong homotopy equivalence in simplicial sets.
Let f : A→ B be a homotopy equivalence with homotopy inverse g : B→ A. We say that f is 0-
oriented if gf∼ idA and fg∼ idB are witnessed by a homotopy u from gf to idA and a homotopy v
from fg to idB, respectively. If the homotopies go in the reverse direction, we say that f is 1-oriented.
In either case, we say that f is a strong homotopy equivalence if fu= vf. Note that if u is the constant
homotopy, f specializes to a map with a strong deformation retraction as in Subsection 2.5. Dually,
if v is the constant homotopy, f specializes to a shrinkable map in the sense of Subsection 2.4 (cf
Remark 4.1.2).
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1354 N. GAMBINO et al.

A key property of the notion of strong homotopy equivalence is that it admits a characterisation
in terms of retracts. For this, we consider the following square in simplicial sets:

In the arrow category sSet[1], this square induces a map θ0 : !→ ι0 when read horizontally and a
map θ1 : !→ ι1 when read vertically. Note that ! is the unit for the pushout product. We then have
the following characterization.

Lemma 4.1.1 ([14, Lemma 4.3]) The following are equivalent for a map f and k ∈ {0,1}:

(i) f is a k-oriented strong homotopy equivalence,
(ii) f ×̂ θk : f→ f ×̂ ιk has a retraction and
(iii) ĥom(θk, f) : ĥom(ιk, f)→ f has a section.

Proof. The equivalence of (ii) and (iii) follows by adjointness. For the equivalence of (i) and (ii), we
only consider the case k= 0 (the case k= 1 is dual). The data of a retraction of f ×̂ θ0 : f→ f ×̂ ι0 are
shown in the following diagram:

(we have omitted the identity arrows for A and B; the top left map is induced by A× ι1). Commu-
tativity of the diagram precisely amounts to g, u, v making f into a 0-oriented strong homotopy
equivalence. �

Remark 4.1.2 The general setting for the theory of strong homotopy equivalences is that of an
(adjoint) functorial cylinder. One may then take the 0-oriented notion as default and obtain the
1-oriented notion from the cylinder with mirrored endpoints. Indeed, this viewpoint allows us to
support zigzags of homotopies (as they occur in our notions of homotopy equivalence and shrink-
able map). We merely have to consider the cylinder functor induced by a walking zigzag J, seen as
an interval object.

Lemma 4.1.3 The horn inclusion Λk[n]→∆[n] is a 0-oriented strong homotopy equivalence for
k < n and a 1-oriented strong homotopy equivalence for k > 0. In particular, every horn inclusion is
a strong homotopy equivalence.
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This is [11, IV.2.1.3] (describing strong homotopy equivalences via condition (ii) of
Lemma 4.1.1). For self-containedness, we include a proof.

Proof. We let k < n and show that h : Λk[n]→∆[n] is a 0-oriented strong homotopy equivalence (the
other case is dual). The initial segment s : [k]→ [n] has a unique retraction r : [n]→ [k]. Because
k < n, the map s induces a monomorphism i : ∆[k]→ Λk[n]. We define the homotopy inverse of h as
ir : ∆[n]→ Λk[n]. The homotopy from h(ir) to id∆[n] is given by the nerve of the map [1]× [n]→
[n] corresponding to the unique map sr→ id[n]. This restricts on h to a homotopy from idΛk[n]

to (ir)h. �

Corollary 4.1.4 The weak factorization system of trivial cofibrations and fibrations is cofibrantly
generated by cofibrations between cofibrant objects that are strong homotopy equivalences.

Proof. Every horn inclusion is a cofibration between cofibrant objects by Lemma 2.2.2 and Corol-
lary 2.4.10 and a strong homotopy equivalence by Lemma 4.1.3. In the other direction, every
cofibration i that is a k-oriented strong homotopy equivalence is a retract of ιk ×̂ f by Lemma 4.1.1,
which is a trivial cofibration by part (i) of Proposition 2.3.3. �

Lemma 4.1.5 (cf. [14, Lemma 4.7]) In any pullback square

with X cofibrant, if g is a k-oriented strong homotopy equivalence, then so is f.

Proof. We only consider the case k= 0 (the case k= 1 is dual). We work with 0-oriented strong
homotopy equivalences as characterized by condition (ii) of Lemma 4.1.1. To make f into one, we
will construct the dotted map in the following (vertical) map of retracts in the arrow category:

Since f → g is a pullback square, it suffices to produce this map on codomains:
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1356 N. GAMBINO et al.

This is a lifting problem

Here, the left map is the pushout product of∅→ Xwith {1}→∆[1] and hence is a trivial cofibration
by part (i) of Proposition 2.3.3 since X is cofibrant. �

Proposition 4.1.6 (restricted Frobenius property, cf. [14, Theorem 3.8]) Let X� Y be a fibration
with X cofibrant. Pullback along X� Y preserves trivial cofibrations.

