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Abstract:  33 

Subglacial lakes store ancient climate records, provide habitats for life, and modulate ice flow, 34 

basal hydrology, biogeochemical fluxes and geomorphic activity. In this Review, we construct 35 

the first global inventory of subglacial lakes (773 total): 675 from Antarctica (59 newly-36 

identified in this study), 64 from Greenland, 2 beneath Devon Ice Cap, 6 beneath Iceland’s ice 37 

caps, and 26 from valley glaciers. We use this inventory to evaluate subglacial lake 38 

environments, dynamics, and their wider impact on ice flow and sediment transport. Lake 39 

behaviour is conditioned by their unique subglacial setting and the hydrologic, dynamic and 40 

mass balance regime of the overlying ice mass. We predict that in regions where climate 41 

warming causes ice-surface steepening there will be fewer and smaller lakes, but increased 42 

activity with higher discharge drainages of shorter duration. Coupling to surface melt and 43 

rainfall inputs will modulate fill-drain cycles and seasonally enhance oxic processes. Higher 44 

discharges cause large, transient ice-flow accelerations, but might result in overall net 45 

slowdown due to development of efficient subglacial drainage. Future subglacial lake 46 

research requires new drilling technologies, and the integration of geophysics, satellite 47 

monitoring and numerical modelling, which will provide new insight into their wider role in a 48 

changing Earth system. 49 

 50 
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Key Points 51 

• First global inventory of 773 subglacial lakes: 675 from Antarctica (59 newly 52 

identified here), 64 from Greenland, 6 from Iceland, 2 beneath Devon Ice Cap and 53 

26 from valley glaciers. 54 

• 80% of lakes are stable, implying closed systems, or that inflow and outflow is 55 

approximately balanced; the remainder are active lakes with five distinct activity 56 

patterns. 57 

• Active subglacial lakes exhibit a quasi-linear relationship between mean discharge 58 

and lake volume; lakes in Greenland and Iceland exhibit higher discharge rates for a 59 

given lake volume compared with Antarctica. 60 

• Larger active subglacial lakes recharge at a faster rate than smaller lakes, suggesting 61 

an underlying control on lake refilling associated with lake size. 62 

• Where climate warming causes ice-surface steepening lakes become less likely, but 63 

drainage will be of higher magnitude producing transient ice-flow perturbations that 64 

are more likely to cause a net ice-flow reduction. 65 

• Enhanced surface melt and rainfall inputs to the bed will modulate fill-drain cycles, 66 

increase the potential for catastrophic drainages and provide a supply of oxygen, 67 

sediment, microbes and nutrients. 68 

 69 

Introduction 70 

Subglacial lakes under ice sheets and glaciers (Fig. 1) impact multiple components of the Earth 71 

system. Lakes provide viable habitats for microbial communities2,3 that might have followed 72 

unique evolutionary trajectories and serve as analogues for putative extra-terrestrial 73 

ecosystems4. Water transfer through subglacial lakes modulates basal hydrology5–9 and 74 

biogeochemical fluxes3,10, and can cause ice-flow variations on sub-decadal time scales11–14. 75 

Lake drainage transports large volumes of water and sediment downstream15,16. Lake 76 

sediments contain archives of ice sheet history and climate change1 similar to ice core records. 77 

In Antarctica, water crossing the grounding line into sub-ice shelf cavities6 can alter ice-ocean 78 

interactions17–20 and can modify ocean circulation21. Sudden outburst floods onto the glacier 79 

foreland form outwash plains (sandurs) and present a major hazard to infrastructure22.  80 

 81 

Subglacial lakes occur when subglacial meltwater collects in local minima of basal hydrologic 82 

potential, due to depressions in bed topography and the glacier surface, ice flow over ‘sticky 83 

spots’23, or trapping of basal water behind cold based ice24. In Antarctica, the first evidence of 84 

subglacial lakes42,43 came from unusually strong, sharp, continuous and smooth basal 85 

reflections detected in airborne radio-echo sounding (RES) surveys in the late 1960s. 86 

However, lake inventories were not significantly expanded until further RES investigations in 87 

the 1990s and 2000s44,45, while seismic surveying revealed thick water columns32,46,47. 88 

Between 2005 and 2008 a new class of “active” lakes was discovered through satellite 89 

measurements of ice-surface elevation from Envisat/ERS-2 radar and ICESat laser 90 

altimetry4,48,49. Active subglacial lakes can drain along subglacial flow-paths for hundreds of 91 

kilometres, and form connected networks50,51. 92 

 93 

Jökulhlaups in Iceland provide the longest record of subglacial lake activity, having been 94 

reported since the Middle Ages and investigated by ground expeditions and aerial 95 

reconnaissance since the early 20th Century36. Icelandic subglacial lakes form by melting of ice 96 

via geothermal heat enhanced by volcanism and influxes of surface meltwater. During lake 97 
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drainage their overlying ice-surface depressions lower rapidly and slowly recover afterwards 98 

as the lake refills22,37–39. Elsewhere, small outburst floods have been caused by drainage of 99 

large or multiple water-filled subglacial cavities from valley glaciers40,41. 100 

 101 

Over the last decade, subglacial lakes have been discovered under other ice masses, for 102 

example, in Greenland52–54 and the Canadian Arctic55. In Greenland, the first putative 103 

subglacial lake was inferred from a flat ice-surface elevation anomaly56. Since then, 104 

interrogation of airborne RES data52–54 and identification of ice-surface elevation changes 105 

from satellite altimetry and high-resolution time-stamped Digital Surface Models 106 

(DSMs)15,54,57,58 confirmed their widespread existence under this ice sheet. The two subglacial 107 

lakes identified beneath Devon Ice Cap exist at temperatures well below the pressure-melting 108 

point and likely consist of hypersaline water55.  109 

 110 

In this Review, we construct the first global inventory of subglacial lakes, enabling lake 111 

characteristics and dynamics to be classified. We frame subglacial lake character and function, 112 

and their impact on ice flow, subglacial drainage, sediment transport and biogeochemical 113 

fluxes as dependent on the hydrologic, dynamic and mass balance regime of the ice mass 114 

above. Using space-time substitution, a conceptual model is proposed for how subglacial 115 

lakes, and their influence on the broader environment, will change in a warming world.  116 

 117 

Background  118 

Detecting and characterising subglacial lakes 119 

Identification and characterisation of subglacial lakes and their dynamics has largely relied on 120 

remote geophysical observations12,43,54,59–61 (Fig. 2a), due to the challenge of directly 121 

accessing and cleanly sampling water and sediments beneath thick ice62. Whillans Subglacial 122 

Lake1,63–65 and Mercer Subglacial Lake66, West Antarctica (~600 m and 1100 m ice thickness) 123 

and western Skaftá Lake67 and Grímsvötn63, Iceland (~400 and 300 m ice thickness) have been 124 

cleanly accessed, while Lake Vostok, East Antarctica (~4000 m ice thickness) was drilled, but 125 

samples were contaminated68. In the French Alps, the geometry and water level of a small 126 

subglacial lake under Glacier de Tête Rousse (76 m ice thickness)  was successfully accessed 127 

and monitored using boreholes and sonar69.   128 

 129 

Recent innovations in RES have improved detection and characterisation of subglacial water. 130 

Increased radar system bandwidth and signal sensitivity have improved the detection, 131 

resolution and fidelity of radar reflections70. Swath radar technology, enabling (pseudo) 3D 132 

imaging of bed topography and englacial layers71,72, can better resolve basal roughness, 133 

hydrological routing and basal melt/freeze-on. Using scattering characteristics of returned 134 

bed echoes such as the specularity content73, trailing bed echoes74, the bed echo coherent 135 

index75,76 and bed-echo variability77 has advanced quantitative identification of subglacial 136 

water and the understanding of subglacial drainage systems73,78–80. Finally, there have been 137 

improvements in the automatic detection of subglacial lakes29,54,81 including utilisation of 138 

machine learning algorithms81. Despite enhancements in radar technology, some dynamic 139 

lakes may not have particularly smooth ice-water interfaces, making interpretation of 140 

specularity problematic. 141 

 142 

While radar sounding can measure lake extent, seismic reflection surveys are necessary to 143 

reveal water column thickness and structure of lake sediments32,47,60,82,83. Active seismic 144 
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surveys using innovative survey design and analysis (e.g., acoustic impedance or Amplitude 145 

