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A B S T R A C T 

Tunnel lining internal defect detection is essential for the safe operation of tunnels. This paper presents an automatic scheme 
based on rotational region deformable convolutional neural network (R2DCNN) and Ground Penetrating Radar (GPR) images for 
the accurate detection of defects and rebars with arbitrary orientations. The R2DCNN comprises inter-related modules, 
specifically, deformable convolution, feature fusion, and rotated region detection modules. In this study, synthetic GPR images, 
including rebars and various structural defects with different permittivities, as well as real GPR images obtained by model 
experiments, were constructed for the R2DCNN. Improved results were obtained while testing the R2DCNN on GPR images in 
comparative experiments. The mean average precision of the R2DCNN was enhanced by 8.21% compared to the R2CNN on 
synthetic GPR images. The R2DCNN showed satisfactory results in on-site experiments, which demonstrated the applicability of 
the R2DCNN to practical tunnels. 
A R T I C L E I N F O 

Keywords: Ground Penetrating Radar; Arbitrary-oriented defect detection; Automation; Deep learning; Tunnel inspection 

1. Introduction 1 

 Tunnels progressively deteriorate due to ageing, environmental factors, man-made and natural influences, inadequate or 2 

poor maintenance, and deferred repairs [1-2]. Consequently, structural defects, including cracks, voids, and separations, occur in 3 

the tunnel lining, which can even cause partial collapses in tunnels and significantly affects the long-term and safe operation of 4 

tunnels. For instance, the collapse of the Sasago Tunnel in Tokyo killed nine people in 2012 [3]. Therefore, routine inspections 5 

and evaluations of tunnels are essential to ensure their safe operation. 6 

Ground Penetrating Radar (GPR), a non-destructive detection tool that can obtain subsurface images, has high efficiency, 7 

high anti-interference level, and strong penetrating ability; it has been widely used in detecting subsurface abnormal objects [4]. 8 

The electromagnetic waves transmitted by GPR are reflected to form the B-Scan profile after hitting media with different 9 

electromagnetic properties. Therefore, the detection of subsurface abnormal objects can be considered as the detection of 10 

abnormal GPR signals, such as the reflected signals from subsurface abnormal objects of the B-Scan. In tunnel lining detection, 11 

the diagnostic interpretation of GPR images carried out by an experienced analyst is time-consuming and error-prone, which 12 

tends to result in poor quality inspections. An automated, cost-effective, and exhaustive inspection of tunnels would improve 13 

short and long-term security, and increase productivity [1, 5]. Therefore, automated inspection would become an important 14 

means of infrastructure inspection and would gradually become the trend for development in the future. Furthermore, automatic 15 

detection methods are a key part of automated inspection. It is necessary to explore a faster, efficient, practical, and automatic 16 

detection method to improve automated infrastructure inspections.  17 
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In the past few years, certain signal and image processing technologies, such as edge detection, Hough transform, and 18 

migration technologies, have been utilized for the automatic detection of abnormal GPR signals [6-9]. Thereafter, machine 19 

learning techniques, such as neural networks, support vector machines, grouping techniques, and genetic algorithms, have been 20 

utilized to detect subsurface abnormal objects using GPR images [10-13], resulting in effective detection performance. However, 21 

the afore-mentioned methods have been commonly observed to lack the ability to recognize multiple waves induced by 22 

water-bearing defects in complex GPR images and rely on parameter settings and handcrafted features. Deep learning has been 23 

effectively applied to recognize abnormal objects in GPR images and has attracted considerable research interest in various 24 

scientific disciplines. For road inspection, Xu et al. [14] integrated a feature cascade, an adversarial spatial dropout network, and 25 

the Soft-NMS algorithm into Faster R-CNN to improve the effectiveness of railway subgrade defect detection. Tong et al. [15] 26 

utilized the deep learning model of network in networks and GPR data to identify pavement distress types and measure the 27 

distress locations and sizes, which produced reasonable stability with different transmitting frequencies, numbers of samples per 28 

trace, and pavement structures. For rebar inspection, Xiang et al. [16] automatically detected the rebars of concrete structures 29 

using AlexNet and GPR images. The authors also evaluated the effects of different rebar arrangements and window sizes on the 30 

results. Similarly, Dinh et al. [17] combined conventional image processing techniques and a deep Convolutional Neural 31 