Proof. Since pullback along X→Y is a left adjoint, it suffices to show that it preserves the gen-
erators of Corollary 4.1.4, that is, cofibrations between cofibrant objects that are strong homotopy
equivalences. For this, we note the following.

• Pullback along X→Y preserves cofibrations (and hence cofibrant objects) by Corollary 2.3.2.
• Let A→B be a map over Y with B cofibrant such that A→B is a strong homotopy equiva-

lence. Then its pullback X×Y A→ X×Y B is a strong homotopy equivalence. This follows from
Lemma 4.1.5 since X×Y B→ B is a fibration (as a pullback of X→Y) with cofibrant domain.

�

Remark 4.1.7 Let us explain the name of Proposition 4.1.6. The Frobenius property [4] of a weak
factorization system in a category with finite limits refers to the condition that left maps are closed
under pullback along right maps. In our setting, we do not quite obtain the Frobenius property of the
weak factorization system of trivial cofibrations and fibrations, but only a restricted version where
the source of the map we pull back along is cofibrant. This is because cofibrations are not generally
closed under pullback.

Proposition 4.1.6 in particular encompassed the Frobenius property in cofibrant simplicial sets.
This is what we will use to verify the model structure properties in cofibrant simplicial sets. However,
Proposition 4.1.6 is more general: the target of the fibration does not need to be cofibrant. This will
be used to extend the model structure to the entirety of simplicial sets.
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4.2. The equivalence extension property

In this subsection, we prove the equivalence extension property and derive its corollaries, the (trivial)
fibration extension properties. All of this happens entirely in the cofibrant fragment of simplicial sets.
Before we delve into the proof, we record some basic facts about mapping path space factorizations.

The context of the following definition and lemmas is the slice of cofibrant simplicial sets over
an object M. The mapping path space factorization of a map X→Y is

(3)

We adopt the convention that the position of the pullback symbol with respect to ∆[1]tY indicates
whether the pullback is taken with respect to the left or right endpoint projection. The first factor is
induced by the constant map Y→∆[1]tY and the second factor is induced by the right endpoint
projection. The middle object is cofibrant by Lemma 2.4.7 and Corollary 2.4.18.

The following lemma already features implicitly in the proof of Theorem 2.6.5.

Lemma 4.2.1 If X and Y are fibrant in (3), then the second factor in (3) is a fibration.

Proof. The second factor decomposes as a pullback of the pullback cotensor of Y� 1 with ∂∆[1]�
∆[1] followed by a pullback of X� 1. So it is a fibration by part (ii) of Proposition 2.3.3. �

Lemma 4.2.2 Assume that Y is fibrant in (3). Then the following are equivalent:

(i) X is fibrant and X→Y is a fibrewise homotopy equivalence and
(ii) the second factor in (3) is a trivial fibration.

Proof. First note that the first factor in (3) admits a retraction (given by the first projection). Thus, X
is a retract of the middle object. If the second factor is a fibration, then the middle object is fibrant,
and hence so is X. This shows that condition (ii) makes X fibrant.

Now assume that X is fibrant. Using the fibration category of Theorem 2.6.5, it remains to show
that X→Y is a fibrewise homotopy equivalence if and only if the second factor in (3) is a fibrewise
homotopy equivalence. This holds by 2-out-of-3 after we check that the first factor in (3) is a fibrewise
homotopy equivalence. Indeed, that map is a retraction of a pullback of the first endpoint projection
∆[1]tY→ Y, a trivial fibration by part (iv) of Corollary 2.3.4. �

We are now ready to prove the equivalence extension property. While in [25, 12] this property
is proved in context of a model structure to establish univalence of a classifying fibration, it was
observed in [33] that it can reversely be used to establish that very model structure. Indeed, the
statement of the equivalence extension property does not refer to the weak equivalences of a model
structure, but the more elementary notion of fibrewise homotopy equivalence. Thus, the natural
setting for its direct proof is the fibration category of Kan fibrations over a base in cofibrant simplicial
sets established in Theorem 2.6.5. The idea of a proof using elementary means, not making use of
an ambient model structure, goes back to [10].

Proposition 4.2.3 (Equivalence extension, cf. [33, Proposition 5.1]). In cofibrant simplicial sets,
consider the solid part of the diagram
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1358 N. GAMBINO et al.

(4)

where A→B is a cofibration, X0→ A and Y1→ B are fibrations, the lower square is a pullback,
and the map X0→ X1 is a fibrewise homotopy equivalence over A. Then there is Y0 fitting into the
diagram as indicated such that the back square is a pullback, the map Y0→ B is a fibration and the
map Y0→ Y1 is a fibrewise homotopy equivalence over B.