Versus Angle) can confirm the presence of a subglacial lake and characterize lake floor 146 

properties (i.e., hard bedrock vs. sediment, till porosity)47,60. Other geophysical methods, 147 

gravimetry for deeper structure, and electromagnetic (EM) approaches, can reveal the 148 

geological and hydrological setting surrounding subglacial lakes84–86. 149 

 150 

Satellite observations of ice-surface displacement derived from Interferometric Synthetic 151 

Aperture Radars (InSAR) on ERS-25, Radarsat87 and the Advanced Land Observing Satellite 152 

(ALOS)88, together with elevation measurements from satellite radar and laser altimeters on 153 

ERS-25, Envisat51, ICESat49 and CryoSat-26,88–90 have proved crucial in detecting indirect 154 

subglacial lake activity, and for estimating their change in volume. In particular, 155 

improvements in the accuracy, coverage and record length of the new generation of polar 156 

orbiting altimeters, starting with CryoSat-2 in 2010, is enabling a transition from opportunistic 157 

studies to operational, near-real-time monitoring of subglacial lake activity6. Most recently, 158 

Sentinel-3 (2016 onwards) and ICESat-2 (2018 onwards) have been used to monitor subglacial 159 

lake activity91,92 (Fig. 2b). Sentinel-3 provides frequent (27-day) temporal sampling and – as 160 

an operational mission – guarantees long-term continuity of measurements. ICESat-2 with its 161 

40 m along-track spacing and sub-decimeter precision93,94 provides unprecedented spatial 162 

and temporal sampling of subglacial lake activity95 (Fig. 2b). 163 

 164 

While monitoring active (10 km)-scale Antarctic lakes by satellite altimeters is well 165 

established, the discovery of numerous smaller (<1 km) lakes in Greenland54 presents an 166 

observational challenge. Recent, exploratory work utilised timestamped DSMs (e.g. 167 

ArcticDEM, REMA and TanDEM-X), generated from super high resolution (1-10 m) 168 

stereoscopic optical imagery96,97, or single pass radar interferometry. These data can detect 169 

detailed patterns of surface deformation associated with lake volume changes, with high 170 

vertical precision15,58. Small lakes (<2 km) beneath valley glaciers have also been identified 171 

using InSAR to measure ice-surface elevation changes98.  172 

 173 

Subglacial lake distribution and hydrology  174 

Subglacial lakes have been predicted8,105–107 and identified54,55,98,108 in diverse settings. 175 

Previous inventories have focused on lakes beneath individual ice masses. The last inventory 176 

of Antarctica in 2012 contained 379 subglacial lakes108, while 60 subglacial lakes were 177 

identified beneath the Greenland Ice Sheet in 2019 based on an ice-sheet-wide survey and 178 

the published literature54. Despite a long history of research into Iceland subglacial lakes22,37–
179 

39,67,109–111, there is no formal complete inventory. 180 

 181 

Subglacial lake locations and volumes are determined by the subglacial hydrology, which 182 

results from subglacial water production and the surface and bedrock topography. The 183 

distribution and production rate of subglacial water is controlled by the insulation and 184 

pressure of the overlying ice sheet99, geothermal heat (an extreme example is sub-ice 185 

volcanism in Iceland22), frictional heat generated by fast-flowing ice streams or outlet 186 

glaciers99, and surface water injections100 (Fig. 1). The flow and storage of subglacial water is 187 

governed by basal hydrologic potential101: The ice-surface gradient is ~10x as important as 188 

the bedrock gradient in controlling hydrologic potential and is therefore likely a first order 189 

control on lake genesis and stability102; lake formation in bed depressions is favoured where 190 

ice surfaces and basal slopes are flatter101. However, this does not account for spatio-191 
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temporal variations in subglacial water pressure. Lake drainage occurs when the 192 

hydropotential seal is broken103 or when water leakage from the basin produces efficient 193 

syphons104. 194 

 195 

Subglacial lake inventory 196 

We constructed a new global inventory of subglacial lakes, based on lakes identified and 197 

published in the peer-review literature prior to June 2021, supplemented with 59 newly-198 

identified lakes in Antarctica, from interrogating archived RES data collected between 2002-199 

2019 (see Supplementary Information). The new lakes range from 170-9720 m in length 200 

(median: 1320 m) with 46 clustered in the subglacial Gamburtsev Mountains of East 201 

Antarctica beneath ice ~3000 m thick. We define a subglacial lake as any discrete water body 202 

at the base of an ice mass25, without presuming a minimum area or depth. With this 203 

definition, lakes exist across a wide range of lengthscales26; from small (~1 m) water bodies in 204 

basal cavities27 to large (> 100 km) lakes that strongly influence ice dynamics by producing flat 205 

ice surfaces28, and from shallow (<~1 cm) water patches connected by saturated 206 

sediments29,30 to deep (~100s m) lakes with their own internal circulation31–35. Although no 207 

minimum subglacial lake size is presumed, the smallest lakes in the inventory are on the order 208 

of 0.0001 km3.  209 

 210 

Using these criterion, we tallied 773 total lakes, including 675 from Antarctica, 64 from 211 

Greenland, 2 beneath Devon Ice Cap, 6 beneath the ice caps of Iceland, and 26 from valley 212 

glaciers (Fig. 3 and Supplementary Information). The resulting ~80% increase in the number 213 

of Antarctic subglacial lakes since the last inventory108, largely due to new analyses of RES 214 

datasets45,106,112, is still an order of magnitude fewer than predicted107. Although ~90% of 215 

inventoried lakes are beneath the Antarctic Ice Sheet, this partly reflects their larger size, 216 

making them easier to identify108, and the bias towards Antarctic surveys. 217 

 218 

Subglacial lake setting and behaviour 219 

Our inventory indicates a range of lake settings and behaviours, including: isolated, stable 220 

subglacial lakes with a large size range beneath Devon Ice Cap and the interiors of Antarctica 221 

and Greenland; large (median: 0.12 km3) but slowly (over months) cascading lake drainage 222 

beneath Antarctic ice streams; an order of magnitude smaller subglacial lakes with higher 223 

discharges (for a given lake volume) of shorter duration (days to weeks) beneath the Icelandic 224 

ice caps and ablation zone of the Greenland Ice Sheet; and small lakes (on the order of 0.0001 225 

km3) beneath valley glaciers that drain rapidly (<hour to days) (Figs. 3-4). 226 

 227 

Stable lakes 228 

Over 80% of subglacial lakes in our inventory are not active (i.e., ‘stable’ lakes in Fig. 3), which 229 

implies they are closed systems, or that inflow and outflow is approximately balanced. These 230 

predominantly RES-detected lakes occur where hydrological catchments are small107 and 231 

basal melt rates are low or absent55. In Antarctica, RES-detected subglacial lakes occur 232 

beneath the warm-based interior of the ice sheet and are typically 1-5 km long, although there 233 

are many larger tectonically controlled lakes113–115, including some >100 km long (e.g. Lake 234 

PEL116 and Lake Vostok28,113). Large clusters of stable lakes occur beneath thick ice (>~3000 m) 235 

in the subglacial Gamburtsev Mountains, Dome C, the South Pole region and Ridge B beneath 236 

East Antarctica, and in the Ellsworth Subglacial Highlands beneath West Antarctica (Fig. 3b). 237 

The two RES-detected lakes beneath Devon Ice Cap are 7.0 and 8.2 km in length and occur in 238 
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a similar setting to most stable lakes in Antarctica, beneath the central ice divide in bedrock 239 

troughs55. In Greenland, RES-detected lakes tend to occur away from the relatively flat and 240 

cold bed beneath the ice sheet’s interior, and are typically <2 km long, with the largest known 241 

lake 5.9 km long54. Cluster of relatively large lakes occur in the East Greenland subglacial 242 

mountain chain with another cluster of smaller lakes in northern Greenland where the bed 243 

relief is subdued (Fig. 3a). 244 

 245 

Active lakes 246 

Active lakes in our inventory (Figs. 1, 3) have been predominantly identified, and their 247 

volumes quantified, from ice-surface elevation changes49 and their outburst floods117. 248 

Because ice mechanics, ice-flow dynamics, and basal traction also influence the surface 249 

expression of lake drainage118, lake volume can be overestimated by altimetry119 and some 250 

ice-surface changes might not necessarily be due to subglacial lake activity6,102,120. Despite 251 

these caveats, our inventory indicates that active lakes generally occur closer to ice margins 252 

than stable lakes. They also have large upstream hydrological catchments and/or form in 253 

areas where meltwater is abundant, either due to frictional melting beneath ice streams and 254 

outlet glaciers (e.g., Antarctica121), elevated geothermal heating (e.g., Iceland22) and/or 255 

surface meltwater inputs (e.g., Greenland57). 256 

 257 

In Antarctica, surface-elevation histories of 140 active lakes show a median volume change of 258 

~0.12 km3 per lake during drainage, which is an order of magnitude greater than for active 259 

lakes in Greenland, and three orders of magnitude larger than flood volume estimates of 260 

valley glaciers. This variation might partly reflect a bias in detection approaches as smaller 261 

lakes have yet to be identified in Antarctica. Most Icelandic subglacial lakes are similar in size 262 

to the active lakes in Greenland; an exception is Lake Grímsvötn, which drains up to ~5 km3 263 

of water because of a thick ice dam and high geothermal heat flux over a wide subglacial 264 

area22,39.  265 

 266 

Our inventory includes 26 valley glaciers where outbursts from small subglacial water bodies 267 

have been recorded, including 20 in the European Alps24,40,117,122. Transient storage in water-268 

filled cavities is probably common to most glaciers123–127 but their small volume makes it 269 

difficult to detect their location and differentiate outbursts from background runoff. 270 

Identified outbursts of  10-4 to 10-5 km3 of water might therefore represent high-magnitude 271 

low-frequency events128,129. Although the sample size is small, glaciers with known outbursts 272 

tend to be relatively steep40, consistent with the idea that faster sliding causes greater 273 

cavitation124. 274 

 275 

Patterns of subglacial lake activity 276 

For lakes with at least one complete fill-drain cycle on record (n = 36), we identified five 277 

distinct patterns of ice-surface elevation change (Fig. 4a) based on the ratio of filling (ice 278 

surface uplift) and draining (ice surface subsidence) durations, as follows: 279 

 280 

• Pattern 1: slow filling and rapid drainage (ratio > 1); 281 

• Pattern 2: similar rates of filling and drainage (ratio ~1); 282 

• Pattern 3: rapid filling and a longer period drainage (ratio < 1); 283 

• Patterns 4 and 5: extended (multi-year) periods of quiescence, at a high stand and low 284 

stand, respectively. 285 
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 286 

Patterns 1, 3 and 4 are the most distinctive, while the difference between patterns 2 and 5 is 287 

less clear. For many lakes outside Iceland, short observational records make it difficult to 288 

determine whether the fill-drain cycles and patterns repeat, and whether they are regular 289 

and predictable7. Drainage of active subglacial lakes is variable6,15,22,129,130 and does not 290 

necessarily result in complete emptying22. 291 

 292 

In Iceland, all lakes exhibit Pattern 1, with Grímsvötn draining every 1-10 years22 (roughly 293 

depending on ice dam thickness110) (Fig. 4a). Rapid drainage of these lakes can either take the 294 

form of exponentially rising discharge, consistent with drainage via subglacial 295 

channels39,103,131,132 and linearly rising discharge triggered by rapid subglacial lake refilling, 296 

flotation of the ice dam, or initial drainage as a sheet flood22,109,133. This second drainage style 297 

is thought to explain rapid discharge (<1 hour) of water from subglacial cavities40,129. 298 

 299 

The fill-drain patterns of active lakes in Greenland (n = 7) and beneath valley glaciers (n = 26) 300 

are not well constrained due to limited data. In Greenland, three active lakes have extended 301 

high stands (Pattern 4), which suggests an external threshold controlling lake drainage 302 

initiation16. However, active lakes in Greenland and beneath valley glaciers are strongly 303 

influenced by input of surface meltwater or rainfall to the bed, which can trigger drainage41 304 

through seasonally-modulated fill-drain cycles in smaller lakes98,130, or late summer drainage 305 

of larger lakes15,57. Diurnal to seasonal drainage of water filled cavities is hypothesised to 306 

occur in response to meltwater driving unstable expansion of intervening orifices124,134,135 307 

allowing them to connect136,137 and empty rapidly down subglacial channels41,129.   308 

 309 

In Antarctica, we observed all five drainage patterns7, likely reflecting the range of subglacial 310 

lake sizes and their topographic, hydrological, geological and glaciological settings. Here, 311 

cascades of hydrologically-connected lakes have produced complex drainage responses7,138. 312 

For example, the quiescent phase of lakes characterised by Pattern 5 might be due to water 313 

capture or interception by an upstream lake, which later drains into the lower lake triggering 314 

its fill-drain response. Patterns 2 and 3 in Antarctica have been replicated by the subglacial 315 

Glacier Drainage System (GlaDS) model7,104, which includes both distributed and efficient 316 

drainage and changes in catchment scale water pressure139. GlaDS suggests that most active 317 

Antarctic lakes have some outflow even during filling periods, and that small changes in 318 

pressure and drainage efficiency drive lake filling and drainage7,104. 319 

 320 

Lake discharge and recharge relationships 321 

Despite uncertainty in lake volumes derived from ice-surface elevation changes119, active 322 

subglacial lakes of Iceland, Greenland and Antarctica exhibit consistent quasi-linear 323 

relationships between mean discharge Qm and lake volume V across drainage events (Fig. 4b), 324 

with Qm ∝ Vb where b is of order unity, despite variations in lake setting, geometry and 325 

dynamics. This finding parallels the empirical Clague–Mathews relationship140 between flood 326 

peak discharge and volume for marginal ice-dammed lakes, and is consistent with Nye’s 327 

theory of lake drainage via subglacial channels, which predicts that b=1 for any set of 328 

geometrically similar lakes141. This suggests that drainage of active lakes in Greenland and 329 

Antarctica predominantly occurs through subglacial channels7,142. For a given V, Qm is one to 330 

two orders of magnitude higher — and the flood duration proportionally shorter — for lakes 331 

in Greenland and Iceland compared with Antarctica (Fig. 4b); Antarctic lakes typically take 332 
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tens of months to drain, while lakes in Greenland and Iceland drain in days to weeks. This 333 

difference is consistent with jökulhlaup theory in that the hydrologic gradient strongly 334 

influences the drainage time scale21,141. Steeper ice surfaces, and hence higher hydrologic 335 

gradients, in Iceland and near the Greenland Ice Sheet margin produce greater subglacial lake 336 

discharges of shorter duration than the shallower ice-surface slopes of Antarctica. 337 

Conceivably, lakes beneath steep valley glaciers might drain even faster for a given lake 338 

volume, but we lack observations to test this hypothesis. 339 

 340 

The recharge rate of subglacial lakes also displays a consistent power-law relationship with 341 

lake volume where different lake populations have similar recharge rates (Fig. 4c). Larger 342 

lakes recharge faster than smaller lakes, indicating an underlying control on lake refilling 343 

associated directly or indirectly with lake size. Although this relationship is not fully 344 

understood, and recharge rates for smaller lakes is more uncertain as they are more difficult 345 

to observe, we suggest that larger lakes are more likely to form in larger catchments 346 

associated with greater meltwater input. A similar scaling relationship is found between the 347 

area of subaerial lakes and their catchments143.  348 

 349 

Subglacial lakes and ice dynamics 350 

Observations of the influence of subglacial lake activity on ice flow are limited10,11,13,15,90,144–
351 

146. Most of our understanding stems from numerical models103,147,148 and observations of 352 

subglacial water drainage from ice marginal lakes149,150 and surface meltwater inputs to the 353 

bed151. 354 

 355 

Subglacial lake drainage can impact ice flow by altering basal water pressure and thus basal 356 

traction144 (Fig. 5). The size of this impact depends on whether, and to what extent, lake 357 

discharge exceeds the hydrologic capacity of the existing subglacial drainage system. If lake 358 

discharge is relatively small and enters an efficient (high hydrologic capacity) subglacial 359 

drainage system, the ice velocity response will be limited144 (Fig. 5). We expect these 360 

conditions in regions with significant seasonal surface melt and steep subglacial hydrologic 361 

potential, for example in Greenland and beneath valley glaciers54,130.  362 

 363 

Lake discharge that exceeds the hydrologic capacity of the existing subglacial drainage system 364 

will cause a transient increase in basal water pressure and enhanced basal sliding148 (Fig. 5). 365 