Proof. In the following, we will make use of the adjunction i∗ aΠi. We identify X1 with i∗Y1 over
A. Since i is a monomorphism, the unit of the adjunction Σi a i∗ is invertible. By adjointness, the
counit of the adjunction i∗ aΠi is invertible. That is, Πi is a reflective embedding with reflector i∗.
Note that Σii∗ is isomorphic to the functor of product with A over B. By adjointness, this means
Πii∗ ' expB(A,−). By Corollary 2.3.2, the functor i∗ preserves cofibrations. By adjointness, the
functor Πi preserves trivial fibrations. In the following, we use freely that Πi preserves cofibrant
objects by Corollary 2.4.20 and that cofibrant objects are closed under finite limits (Lemma 2.4.7).
With this, all our constructions remain within cofibrant objects.

In the slice over B, we define Y0 and its map to Y1 via the pullback

(5)

where the right map is the image of X0→ X1 under Πi (identifying X1 with i∗Y1 over A) and the
bottom map is a unit map of i∗ aΠi. Since Πi is a reflective embedding, the bottom map in (5)
becomes invertible after pulling back along i : A→ B:

(6)

Furthermore, the right map above is isomorphic to X0→ i∗Y1, that is, X0→ X1. This shows that Y0

over Y1 pulls back along i to X0 over X1 in (4) as required.
For the rest of the proof, we work in the slice over B unless stated otherwise. It remains to show

that Y0 is fibrant and Y0→ Y1 is a fibrewise homotopy equivalence. For this, we consider the mapping
path space factorization of Y0→ Y1:
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THE CONSTRUCTIVE KAN–QUILLEN MODEL STRUCTURE: TWO NEW PROOFS 1359

(7)

Using the reverse direction of Lemma 4.2.2, it remains to show that its second factor is a trivial
fibration.

By pullback pasting with (5), the middle object in (7) is isomorphic to ΠiX0×Πii∗Y1 ∆[1]tY1.
Under this isomorphism, the right map in (7) corresponds to the top map in the below diagram,
induced by the right endpoint projection:

(8)

To show that it is a trivial fibration, we produce a factorization into two trivial fibrations as indicated
above.

Associating the pullbacks in the middle object of (8) to the right, the first factor in (8) is the
pullback along ΠiX0→Πii∗Y1 of the map

It suffices to show this is a trivial fibration. Rewriting using Πii∗ ' expB(A,−), this is the pullback
exponential (over B) of the right endpoint projection∆[1]tY1→ Y1 with A→B. Since Y1 is fibrant,
the right endpoint projection ∆[1]tY1→ Y1 is a trivial fibration by part (iii) of Proposition 2.3.3.
Since A→B is a cofibration, the pullback exponential is a trivial fibration by part (ii) of Proposition
2.3.1.

Associating the pullbacks in the middle object of (8) to the left, the second factor in (8) is the
pullback along Y1→Πii∗Y1 of the following map, again induced by the right endpoint projection:

Since the right adjoint Πi preserves pullbacks, this is the image of the map X0×i∗Y1 i
∗(∆[1]tY1)→

i∗Y1 under Πi. And since Πi preserves trivial fibrations, it suffices to show this is a trivial fibration.
Since i∗ preserves cotensors and using the identification X1 ' i∗Y1, this is X0×X1 ∆[1]tX1→ X1,
the second factor in the mapping path space factorization of X0→ X1. It is a trivial fibration using
the forward direction of Lemma 4.2.2. �

An important example of a fibrewise homotopy equivalence arises in cofibrant simplicial sets
from a fibration with target A×∆[1]. Note that A×∆[1] is cofibrant if A is cofibrant by Lemmas
2.2.9 and 2.4.7. For the below statement, recall that (A× ιk)∗ denotes pullback along the inclusion
ιk : A→ A×∆[1] for k= 0,1.

Lemma 4.2.4 Let p : X� A×∆[1] be a fibration with A and X cofibrant. There is a fibrewise
homotopy equivalence over A (in either direction) between (A× ι0)∗X and (A× ι1)∗X.
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1360 N. GAMBINO et al.

Proof. We take the pullback

where the bottom map is a unit map of the evident adjunction. We record that P is cofibrant by
Lemma 2.4.7 and Corollary 2.4.18, and that P� A is a fibration by Subsection 2.3.3.

We will argue that there are trivial fibrations from P to (A× ι0)∗X and (A× ι1)∗X over A. These
trivial fibrations are fibrewise homotopy equivalences over A by Corollary 2.6.4. Reversing and
composing them in the fibration category of Theorem 2.6.5 as needed gives the claim.

We only construct the trivial fibration from P to (A× ι0)∗X (the other case is dual). By pullback
pasting, we can see (A× ι0)∗X as being obtained by two successive pullbacks:

Taking the pullback exponential of p with ι0 : {0}→∆[1], we obtain

exp(∆[1],X)→ X×A×∆[1] exp(∆[1],A×∆[1])

over exp(∆[1],X). This is a trivial fibration by Proposition 2.3.3. Pulling back along ηA yields the
desired trivial fibration. �

In cofibrant simplicial sets, we say that a (trivial) fibration X→A extends along a cofibration
A→B if we can find a (trivial) fibration Y→B that restricts to X→A along the given cofibration:

(9)

Our ultimate goal in this subsection is to show that fibrations extend along trivial cofibrations.