Initial acceleration will be larger with a greater water pressure perturbation, for example 366 

during higher lake discharge, or in a less efficient drainage system. Once discharge falls below 367 

the drainage system’s hydrologic capacity, water pressure decreases and high-pressure water 368 

drains from connected areas of the bed, increasing basal traction and reducing sliding over a 369 

large area144. This behaviour is expected for lake drainages beneath relatively thin ice with 370 

steeper hydrologic potential gradients, where subglacial channels are more likely to form and 371 

take longer to close due to lower creep closure rates. For example, eight days after the 1996 372 

drainage of Lake Grímsvötn began, downstream ice velocity had increased by 200% over an 8 373 

km wide area around the subglacial flood path144. This increase was followed by a 50% 374 

deceleration in ice flow, which did not fully recover for 4 years145. A similar pattern on a 375 

shorter timescale has been observed16 in west Greenland, where, in the month following 376 

drainage of a subglacial lake 6 km from the terminus of Isunnguata Sermia, mean ice velocity 377 

reduced by ~25%. 378 

 379 
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Subglacial lake drainages beneath Thwaites Glacier, West Antarctica produced muted (<3%) 380 

ice-flow accelerations of several-days146. During a 2012 drainage event, a 2% increase in 381 

velocity was followed by a ~3% deceleration over 6 months. In East Antarctica, drainage of 382 

two lakes beneath Byrd Glacier with a mean discharge of 70 m3 s-1 increased ice flow by up to 383 

10% over the 75 km long glacier trunk between December 2005 and February 200711. Five 384 

years of continuous Global Positioning System data on Whillans and Mercer ice streams in 385 

West Antarctica revealed net ice-flow enhancement associated with a cascading lake drainage 386 

event14. This enhancement comprised three episodic ice flow accelerations of up to 4% over 387 

the two-year duration of flow enhancement but no subsequent slow-down to below the pre-388 

drainage event ice velocity. Multi-year but more muted ice flow enhancement compared to 389 

observations in Iceland144 are consistent with lower subglacial lake discharges of longer 390 

duration in Antarctica (Fig. 4b). As Antarctic ice streams are typically characterised by 391 

abundant subglacial water and saturated sediments152–154 lake drainages may have a limited 392 

additional impact on basal friction. Subdued deceleration on the falling limb of the lake 393 

drainage hydrograph is possible for several reasons. First, although theoretically possible7,142, 394 

formation of low-pressure channels is less likely due to shallow hydrologic potential gradients, 395 

which limit the generation of turbulent heat, and heat loss to colder overlying ice. Second, 396 

any low-pressure channels which form during peak discharge might have limited extent142 397 

and are likely to be rapidly shut down once discharge wanes, limiting their ability to capture 398 

high-pressure water from adjacent connected areas.  399 

 400 

The net long-term impact of subglacial lakes on ice velocity depends on the balance of 401 

reduced motion (compared to ice motion in the absence of lakes) during lake filling14, 402 

enhanced motion during lake drainage, and reduced motion following the development of 403 

efficient downstream drainage, which might in some cases go below long-term average 404 

values. These effects depend on evolving and interrelated parameters such as lake filling rate, 405 

lake discharge, ice thickness and temperature, subglacial hydrologic gradient, and the 406 

hydrologic capacity of existing subglacial drainage. A universal association between subglacial 407 

lake activity and ice motion therefore seems unlikely; indeed, while one study13 suggests a 408 

net long-term reduction in ice motion can result from lake filling and drainage, another14 409 

found that a two-year period of lake filling, followed by a two-year period of lake drainage 410 

resulted in a positive velocity anomaly compared to long-term average. 411 

 412 

Landscape impact  413 

Subglacial lake drainages can erode, transport and deposit large volumes of sediment sub-, 414 

en-, and proglacially. Observations from contemporary subglacial lake outburst floods show 415 

evidence of mechanical erosion of subglacial sediments155–157, rapid deposition of eskers and 416 

fracture fills within the ice mass158,159, the construction of large outwash plains15,160–163 and 417 

proglacial debris flows on steeper slopes41,129. In Iceland, repeated outburst floods are 418 

thought to dominate sediment supply to the proglacial foreland and contribute to the 419 

formation of substantial sandurs164,165. Former subglacial lake drainage event(s) have been 420 

inferred from large (102-103 m wide) palaeo-channels cut into the bed166–172, which can funnel 421 

ice flow and influence ice dynamics173. For example, estimated peak discharge is 1.6-2.2 x 106 422 

m3 s-1 for the Labyrinth, an outburst flood landscape in the McMurdo Dry Valleys, 423 

Antarctica167, which is ~2 orders of magnitude greater than the largest subglacial lake floods 424 

observed today.  425 

 426 
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Sediment erosion and transport during lake drainage is thought to be roughly proportional to 427 

discharge161,174, although modulated by substrate, sediment availability, and the flood route 428 

and hydrograph shape157,175. In particular, rapidly-rising (linear increase in discharge) 429 

subglacial lake outburst floods in Iceland cause significant landscape modification161. For 430 

example, the 1996 jökulhlaups from Grímsvötn drained 3.2 km3 of water within 40 hours, had 431 

a peak discharge of 4 x 104 m3 s-1, and flooded the entire outwash plain22. The sediment yield 432 

was ~1.8 x 108 m3, equating to 0.3 m (65,700 m ka-1) of erosion across the glacier bed impacted 433 

by floodwaters164,176,177. This erosion compares to average glacial erosion rates for Vatnajökull 434 

Ice Cap of ~0.32 m ka−1 178. 435 

 436 

Similar rapid drainages from lakes beneath valley glaciers41,122 (<hours to days) and the 437 

Greenland Ice Sheet16 (<1 month) also result in substantial geomorphic change. Small 438 

outburst floods caused by release of subglacial water stored in cavities beneath South 439 

Tahoma Glacier on Mount Rainier, Washington, typically transform into debris flows as they 440 

incorporate proglacial sediment on the valley slopes117,129,179. Between 1967 and 1994 at least 441 

23 outburst events have occurred, resulting in significant incision of sediment and stagnant 442 

ice in the upper catchment (>20 mm a-1), and aggradation of up to 107 m3 sediment in the 443 

downstream valley179. The 2015 outburst of a small (<1 km2) subglacial lake close to the 444 

margin of Isunguata Sermia, western Greenland, flooded the foreland, aggrading the 445 

proglacial channel by up to 8 m close to the outlet. 446 

 447 

The geomorphic impact of Antarctic subglacial lake drainages is constrained by large 448 

bedrock168,169,171 palaeo-channels, active180 and palaeo181 sediment channels, and eroded or 449 

restricted landform growth at the grounding line (e.g. grounding zone wedges)181. Larger 450 

Antarctic subglacial lakes (Fig. 3b), with longer duration drainage might enable the transport 451 

of more sediment if there is an abundant supply182. However, gradual leakage of water from 452 

Antarctic lakes8 and the lower mean discharge (Fig. 4b) suggest they might be less effective 453 

geomorphic agents than lakes in other settings.  454 

 455 

Subglacial ecosystems 456 

Subglacial lacustrine systems store, transform and export carbon and nutrients9,183. Although 457 

these fluxes are poorly understood due to limited direct observations, dissolved elements and 458 

sediments in subglacial discharge and any turbulent mixing resulting from discharge 459 

dynamics, can enhance primary productivity in downstream environments such as proglacial 460 

lakes, fjords and the polar oceans184. The hydrological and glaciological context of subglacial 461 

lakes influence in situ geochemical conditions which, in turn, control the metabolic regime 462 

and distinct genomic adaptations of resident microorganisms. To date only four active 463 

subglacial lakes have been directly sampled for microbial analyses1,63,66,67 (Fig. 3). However, 464 

these limited samples retrieved directly from subglacial lake water and sediments confirm the 465 

presence of active microbial communities185.  466 

 467 

Subglacial lacustrine ecosystems (Fig. 6) must contend with permanent darkness, high 468 

pressures and low temperatures. In the case of hypersaline lakes, cells must also manage salt 469 

stress. The absence of sunlight requires that microorganisms harness energy from 470 

thermodynamically favourable and predictable chemical reactions known as “redox” 471 

reactions186 with primary production via chemosynthesis1,2,63,187,188. A wide range of materials 472 