Corollary 4.2.5 (Trivial fibration extension) In cofibrant simplicial sets, trivial fibrations extend
along cofibrations.

Proof. This is the special case of Proposition 4.2.3 where themapsX1→ A and Y1→ B are identities.
To see this, we recall that a map X→Y is a trivial fibration exactly if it is a fibration and fibrewise
homotopy equivalence over Y. This is recorded in Theorem 2.6.5 (with M instantiated to Y). �
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Lemma 4.2.6 In cofibrant simplicial sets, fibrations extend along cofibrations with a retraction up
to homotopy. In particular, they extend along cofibrations that are strong homotopy equivalences.

Proof. Let i : A→ B be a cofibration with r : B→ A and a homotopy relating ri and idA (in either
direction). We will solve an extension problem

(10)

We have the solid part of the diagram

where the squares going from left to right are pullbacks. For the fibrewise homotopy equivalence on
the left, we apply Lemma 4.2.4 to the pullback of X along the homotopy ∆[1]×A→ A relating ri
and idA. We then complete the diagram using equivalence extension, Proposition 4.2.3. �

Corollary 4.2.7 (Fibration extension). In cofibrant simplicial sets, fibrations extend along trivial
cofibrations.

Proof. We work exclusively in cofibrant simplicial sets. Consider the class of cofibrations that
fibrations extend along. By Lemma 4.2.6, this includes the horn inclusions (they are cofibrations
between cofibrant objects by Lemma 2.2.2 and Corollary 2.4.10 and strong homotopy equivalences
by Lemma 4.1.3). Using the presentation of trivial cofibrations given by part (ii) of Proposition 2.2.7,
it remains to show this class is closed under coproducts, pushouts, sequential colimits and codomain
retracts. In the case of a codomain retract A→ B′ of A→B, we simply extend along A→B and then
pull back along B′→ B (cofibrancy is assured by Lemma 2.4.7); by pullback pasting, this gives the
required extension along A→ B′. In the other cases, all involved colimits in simplicial sets are van
Kampen by Lemma 2.2.1 (since cofibrations are monomorphisms).

For a coproduct of cofibrations As→ Bs, consider a fibration X→
∐

sAs. We pull it back to each
As, extend separately for each s along As→ Bs, and then take the coproduct of the resulting fibrations
to get a map Y→

∐
sBs. Since

∐
sBs is van Kampen, this map pulls back to the individual fibrations

over Bs for each s. So it is a fibration by part (ii) of Lemma 2.2.3. Using that
∐

sAs is van Kampen,
the map also pulls back to X→

∐
sAs.
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1362 N. GAMBINO et al.

In the remaining two cases, it is convenient to improve fibration extension to structured fibration
extension. Recall that a fibration is a map together with a choice of lifts against horn inclusions; recall
also the notion of structure morphism of fibrations from Subsection 2.2. In any fibration extension
square (9), also the upper horizontal map is a cofibration by Corollary 2.3.2, hence the horizontal
maps are levelwise decidable. Using Lemma 2.2.4, we can choose lifts for the right map such that
the square becomes a structure morphism of fibrations. We note finally that the colimits in question
are all van Kampen (since cofibrations are monomorphisms).

For a pushout A′ � B′ of a cofibration A� B, consider a fibration X′ � A′. We first pull it back
to a fibration X� A (using Lemma 2.4.7 for cofibrancy of X). Note that the canonically induced
choice of lifts for X� Amakes this pullback square into a structure morphism of fibrations. We then
use structured fibration extension along A→B to produce a fibration Y� B. Finally, we take the
pushout of all three fibrations. Since the given pushout is van Kampen, this map pulls back to the
individual fibrations. So it is a fibration by part (ii) of Lemma 2.2.3.

For a sequential colimit of cofibrations A0 � A1 � . . ., consider a fibration with target A0. We
recursively use structured fibration extension to produce a fibration with target Ak for each k and
then take the sequential colimit of the resulting fibrations. Since the given sequential colimit is van
Kampen, this map pulls back to the fibration over Ak for each k. So it is a fibration by part (ii) of
Lemma 2.2.3.

Note that the domain of the extended fibrations in these three cases is cofibrant by construction.
This uses that the top map in any fibration extension square (9) is a cofibration. �

4.3. Conclusion of the second proof

This subsection is entirely formal. It is divided into two parts. In the first part, ending with
Remark 4.3.4, we develop the properties of the model structure on cofibrant simplicial sets. We
define its weak equivalences from homotopy equivalences via fibrant replacement. The fact that
trivial (co)fibrations and acyclic (co)fibrations coincide is deduced from the Frobenius and (trivial)
fibration extension properties, all in cofibrant simplicial sets.