provide electrons for reduction in the subglacial setting, including geological sources such as 473 
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bedrock minerals, either in situ or scoured during lake drainage and refill, reduced compounds 474 

such as sulphur from geothermal fluids, or biological sources such as the by-product of 475 

microbial sulphate reduction or methanogenesis. Organic matter might be transported from 476 

the surface or available from ‘legacy’ ecosystems overridden by advancing ice sheets 477 

including marine or terrestrial necromass as well as any labile organic matter in underlying 478 

sediments189,190. Any available oxygen in the subglacial environment would be rapidly 479 

consumed through microbial oxidation of reduced substrate, including organic matter or 480 

inorganic compounds such as sulphide, ammonia, methane or Fe(II). Given sufficient electron 481 

donors and no new input of oxygen, subglacial systems will be driven to anoxia, conditions in 482 

which some microorganisms can respire using diverse alternate electron acceptors, with 483 

predictably decreasing energetic yield. Evidence for iron reducers, denitrifiers, sulphate 484 

reducers and methanogens, which respire Fe(III), nitrate, sulphate and carbon dioxide, 485 

respectively, have all been observed in subglacial lake settings1,191–193.  486 

 487 

Active lakes along continental margins, such as Whillans Subglacial Lake (Fig 6a) may 488 

accumulate solute-rich porewaters generated by upstream basal melt. The formation of steep 489 

chemical, physical and biological gradients at lake water-sediment interfaces can influence 490 

microbial abundance and productivity194. Accumulated solutes and recycled organic matter 491 

can provide nutrients for energy-yielding metabolisms and cellular biosynthesis. Data from 492 

Whillans Subglacial Lake (Fig 6a), indicate that ammonium ions are an important energy 493 

source for biosynthesis2,195, and taxa related to N-cycling microorganisms, for example, the 494 

betaproteobacterium “Candidatus Nitrotoga arctica”, are abundant1,196. This group is known 495 

to mediate the oxidation of nitrite to nitrate, an important step in nitrification197. Sediment-496 

water interfaces, where ions diffuse upwards into the water column1,198, create a niche for 497 

enhanced microbial activity and higher rates of dark carbon fixation3. Transitioning into lake 498 

sediments, microbially-mediated methane191 and sulphur oxidation192 are key processes.  499 

 500 

Active subglacial lakes below Vatnajökull Ice Cap, Iceland (Fig 6b), provide a redox gradient of 501 

oxygenated glacial melt and reducing geothermal fluid, which can also support 502 

chemolithotrophic communities188. Microbial assemblages in western Skaftá Lake, for 503 

example, utilize sulphide, sulphur or hydrogen as electron donors and oxygen, sulphate or 504 

CO2 as electron acceptors63,67. Similarities in the microbial community between distinct lakes 505 

below Vatnajökull suggest a subsurface hydrological connectivity that can seed these 506 

transient lakes with cellular biomass and nutrients discharged in jökulhlaups188, which 507 

ultimately impacts downstream biological communities including fishing grounds199.  508 

 509 

Greenland’s active subglacial lakes (Fig 6c) are largely thought to be filled by the rapid 510 

injection of surface melt via moulins57, which would provide oxygen and photosynthetically 511 

derived organic matter, supporting aerobic metabolism. This seasonal delivery could create 512 

physical turbulence, scouring legacy organic material as drainage systems expand200. Aerobic 513 

respiration would eventually exhaust the supply of oxygen, driving the system to anoxia as 514 

winter temperatures freeze out fresh surface melt. Although Greenland subglacial lakes have 515 

yet to be directly accessed, multiple lines of evidence suggest microbial methane production, 516 

an anaerobic process, occurs at its bed201–203. In fact, Greenland lakes may be quite diverse 517 

with recent evidence suggesting hypersaline or geothermally heated systems204, with both 518 

scenarios shaping microbial communities.  519 

 520 
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Significantly less is known about the deep, closed-basin lakes under the thick (>1 km) interior 521 

of ice sheets, although they are also anticipated to host ecosystems, due to possible 522 

geothermal stirring of nutrients31 and oxygen derived from sediments and/or the ice above. 523 

Samples of accretion ice above Lake Vostok contained 10s-100s of DNA-containing cells per 524 

ml of melt water205 and while these numbers are low compared to Whillans Subglacial Lake, 525 

which contained ~100,000 cells in the same volume, uncontaminated samples from Lake 526 

Vostok water remain elusive68. Regardless, water column samples collected at a discrete 527 

depth might not be representative of water body dynamics, as subglacial lakes can be 528 

thermally unstable3, driving internal mixing31. Hypersaline lakes beneath Devon Ice Cap55 529 

present an intriguing end-member system, where microbes must survive in high solute 530 

concentrations. 531 

 532 

Future evolution of subglacial lakes 533 

This Review has identified a range of subglacial lake behaviours (Fig. 7) providing a proxy for 534 

how their role might evolve in the future under changes in local conditions. This includes large 535 

stable lakes beneath ice mass interiors, slowly cascading lake drainage beneath Antarctic ice 536 

streams (Fig. 7a), faster draining smaller lakes beneath the Icelandic ice caps and ablation 537 

zone of the Greenland Ice Sheet (Fig. 7b-c), and water-filled cavities that drain rapidly beneath 538 

valley glaciers (Fig. 7c). This progression coincides with steeper ice-surface slopes, thinner ice, 539 

and enhanced meltwater inputs. Similar temporal changes are expected as climate warming 540 

causes ice mass loss, recession and thinning206,207, increased surface208 and basal209 (due to 541 

faster ice flow and surface melt inputs) melting, inland expansion of ablation areas210,211, and 542 

ice acceleration, for example, due to thinning and loss of buttressing ice shelves212,213.  543 

 544 

In general, subglacial lakes are predicted to be less abundant beneath smaller ice masses as 545 

recession produces steeper mean surface slopes (higher hydrologic gradients) reducing the 546 

potential for hydrologic minima102,105. Thus, as ice masses shrink, the relative area of the bed 547 

occupied by subglacial lakes should decrease (Fig. 7). This decrease is consistent with the 548 

reduction in water volume stored in Icelandic ice-dammed lakes since the early 20th Century 549 

as their ice dams lower in response to climate warming22 and the drainage of a subglacial lake 550 

beneath Crane Glacier, Antarctic Peninsula, due to ice-surface steepening following ice shelf 551 

collapse12. Warming of ~1.8°C in Greenland214 is predicted to lead to irreversible mass loss 552 

over multi-millennia, while 2-3°C warming in Antarctica215,216 is likely to cause substantial 553 

grounding-line retreat and the collapse of major marine drainage basins in West Antarctica217. 554 

Thus, ice-surface steepening due to grounding line retreat and loss of ice shelves is likely to 555 

trigger lake drainage and reduce the potential for subglacial ponding. In general, East 556 

Antarctic Ice Sheet decline is predicted to be initiated at ~6-7°C warming and will likely be 557 

dominated by the melt-elevation feedback215,216,218. Here, subglacial lakes are likely to remain 558 

relatively stable over multi-millennia timescales, and might even increase in number around 559 

the margin due to enhanced surface melt and its input to the bed. 560 

 561 

Although we predict a general decline in lake abundance and total water volume as large ice 562 

masses shrink, spatial heterogeneity in subglacial lake distribution beneath the Antarctic and 563 

Greenland ice sheets (Fig. 3) suggests this pattern is complicated by local factors including 564 

bed roughness, basal thermal regime and geothermal heat flux107 (Fig. 7). Rough beds can 565 

promote cavitation125, and have more topographic depressions for subglacial water storage. 566 

For example, lakes are clustered within the Ellsworth Subglacial Highlands112 and subglacial 567 
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Gamburtsev Mountains45 in Antarctica. These lakes, particularly associated with deep 568 

tectonic troughs (e.g. Lake Vostok)114, are more likely to withstand ice sheet changes. Basal 569 

thermal regime controls the availability of water to form lakes and will change in response to 570 

ice sheet evolution219 and reorganisation of water or ice flow220–222. Currently, there are 571 

abundant large, stable lakes beneath the warm interior of Antarctica whereas the near 572 

freezing interior of Greenland is largely devoid of lakes54 (Fig. 3). Increases in the aerial extent 573 

and intensity of basal melt beneath the Greenland Ice Sheet209 could facilitate inland 574 

expansion of new subglacial lakes. Any increase in saturated sediments would facilitate 575 

enhanced rock-water interactions liberating solutes for microbial processes. Thinning of ice 576 

overlying subglacial magma systems – such as those beneath the West Antarctic Ice Sheet223, 577 

Iceland224 and Chile225 – could stimulate volcanic activity226–228, resulting in more numerous 578 

and active lakes.  579 

 580 

Mountain glaciers are undergoing widespread recession and thinning in response to climate 581 

warming229. However, the link between climate and subglacial storage beneath these smaller 582 

ice masses is poorly constrained and likely to be strongly influenced by local factors. For 583 

example, debris covered glaciers are undergoing a reduction in surface gradient caused by a 584 

down-glacier increase in debris thickness that focuses the highest rates of surface lowering in 585 

the mid-ablation zone230. This change in gradient might enhance storage of subglacial water 586 

in these glaciers. The storage capacity of subglacial cavities125 will also control the distribution 587 

and extent of ponding at the bed and is likely to be a key mechanism beneath mountain 588 

glaciers (Fig. 7c). Cavitation is expected to be greatest on rough and steep beds and where 589 

basal sliding is high124,134. Thus, steep valley glaciers on rough beds could have an abundance 590 

of small, seasonally draining subglacial lakes40 which could become more common as melt 591 

inputs increase basal sliding. Finally, the susceptibility of a glacier to surging has been linked 592 

to increased basal water storage beneath longer (and shallower) glaciers and between cold-593 

dry and warm-temperate climate extremes231.  594 

 595 

Larger, stable lakes tend to be located beneath or near ice sheet divides where surface slopes 596 

are generally low while hydrologically active lakes occur closer to ice margins where the 597 

hydrologic gradient is steeper (Fig. 3). Hence an evolution from ice sheet centre to margin 598 

dictates lake formation and associated hydrological processes. Ice masses with steeper 599 

hydrologic gradients (Fig. 7a-b), produce higher subglacial lake discharges of shorter duration 600 

(Fig. 3b)21,141 and ice surface melt and rainfall inputs to the bed can trigger122,129 or modulate 601 

drainage57,130. For example, outburst floods from beneath South Tahoma Glacier usually occur 602 

during hot or rainy weather in summer or early autumn, and the probability of an outburst 603 

increases with temperature129. As surface melt intensifies and expands inland210 and where 604 

ice-margin retreat and ice shelf loss causes hydrologic gradients to steepen, we expect more 605 

vigorous lake activity over a greater proportion of the bed (Fig. 7). In particular, ablation zone 606 

expansion could create new drainage pathways, facilitating the drainage of formerly isolated 607 

lakes beneath ice mass interiors, such as Greenland54. Although subglacial lakes are currently 608 

isolated from surface processes in Antarctica, recent evidence of water penetrating to the 609 

bed of grounded ice in the Peninsula232 hints at a future with increasing coupling between 610 

supraglacial and basal hydrology near the grounding line as surface melt intensifies210. 611 

Atmospheric warming of ~3°C could trigger widespread collapse of large ice shelves fringing 612 

Antarctica216,218 resulting in steepening of ice-surface slopes12. The stability of Antarctic ice 613 

shelves is therefore likely to play a key role in controlling any shift to more rapid lake drainage.  614 
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 615 

Large melt inputs into a subglacial lake can trigger flotation of the ice dam, causing a sheet 616 

flood with a rapidly rising discharge22 and mobilisation of large volumes22 of 617 

sediment164,176,177. These catastrophic drainages might become more frequent with large and 618 

rapid surface melt and rainfall inputs233 and ice dam thinning, providing a potential hazard to 619 

downstream populations and infrastructure in glaciated mountain regions (Fig. 7c). The 620 

increased erosive capacity may also (partially) remove sediment deposits contained within 621 

lakes reducing their potential as climate archives. The link between deglaciation and drainage 622 

periodicity is less clear. In Iceland periodicity has been related to ice dam thickness110. 623 

However, there is no clear difference in drainage periodicity between lakes in Iceland and 624 

Antarctica7, which is supported by the consistent power-law relationship between recharge 625 

rate and lake size in different settings (Fig. 4c), suggesting a more complex relationship.  626 

 627 

This conceptual model allows us to consider how future evolution of subglacial lake drainage 628 

(Fig. 7) will impact the environment and ice dynamics. Increased lake activity is likely to 629 

enhance the hydrological and biogeochemical connectivity between lakes and their 630 

surroundings188 locally enhancing transport of sediment, solute and nutrients to downstream 631 

ecosystems9,183 and water across the grounding line of marine-terminating glaciers6. The 632 

regional impact of lakes drainages on ecosystems is likely to shift through time as drainage 633 

direction is highly sensitive to small changes in ice sheet geometry105,234.  Increased routing of 634 

water through lakes coupled with steepening ice-surface slopes will impact melt-refreeze 635 

patterns at the ice-water interface potentially disrupting lake stratification and circulation 636 

patterns, with implications for the lake ecosystem and sediment deposition1. Enhanced 637 

nutrient mixing might promote microbial productivity throughout the water column, however 638 

large discharge of sediments could reduce light penetration in proglacial waters inhibiting 639 

photosynthetic production. Large, episodic surface meltwater inputs into subglacial lakes57 640 

129 provide a supply of oxidants, sediment, microbes and labile organic matter, which might 641 

seasonally enhance oxic processes (Fig. 6c). Conversely, scoured beds, reduced time for rock-642 

water interactions and dilution by supraglacial meltwaters could inhibit some subglacial 643 

biogeochemical activity, but the overall impact is uncertain because we have yet to access 644 

and sample the full range of lake environments. Increased discharge of subglacial lake water 645 

at marine terminating glaciers or ice streams can modify freshwater budgets and nutrient 646 

supply within sub-ice-shelf cavities and the wider ocean6,21. This pattern will likely be 647 

modulated by the environment into which the water discharges and circulation in the sub-ice 648 

shelf cavity or fjord. 649 

 650 

Subglacial lake drainage across grounding lines can enhance plume-driven frontal ablation235–
651 

237, impacting ice margin/ shelf stability6,20. Embayments at subglacial lake outflow points6, 652 

and surface depression and crevassing of ice above the grounding line following the 2003 653 

drainage of Subglacial Lake Engelhardt, West Antarctica20 demonstrate the potential of lake 654 

drainage events to enhance frontal ablation. An expanding ablation zone will increase the 655 

chances of lake drainage entering an existing, efficient subglacial drainage system144 and thus 656 

having a limited impact on ice dynamics. However, higher discharge floods of shorter duration 657 

(Fig. 4b) are more likely to exceed the existing downstream hydrologic capacity, resulting in 658 

large initial ice-flow enhancements144, followed by a reduction in ice flow as channels develop 659 

and discharge falls below the system’s hydrologic capacity (Fig. 7)15,145. More extensive and 660 
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long-lived efficient subglacial drainage will increase the probability that the ‘fill-drain’ cycle of 661 

a subglacial lake causes net reduction in ice flow. 662 

 663 

Outlook 664 

We have presented a new global inventory of 773 subglacial lakes: 675 in Antarctica, 64 in 665 

Greenland, 2 under Devon Ice Cap, 6 in Iceland, and 26 under valley glaciers. Due to existing 666 

data availability our inventory is heavily skewed towards Antarctica (Fig. 3), yet hydrological 667 

predictions suggest there are many thousands of unobserved subglacial lakes105–107. 668 

Therefore, future efforts should  aim to expand the identification and characterisation of lakes 669 

below valley glaciers, ice caps and in Greenland. In particular, for mountain glaciers, the 670 

sudden drainage of lakes poses a hazard to downstream populations125,238, thus, a better 671 

understanding of water storage and drainage beneath glaciers in vulnerable areas and how 672 

the risk might change due to climate warming should be a priority. Improvements in spatial 673 

and temporal coverage and resolution of satellites6,88,91,95, increased availability of high-674 

resolution multi-temporal DSMs97,239 coupled with lake detection automation81 and machine 675 

learning240 will likely allow these gaps to be filled, particularly for lakes that are smaller and 676 

traditionally more difficult to detect54,58,241. Future satellite missions, including ESA’s 677 

Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL)88,90and ESA’s P-band Biomass 678 

Earth Explorer242, will help to identify and monitor long-term changes in subglacial lakes. An 679 

orbiting radar sounder could also provide unprecedented spatial and temporal coverage of 680 