In the second part, we extend to the desired model structure on simplicial sets (Theorem 4.3.8).
We define its weak equivalences from the above ones via cofibrant replacement. The fact that trivial
(co)fibrations and acyclic (co)fibrations coincide reduces to the cofibrant case using the restricted
Frobenius property and a cancellation property of trivial fibrations.

We define the notion of strong fibrant replacement dual to the notion of strong cofibrant replace-
ment of Subsection 3.1. A strong fibrant replacement of a simplicial set X is a Kan complex X̄
equipped with a trivial cofibration X→ X̄. Note that X̄ is cofibrant if X is cofibrant. A strong fibrant
replacement of a map f : X→ Y is a map f̄ : X̄→ Ȳ equipped with a square

where X̄ and Ȳ are Kan complexes and both horizontal maps are trivial cofibrations. Strong fibrant
replacements can be constructed using Proposition 2.2.7.
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Using strong fibrant replacement, we may lift the notion of homotopy equivalence for cofibrant
Kan complexes to a notion of weak equivalence in cofibrant simplicial sets. We say that a map in
cofibrant simplicial sets is a weak homotopy equivalence if it has a strong fibrant replacement that is
a homotopy equivalence.

Lemma 4.3.1 In cofibrant simplicial sets:

(i) the notion of weak homotopy equivalence does not depend on the choice of strong fibrant
replacements,

(ii) a map between Kan complexes is a weak homotopy equivalence if and only if it is a homotopy
equivalence and

(iii) weak homotopy equivalences satisfy 2-out-of-6.

Proof. Part (i) holds by the dual of the argument of Lemma 3.1.2 (considering strong fibrant replace-
ment instead of strong cofibrant replacement). This uses the fact that trivial cofibrations between
cofibrant Kan complexes are homotopy equivalences by part (ii) of Lemma 4.3.2. With this, we
prove the remaining parts. For part (ii), we take the map itself as its strong cofibrant replacement.
For part (iii), functorial fibrant replacement (via Proposition 2.2.7) creates weak homotopy equiva-
lences from homotopy equivalences between cofibrant Kan complexes. The latter satisfy 2-out-of-6
by part (i) of Lemma 2.5.2 and hence so do the former. �

Lemma 4.3.2 Let f : X→ Y be a fibration in cofibrant simplicial sets. Then f is a trivial fibration if
and only if it is a weak homotopy equivalence.

Proof. Assume first that f : X� Y is a trivial fibration. We take a strong fibrant replacement Y�p Ȳ
and extend the given trivial fibration along it using Corollary 4.2.5, obtaining a pullback square

By the Frobenius property in cofibrant simplicial sets (Proposition 4.1.6), X→ X̄ is a trivial cofi-
bration, so X→ X̄ is a strong fibrant replacement. As a trivial fibration between cofibrant objects,
X̄→ Ȳ is a homotopy equivalence by part (i) of Lemma 2.5.4. Thus, X→Y is a weak homotopy
equivalence.

Conversely, assume that f : X→ Y is a weak homotopy equivalence. We extend f along Y→ Ȳ
using Corollary 4.2.7, obtaining a pullback square

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/73/4/1307/6572522 by guest on 17 M
ay 2023



1364 N. GAMBINO et al.

By Proposition 4.1.6, X→ X̄ is a trivial cofibration. This makes the above square a strong fibrant
replacement. So X̄→ Ȳ is a homotopy equivalence by part (i) of Lemma 4.3.1. Since it is also a
fibration between cofibrant Kan complexes, it is a trivial fibration by Corollary 2.6.4. As its pullback,
so is f. �

Lemma 4.3.3 Let f : A� B be a cofibration in cofibrant simplicial sets. Then f is a trivial cofibration
if and only if it is a weak homotopy equivalence.

Proof. Assume that f is a trivial cofibration. Take a strong fibrant replacement B�p B̄. The identity
on B̄ is a strong fibrant replacement of f, which is thus a weak homotopy equivalence.

The converse direction is a formal consequence of the forward direction and Lemma 4.3.2. In
detail, factor f as a trivial cofibration j followed by a fibration p. Assuming f is a weak homotopy
equivalence, so is p by 2-out-of-3. By Lemma 4.3.2, p is a trivial fibration. Since f lifts against its
second factor p, it is a retract of its first factor j, a trivial cofibration. �

The above statements make weak homotopy equivalences and the two weak factorization systems
under consideration a model structure on cofibrant simplicial sets.

Remark 4.3.4 The approach of [33] (in the setting of cofibrant simplicial sets) uses a different def-
inition of weak homotopy equivalences: those maps factoring as a trivial cofibration followed by a
trivial fibration. Then acyclic (co)fibrations coincide with trivial (co)fibrations for formal reasons
(proved here as Lemmas 4.3.3 and 4.3.2) and the goal shifts to showing that weak homotopy equiva-
lences satisfy 2-out-of-3 (holding here essentially by construction). However, this is only a superficial
difference in setup: the overall work ends up being the same. We have chosen our current definitions
to achieve greater similarity with the below extension to arbitrary simplicial sets (via strong cofibrant
replacement) and the setup in Subsection 3.1.

We now extend our notion of weak homotopy equivalence to arbitrary simplicial sets, not neces-
sarily cofibrant. Recall the notion of strong cofibrant replacement of Subsection 3.1, dual to that of
strong fibrant replacement. We say that a map in simplicial sets is a weak homotopy equivalence if it
has a strong cofibrant replacement that is a weak homotopy equivalence in cofibrant simplicial sets.

Lemma 4.3.5 In simplicial sets:

(i) the notion of weak homotopy equivalence does not depend on the choice of strong cofibrant
replacements,

(ii) a map between cofibrant simplicial sets is a weak homotopy equivalence (in the above sense) if
and only if it is a weak homotopy equivalence in cofibrant simplicial sets and

(iii) weak homotopy equivalences satisfy 2-out-of-6.

Proof. This is dual to Lemma 4.3.1. Part (i) holds by the argument of Lemma 3.1.2 (replace Kan
complexes by arbitrary simplicial sets, (W1) by weak homotopy equivalence in cofibrant simplicial
sets and (W2) by weak homotopy equivalences). This uses the fact that trivial fibrations in cofibrant
simplicial sets are weak homotopy equivalences by Lemma 4.3.2. With this, parts (ii) and (iii) reduce
to the respective parts of Lemma 4.3.1. �
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In light of part (ii) of Lemma 4.3.5, the meanings of the term ‘weak homotopy equivalence’
in cofibrant simplicial sets and simplicial sets are compatible. We may thus use the term without
qualification.

Lemma 4.3.6 Let f : X→ Y be a fibration in simplicial sets. Then f is a trivial fibration if and only if
it is a weak homotopy equivalence.

Proof. Assume that f is a trivial fibration. Take a strong cofibrant replacement X̃→→p X. The identity
on X̄ is a strong cofibrant replacement of f, which is thus a weak homotopy equivalence.

Conversely, let f be an acyclic fibration. Take a strong cofibrant replacement Ỹ→→p Y followed by
a strong cofibrant replacement of the pullback of X along this map:

Since X→Y is a weak homotopy equivalence, its strong cofibrant replacement X̃→ Ỹ is a weak
homotopy equivalence between cofibrant objects. By Lemma 4.3.2, it is a trivial fibration. Applying
Lemma 2.2.10 in the above diagram, we obtain that X→Y is a trivial fibration. �

Lemma 4.3.7 Let f : A→ B be a cofibration in simplicial sets. Then f is a trivial cofibration if and
only if it is a weak homotopy equivalence.

Proof. Let A�p B be a trivial cofibration. Take a strong cofibrant replacement B̃→→p B. Consider the
pullback square

Note that Ã is cofibrant by Corollary 2.3.2. In particular Ã→ B̃ is a strong cofibrant replacement
of A→B. Since B̃ is cofibrant, the restricted Frobenius property (Proposition 4.1.6) makes Ã→ B̃ a
trivial cofibration. By Lemma 4.3.3, it is a weak homotopy equivalence in cofibrant simplicial sets.
This makes A→B a weak homotopy equivalence.

The converse direction follows from the forward direction together with Lemma 4.3.6 using 2-
out-of-3 by the retract argument as in Lemma 4.3.3. �

Theorem 4.3.8 The cofibrations, Kan fibrations and weak homotopy equivalences form a model
structure on simplicial sets.
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1366 N. GAMBINO et al.

Proof. Weak homotopy equivalences satisfy 2-out-of-6 by part (iii) of Lemma 4.3.5. We have
established the two weak factorization systems in Proposition 2.2.7. By Lemma 4.3.6, acyclic fibra-
tions coincide with trivial fibrations. By Lemma 4.3.7, trivial cofibrations coincide with acyclic
cofibrations. �

Remark 4.3.9 Any model structure is determined by its classes of cofibrations and fibrations. So
the model structure of Theorem 4.3.8 coincides with the one of Theorem 3.6.5. It follows, after the
fact, that all considered notions of weak homotopy equivalence are equivalent in their respective
subcategories of cofibrant and/or fibrant simplicial sets.

Remark 4.3.10 Following up on Remark 3.6.6, our second construction of the constructive Kan-
Quillen model structure differs from [18] in that it avoids the Ex∞ functor and semisimplicial
homotopy theory. Instead, following [33], it is based on a restricted version of the Frobenius
property [14] and the equivalence extension property in cofibrant simplicial sets.

5. Right and left properness

Proposition 5.1 The Kan–Quillen model structure on simplicial sets is right proper.

Proof. (Ex∞ argument) Consider a fibration p : X� Y and a weak homotopy equivalence f : B→ Y.
Form the diagram

as follows.

(i) The back square is a pullback.
(ii) Ỹ→̃Y is a strong cofibrant replacement.
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THE CONSTRUCTIVE KAN–QUILLEN MODEL STRUCTURE: TWO NEW PROOFS 1367

(iii) B̃→̃B and X̃→̃X are strong cofibrant replacements, the latter chosen so that X̃→ X×Y Ỹ is a
trivial fibration.