Earth's cryosphere, as well as a homogenous sampling of the ice sheet at a uniform radar 681 

frequency and quality243,244. 682 

 683 

Another challenge is to improve our understanding of subglacial lake fill-drain cycles. 684 

Subglacial lakes exhibit diverse drainage patterns (Fig. 4a), but only 36 lakes have 685 

observations spanning at least one complete cycle; longer-term records of how they respond 686 

to changes in climate are restricted to Iceland22 and some valley glaciers41. Operational, near-687 

real-time monitoring of subglacial lake activity from polar orbiting satellites is already 688 

providing improvements in the coverage and length of observational records. Integration of 689 

remote observations and numerical modelling has potential for characterising the timing, 690 

volumes and processes associated with lake drainage and refilling. For example, application 691 

of passive seismology (Fig. 2a), which monitors acoustic vibrations caused by turbulent 692 

subglacial water flow245, would allow for continuous monitoring of subglacial lake dynamics, 693 

and the evolving hydrologic properties246 of water inflow and outflow. Satellite and 694 

geophysical observations can, in turn, be used to constrain and force catchment-scale 695 

numerical ice sheet models7,247 to analyse fill-drain characteristics, and their coupling with 696 

the wider hydrological system and overlying ice. A longer-term (centennial to millennial) 697 

perspective on past lake drainages and their role in topographic evolution beneath retreating 698 

ice sheets can be gleaned from geological landform analysis and sediment records170,181,248, 699 

and the inclusion of sediment dynamics in subglacial hydrology models249,250. 700 

 701 

Coupling between lake volume and ice motion is currently poorly constrained, and requires 702 

data with high temporal resolution, ideally gapless acquisition over one or more fill-drain 703 

cycles, and broad spatial coverage to quantify the downstream dynamic effect of lake 704 

discharge. Coupled subglacial hydrology and ice dynamic modelling can utilize these data to 705 

determine the primary drivers on ice motion.  Efforts must focus on constraining the initial 706 

ice dynamic response and net long-term impact of subglacial lake drainages for a range of 707 
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discharge magnitudes and glaciological settings. Recent (e.g. ESA’s  Sentinel-1 constellation) 708 

and planned (e.g., NASA-ISRO SAR (NISAR)) SAR-imaging satellite missions with high spatial 709 

resolution (2.7-22 m) and short repeat cycles (6 to 12 day) will improve the likelihood of 710 

obtaining high quality ice motion and surface topography data from image cross-correlation 711 

and (Differential) Interferometric Aperture Radar239 even for ice masses that experience 712 

significant surface melting or snowfall. Coupling of subglacial and ice dynamics models will 713 

allow analyses of physical drivers of lake stability and future lake behaviour. 714 

 715 

Direct access into subglacial lakes representing the range of hydrologic, dynamic and mass 716 

balance regimes is needed to understand the factors that control metabolic productivity and 717 

taxa diversity of resident microbial communities. Biogeochemical measurements from a 718 

range of subglacial conditions will inform global carbon budgets and support predictions of 719 

how climate change may alter the function of these ecosystems. Replicate samples from 720 

subglacial lakes can inform the stability of communities and pace of ecosystem change. 721 

Because discharge from subglacial lakes likely has important implications for downstream 722 

ecosystems, continuing to identify and characterize discharge points, particularly at marine-723 

terminating systems, is critical. Advances in automated underwater vehicles, which can scan 724 

larger areas along coastal margins, particularly along underexplored grounding zones, will be 725 

required. 726 

 727 

Drilling capabilities that enable clean, direct access into subglacial lakes are essential for 728 

advancing our understanding of resident microbial communities. Recently, hot water drills 729 

have been designed with systems that filter and irradiate melt water used in drilling251,252.  730 

Further development of these systems for logistical efficiency and increased automation, 731 

coupled with progress in thermal probe technologies253 that enable in situ measurements and 732 

acquisition of samples for microbial analysis254,255, will be crucial for exploring deep subglacial 733 

lakes253,255. 734 

 735 

Geophysical innovations will reveal more about the physical properties of subglacial lakes and 736 

how they change through time. Autonomous phase-sensitive radio-echo sounding (ApRES)256–
737 

258 can determine vertical strain in the ice, gleaning information on the ice-dynamic response 738 

to lake filling and draining, and basal melt/freeze rates, providing critical input data for water 739 

circulation models. Next-generation full-waveform inversion techniques for interpreting 740 

active-source seismic observations259 provide more precise constraints on the structure of 741 

subglacial water systems, particularly for regions with thin water cavities and/or sediment 742 

layers260. EM approaches provide constraints on the pore-water properties of water-743 

saturated subglacial sediment packages and the salinity of lake waters. Developments in time-744 

lapse geophysical monitoring, innovations in miniaturisation, autonomy, cost reduction, and 745 

power savings for geophysical sensors70, as well as integration of different geophysical 746 

approaches (e.g. EM and seismic exploration to derive lake salinity84,261) with numerical 747 

modelling of lake hydrology31 will refine the spatial and temporal resolution of our 748 

understanding of subglacial lakes. Together, these developments  will provide a more holistic 749 

understanding of how subglacial lakes interact with the wider hydrological system, including 750 

poorly resolved components such as the flow of water within sediments and rocks262.  751 

 752 

Summary 753 
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The storage of water under ice masses is widespread and occurs in a range of settings26 and 754 

climatic regimes. This diversity has resulted in a wide spectrum of subglacial lake 755 

environments, behaviours and impacts. Our global inventory of 773 lakes suggests this 756 

diversity is related to the characteristics of overlying ice masses and the topography and 757 

material of the ice bed. Grounding-line retreat215 and ice shelf loss of the West Antarctica Ice 758 

Sheet216,218 may result in fewer and smaller lakes that drain more rapidly. As melt intensifies 759 

and expands further inland due to climate warming (e.g., in Greenland208) more subglacial 760 

lakes might become coupled to surface melt and rainfall inputs, increasing the number of 761 

active lakes and the potential for catastrophic drainages. Beneath small ice caps and valley 762 

glaciers data on subglacial lakes is limited (Fig. 3) and the impact of local controls (e.g., bed 763 

roughness) and glacial processes (e.g. debris covered glaciers) is likely to result in significant 764 

variations in their response to warming.  765 

 766 

Increased lake activity will drive large initial ice-flow enhancements followed by a reduction 767 

in ice flow as channels develop and discharge falls below the system’s hydrologic capacity. 768 

More extensive and long-lived efficient subglacial drainage will increase the probability that 769 

a fill-drain cycle of a subglacial lake will lead to a net reduction in ice flow. As hydrological 770 

connections are made between lakes, their subglacial surroundings, and the ice surface, 771 

fluxes of sediment, solute and nutrients will be temporarily stored and then released 772 

downstream, modulating the nourishment of downstream subglacial and proglacial 773 

ecosystems and providing conditions for both aerobic and anoxic processes. The future of 774 

subglacial lake investigation is likely to be driven by innovations in geophysical techniques and 775 

drilling technologies, and advances in our ability to monitor subglacial lake activity and ice 776 

motion in near-real-time from satellites and in situ instrumentation. Integrated programmes 777 

that bring together complimentary techniques and numerical modelling are likely to lead the 778 

way in advancing our understanding of the current and future role of subglacial lakes.  779 

 780 
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Glossary 810 

Grounding line. The boundary where a grounded glacier becomes a floating ice shelf. 811 

Basal hydrologic potential. Total head determined by bed topography, weight of the overlying 812 

ice, and basal drainage characteristics. 813 

Jökulhlaup. Glacial outburst flood from a subglacial or proglacial lake. 814 

Radio-echo sounding. A radar technique used to measure the internal structure, ice thickness, 815 

bed topography and water content of ice masses. 816 

Equilibrium Line Altitude. The elevation at which the accumulation and ablation of ice are in 817 

balance over a given time period (typically, one year). 818 

Esker. A slightly sinuous ridge of glaciofluvial sediments (e.g. gravels) that record the former 819 

drainage of meltwater under, in or on top of ice masses.  820 

Cold based ice. Ice below freezing at the ice-bed interface and thus frozen to the underlying 821 

substrate 822 

Redox reactions. chemical reactions where a molecule becomes reduced an another becomes 823 

oxidized. 824 

Chemosynthesis. the fixation of single carbon molecules into organic biomass using energy 825 

from the oxidation of inorganic electron donors. 826 

Methanogenesis. a metabolic process that yields energy for microbial growth while releasing 827 

methane. 828 

Necromass. organic material consisting of or derived from dead organsims 829 

Nitrification. the oxidation of reduced nitrogen compounds to nitrite or nitrate. 830 