(iv) The middle square is a pullback.
(v) The front square is obtained by applying Ex∞ to the middle one and the transformation between

them is ν∞ of Subsection 3.4.

Denote the maps X̃→ Ỹ and B̃→ Ỹ by p̃ and f̃, respectively. Note that Ã→ A is a trivial fibration
as the composite of pullbacks of B̃→ B and X̃→ X×Y Ỹ. Thus all middle to back maps are weak
homotopy equivalences by part (iii) of Lemma 3.1.7. Moreover, Ã is cofibrant by Lemma 2.4.7
so Proposition 3.4.6 implies that all middle to front maps are also weak homotopy equivalences. It
follows that Ex∞ f̃ is a weak homotopy equivalence since f is. Moreover, the front square is a pullback
by part (i) of Proposition 3.4.4, Ex∞ p̃ is a Kan fibration by part (ii) of Proposition 3.4.4 and all
objects in the front face are Kan complexes by part (iv) of Proposition 3.4.4. It follows that Ex∞A→
Ex∞X is a weak homotopy equivalence by Theorem 3.2.2 and [31, Lemma 1.4.2 (2b)] and thus so
is A→X. �

Proof (Frobenius property argument). It suffices to show that the pullback of a trivial cofibration
B→Y along a fibration X→Y is a weak equivalence. Consider a further pullback along a cofibrant
replacement X̃→ X:

Since X̃ is cofibrant, A′→ X̃ is a trivial cofibration by the restricted Frobenius property (Proposition
4.1.6). Then A→X is a weak equivalence by 2-out-of-3. �

Semisimplicial sets are presheaves over ∆], the subcategory of face operators in ∆. Let U be the
forgetful functor from simplicial to semisimplicial sets and let L be its left adjoint, with unit η and
counit ε.

Let ∆][m] denote the semisimplicial set represented by [m]; its boundary ∂∆][m] is obtained by
removing the top simplex id[m]. The category of semisimplicial sets carries a weak factorization
system generated by the boundary inclusions ∂∆][m] ↪→∆][m]. A cofibration is a morphism of the
left class of this weak factorization system.

Lemma 5.2 A semisimplicial map is a cofibration if and only if it is a levelwise decidable inclusion.

Proof. Cofibrations coincide with Reedy decidable inclusions by the same argument as in
Lemma 2.4.1. Since ∆] is a direct category, the latter are the same as levelwise decidable
inclusions. �
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1368 N. GAMBINO et al.

Corollary 5.3 The functor L preserves cofibrations.

Proof. It suffices to check that L preserves boundary inclusions. Indeed, we have ∂∆][m] =
colim

[k]
̸=
↪→[m]

∆][k] and thus L∂∆][m] = colimL∆][k] = colim∆[k] = ∂∆[m]. �

Corollary 5.4 The functor U sends levelwise decidable inclusions to cofibrations. In particular, it
preserves cofibrations.

Proof. The first claim follows from Lemma 5.2. With this, the second claim follows from Corol-
lary 2.4.6. �

Proposition 5.5 The functor LU satisfies the following conditions:

(i) It preserves colimits.
(ii) It takes values in cofibrant simplicial sets.
(iii) It preserves cofibrations.
(iv) For every simplicial set X, the counit εX : LUX→ X is a weak homotopy equivalence.

Proof. Part (i) holds since both L and U are left adjoints. For part (ii), note that every semisimplicial
set is cofibrant by Lemma 5.2 while L preserves cofibrant objects by Corollary 5.3. Part (iii) follows
directly from Corollaries 5.3 and 5.4. We postpone the proof of part (iv) until we show an auxiliary
lemma. �

Remark 5.6 In Subsection 3.5, the verification of properties of the cofibrant replacement functor T
makes use of another cofibrant replacement functor, sending a simplicial set X to N(∆] ↓UX), the
nerve of the category of elements of the semisimplicial set underlying X. This functor factors as LU
followed by subdivision.

Semisimplicial sets carry a closed symmetric monoidal product called the geometric product. It
is uniquely determined by setting the geometric product of ∆][m] and ∆][n] to the semisimplicial
set consisting of the non-degenerate simplices of ∆[m]×∆[n]. More precisely, if we denote that
semisimplicial set by Pm,n, then the geometric product of semisimplicial sets X and Y is the coend´ m,n

Xm×Yn×Pm,n. It follows that the geometric product preserves colimits in each variable. Since
L also preserves colimits and satisfies LPm,n =∆[m]×∆[n], it follows that it is monoidal, that is, it
carries the geometric product to the Cartesian product.

Lemma 5.7 The functor LU sends trivial fibrations to weak equivalences.

Proof. Given a trivial fibration p : X→ Y, we will show that LUp : LUX→ LUY is a homotopy
equivalence. It is then a weak equivalence for example by part (iv) of Lemma 3.1.7.

Note that LUX and LUY are cofibrant by part (ii) of Proposition 5.5. We take a lift
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THE CONSTRUCTIVE KAN–QUILLEN MODEL STRUCTURE: TWO NEW PROOFS 1369

Transposing the square using the adjunction L a U and applying L gives a section s : LUY→ LUX
of LUp.

Using part (i) of Proposition 2.3.3, we take a lift

Note that the left arrow lies in the essential image of L (it is isomorphic to the image of the geometric
product of ∂∆[1]→∆[1] with UX) and so does the top left arrow (by construction of s). Using
terminality of (UX,εX) in L ↓ X and applying L, we obtain the dashed arrow in the commuting triangle

We thus have s(LUp)∼ idLUX and (LUp)s= idLUY as desired. �

Remark 5.8 The proof of Lemma 5.7 is the combination and unfolding of the following elemen-
tary observations regarding semisimplicial sets, which carry notions of homotopy and homotopy
equivalence based on the geometric product:

• U preserves trivial fibrations (defined also in semisimplicial sets as lifting against boundary
inclusions),
• for a simplicial set X, the identity of UX admits an endohomotopy,
• in semisimplicial sets, every trivial fibration Y→X with an endohomotopy on the identity on X

extends to a homotopy equivalence,
• L preserves homotopy equivalences.

Proof of part (iv) of Proposition 5.5. First, note that ε∆[m] : LU∆[m]→∆[m] is a weak homotopy
equivalence for all m. Indeed, LU∆[m] is the nerve of a category [m]′ which is obtained from [m]
by adjoining an idempotent endomorphism to every object that acts trivially on morphisms of [m].
This category admits a natural transformation from the endofunctor constant at 0 to the identity end-
ofunctor. Thus, its nerve is contractible and the conclusion follows. Since we have already verified
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that LU preserves colimits and cofibrations, the argument of part (iv) of Proposition 3.5.5 shows that
εX is a weak homotopy equivalence for all cofibrant X. (That argument is an instance of the follow-
ing general fact for a natural transformation u between endofunctors of sSet that preserve colimits
and cofibrations: if u is a weak homotopy equivalence on simplices, then u is a weak homotopy
equivalence on all cofibrant objects.) The same follows for arbitrary X by Lemma 5.7. �

Proposition 5.9 The Kan–Quillen model structure on simplicial sets is left proper.

Proof. The following argument uses the functor T of Subsection 3.5 and its properties listed in Propo-
sition 3.5.5. An alternative argument is obtained by substituting LU for T since the parallel properties
have been verified in Proposition 5.5.

Consider a cofibration A� B and a weak homotopy equivalence A→X. Form the diagram

where the front square is a pushout and the remainder of the cube is given by the copointed functor
T. Part (iv) of Proposition 3.5.5 implies that all back to front maps are weak homotopy equivalences.
It follows that TA→TX is a weak homotopy equivalence since A→X is. Moreover, the back square
is a pushout by part (i) of Proposition 3.5.5, TA→TB is a cofibration by part (iii) of Proposition
3.5.5 and all objects in the back face are cofibrant by part (ii) of Proposition 3.5.5. It follows that
TB→ TY is a weak homotopy equivalence by Theorem 3.2.3 and [31, Lemma 1.4.2 (1b)], and thus so
is B→Y. �

Using the cofibrant replacement functor LU, we obtain a slightly stronger statement.

Proposition 5.10 In the category of simplicial sets, pushout along a levelwise decidable inclusion
preserves weak homotopy equivalences. In particular, every pushout along a levelwise decidable
inclusion is a homotopy pushout.

Proof. By Corollaries 5.4 and 5.3, the functor LU carries levelwise decidable inclusions to cofibra-
tions. With this, the conclusion follows exactly as in the proof of Proposition 5.9. (Here, we used
the fact that levelwise decidable inclusions are stable under pushout by Proposition 2.1.6 to reduce
to pushout squares as in that proof.) �
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Remark 5.11 We conclude by describing the relationship between our proofs of properness and the
one given in [18]. For left properness, the proof in [18] relies on the existence of a weak model
structure (in the sense of [17]) on the category of semisimplicial sets and uses its interaction with the
adjunction L a U with simplicial sets.

Here, in one version of the argument, we use the comonad LU of the adjunction L a U to model
cofibrant replacement, but using only the notion of cofibration in semisimplicial sets and not any
further semisimplicial homotopy theory. In particular, we do not need to know that U preserves
cylinder objects. The other version also circumvents semisimplicial homotopy theory and uses a
completely different cofibrant replacement functor T in place of LU, although there is a relation as
explained in Remark 5.6.

For right properness, our first proof is very similar to the one in [18], but we included it for com-
pleteness, also because it follows naturally from our discussion of the Ex∞ functor in Subsection 3.4.
Our second proof is entirely different and goes via the restricted Frobenius property proved directly
in Subsection 4.1.
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