Chemolithotrophic. the metabolic oxidation of inorganic compounds to yield energy and fix 831 

single-carbon compounds into organic biomass 832 
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Figures 1451 

 1452 

Figure 1. Different settings of subglacial lakes and their links with other parts of the hydrological 1453 

system of an ice sheet or a glacier. Lakes can range from stable systems trapped in topographic (and 1454 

hydrologic potential) depressions towards the interior of ice masses to water bodies in small cavities 1455 

and active lakes closer to the ice margin that periodically drain downstream. Active lakes often form 1456 

in regions with enhanced frictional, geothermal or surface melt inputs. Mechanical coupling between 1457 

subglacial lakes and the overlying ice can cause flattening of the ice surface (especially over large 1458 

lakes), localised changes in ice-surface elevation in response to lake drainage (elevation decrease) and 1459 

filling (elevation increase), and transient variations in ice flow in response to lake drainages. ELA = 1460 

Equilibrium Line Altitude. 1461 

 1462 
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 1463 

Figure 2. Recent advances and future potential for investigating subglacial lake dynamics. A. 1464 

Schematic of the range of different geophysical techniques and satellites for identifying subglacial 1465 

lakes, probing their environment and monitoring their dynamics. B. Comparison between altimetry 1466 

coverage of active subglacial lakes in Antarctica. Ice surface elevation measurements for three months 1467 

of (i) ICESat global Antarctic and Greenland ice sheet altimetry (GLA12), (ii) CryoSat-2 synthetic 1468 

aperture radar interferometric (SARIn) mode, and (iii) ICESat-2 land ice height (ATL06) data coverage 1469 

over Conway Subglacial Lake and Mercer Subglacial Lake, West Antarctica. Inset map shows location 1470 

of panels in Antarctica. (iv) ICESat-2 ATL06-derived ice-surface height anomaly for May 2019. Figure 1471 

adapted from Siegfried & Fricker (2021)92. 1472 
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 1473 

Figure 3. Global inventory of subglacial lakes. Red circles represent stable lakes identified from RES 1474 

and blue triangles represent active lakes that have been observed to drain at least once. The extent 1475 

of larger lakes (e.g. lakes PEL and Lake Vostok) are defined by blue polygons. VIC = Vatnajökull Ice 1476 

Cap; MIC = Mýrdalsjökull Ice Cap. SGL = subglacial lake. Lakes in green have been accessed and 1477 

cleanly sampled with the exception of Glacier de Tête Rousse, which was monitored using boreholes 1478 

(water level) and sonar (cavity geometry), and Lake Vostok. Top-right inset of subglacial lakes 1479 

identified in the northern Hemisphere shows the location of A (red box). 1480 
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 1481 

Figure 4. Fill-drain cycles and the relationship between lake volume and recharge/discharge.  A. 1482 

Examples of different fill-drain patterns of subglacial lakes identified from ice-surface elevation 1483 

changes. This is based on lakes with at least one complete fill-drain cycle. USLC = Upper Subglacial 1484 

Lake Conway; SLW = Whillans Subglacial Lake. B. Mean water discharge versus total water volume 1485 

drained, for drainage events from subglacial lakes and ice-marginal lakes. Dashed lines plot orthogonal 1486 

distance regression fits for different lake populations. The volume of water drained from each 1487 

subglacial lake has been derived from ice-surface elevation change (see main text for caveats with 1488 

using this method). Crosses represent data for ice-marginal lakes draining through subglacial 1489 

channels140,263; the respective discharge values are peak discharges. Black outlines highlight drainage 1490 

events fed by the drainage of an upstream subglacial lake. C. Mean recharge rate of different 1491 

subglacial lakes plotted against lake volume change, as estimated from ice-surface elevation change 1492 

(dashed line = orthogonal distance regression). 1493 
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 1494 

Figure 5.  Conceptual model of the influence of subglacial lake activity on ice flow. For a given 1495 

subglacial lake drainage event, the ice-flow response will depend on whether, and to what extent, lake 1496 

discharge exceeds the hydrologic capacity of the existing subglacial drainage system. Where discharge 1497 

is low and the lake drains into a pre-existing channel the ice-flow response is likely to be limited (green 1498 

line). Drainage that exceeds the downstream hydrologic capacity (red and blue lines) will result in ice-1499 

flow acceleration. This acceleration might be followed by a subsequent slowdown (blue line) if water 1500 

pressure in the main channel reduces and high-pressure water drains from connected areas of the ice 1501 

bed. 1502 

 1503 

 1504 

Figure 6. Generalized examples of microbial redox reactions across a range of lake settings. In the 1505 

absence of sunlight, these systems derive primary production via chemosynthesis. Solute-rich 1506 

porewaters deliver nutrients from the lake catchment, while sediment ions diffuse upward at the 1507 

sediment-water interface. In sediments, redox transitions are influenced by oxygen availability and 1508 

penetration with depth and microbial metabolic groups shift accordingly. We highlight three example 1509 

lake settings. In active Antarctic lakes such as Whillans Subglacial Lake (A), basal ice interacts with the 1510 

surface water column, but, in general, these lakes lack surface connectivity, which restricts oxygen 1511 

resupply and delivery of photosynthetically derived nutrients within glacial melt. Icelandice lakes 1512 

formed from active hydrothermal systems under ice (B) contain chemically and thermally stratified 1513 

water columns, which result from the melting of oxygenated glacial ice and the flux of sulfidic 1514 

geothermal fluid. At the chemocline, sulphur oxidizing microbes dominate. In an active Greenland lake 1515 

(C) recharge from surface meltwater via moulins can deliver significant volumes of supraglacial 1516 

materials, including photosynthetically derived organic matter that would influence redox gradients. 1517 

The inset key indicates that relative changes in concentration of a particular substrate. 1518 

 1519 
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 1520 

Figure 7. Space-time substitution using spatial variations in the behaviour of subglacial lakes 1521 

beneath modern ice masses to assess the impacts of climate warming on their future distribution, 1522 

geometry and activity. A-C are conceptual models of the hydrological systems of Antarctica (A), 1523 

Greenland (B) and smaller ice masses such as ice cap and valley glaciers (C). Antarctica is dominated 1524 

by very large stable lakes close to ice divides with active lakes that drain slowly (months to years) 1525 

tending to occur beneath ice streams closer to the ice margin. Greenland is largely devoid of lakes in 1526 

the near-frozen interior. Stable lakes are typically found above the ELA, with active lakes, recharged 1527 

by surface water, found at or below the ELA and associated with higher discharges than Antarctica 1528 

(draining in days to weeks). Subglacial lake discharges are similar in Iceland (days to weeks), with lakes 1529 

influenced by subglacial volcanism and occasionally experiencing large sheet floods due to rapid lake 1530 

refilling. Valley glaciers are associated with small lakes that can drain rapidly (<hour to days) and are 1531 

modulated by surface melt and rainfall inputs. Note that the space aspect has large gaps (e.g., 1532 

Antarctica is much larger than Greenland, and Greenland is much larger than the ice caps of Iceland) 1533 

and little is known about how changes will manifest as ice masses shrink. As climate warms and ice 1534 

sheets recede and thin, surface slopes steepen in response to ice-shelf loss and grounding-line retreat 1535 

and surface melt intensifies and expands, we predict that the size of subglacial lakes and their relative 1536 

coverage of the bed will generally decrease beneath the Greenland and West Antarctic ice sheets 1537 

(although modulated by factors such as bed roughness and heat flux) but that they will become more 1538 

active. Beneath smaller ice masses (e.g. valley glaciers) changes in lake abundance will be strongly 1539 

controlled by local factors. Warming is likely to enhance the potential for surface coupling (e.g. melt 1540 

and rainfall inputs), resulting in higher overall discharges of shorter duration, and more frequent sheet 1541 
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floods. The reduction in ice overburden pressure might also stimulate volcanic activity, resulting in 1542 

enhanced basal melting and lake formation. ELA = Equilibrium Line Altitude; WAIS = West Antarctic 1543 

Ice Sheet; EAIS = East Antarctic Ice Sheet. 1544 