Network (CNN) for rebar recognition. These image processing techniques were used to localize pixels containing potential rebar 32 

peaks, and the CNN was employed to classify window images that were extracted from GPR images surrounding the potential 33 

pixels. For pipeline inspection, Alvarez et al. [18] used a deep learning framework to convert GPR images into subsurface 34 

permittivity maps to realize the intuitive display of subsurface images of sewer crowns. Furthermore, Ko et al. [19] used Faster 35 

R-CNN to detect buried pipelines in GPR images and adopted a data augmentation strategy for GPR images.  36 

The recognition of GPR images has been successfully accomplished using deep learning, and it has been widely applied in 37 

various fields. To detect abnormal objects within a tunnel lining, Yang et al. [20] employed GPR data and a CNN to conduct 38 

defect segmentation for tunnel lining internal defects, thereby achieving visual display of the tunnel lining internal structure. 39 

Their method requests pixel-level labels to perform data annotation. However, owing to the uncertainty of the tunnel lining 40 

internal structure in practical situations, it is difficult to obtain a corresponding structural model from real GPR data collected 41 

from tunnels, thereby making it challenging to use pixel-level labels. Thus, the application of this method to practical situations 42 

is limited owing to the difference between synthetic and real GPR data. CNNs used for object detection can identify events or 43 

implications of GPR images that are difficult to annotate using pixel-level labels. For example, Xu et al. [21] constructed a 44 

convolutional neural network (GA-RCNN) which integrated the mechanism of guiding anchoring based on the two-stage object 45 

detection algorithm to accurately recognize the locations of the voids using GPR images in tunnels. However, certain challenges 46 

related to the internal abnormal object detection of tunnel linings still exist, such as: 47 

(1) Unlike object detection in natural images, wherein the objects have clear boundaries, abnormal objects in GPR images 48 

commonly exhibit complex reflected signals with diffraction signatures. Even worse, complex irregular tunnel lining defects, 49 

particularly crack defects, may have arbitrary distributions (Fig. 1). Therefore, it is crucial to accurately delineate the locations of 50 

defects with arbitrary orientations from GPR images with relatively blurred boundaries.  51 

(2) Owing to the diversity of tunnel lining defects, as well as multiple waves and scattering induced by water-bearing 52 

defects, the recorded GPR images can be rather complicated, with various reflected signals from tunnel lining defects. Defects in 53 

the same category may produce quite different GPR images, as shown in Fig. 1. Thus, it is essential for deep learning networks to 54 

have powerful feature representation and feature fusion abilities to extract rich features from various GPR images.  55 

(3) Owing to unpredictable interference in the real world, real GPR images are inevitably accompanied by considerable 56 

noise and are more complicated than synthetic GPR images, as shown in Fig. 1. Furthermore, the availability of real GPR images 57 

for training deep learning networks is rather limited. Therefore, it is preferable for deep learning networks to learn the geometric 58 

transformations of reflected signals from tunnel lining defects adaptively and generalize the trained models for application to real 59 

GPR images. 60 

 

 

Fig. 1. The permittivity model and its corresponding synthetic GPR image as well as the real GPR image. 

 

To solve the aforementioned issues, a rotational region deformable CNN (R2DCNN) was developed in this study for the 61 
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accurate detection of defects and rebars with arbitrary orientations from complex GPR images of tunnel linings. The R2DCNN 62 

comprises inter-related modules, specifically, deformable convolution (DC) [22-23], feature fusion [24-25], and rotated region 63 

detection modules [26]. DC enhances the ability to detect abnormal objects with geometric deformations, such as various 64 

reflected signals from tunnel lining defects of different sizes and shapes, and enables the adaptive learning ability for diverse real 65 

GPR images. Feature fusion for fine-grained feature extraction provides accurate location and shape information for abnormal 66 

objects to improve the final detection accuracy of GPR images with blurred boundaries between the object and background. 67 

Rotated region detection enables the accurate detection of abnormal objects with arbitrary orientations in GPR images. In this 68 

study, synthetic GPR images, including rebars and various structural defects with different permittivities, as well as real GPR 69 

images obtained by model experiments, were constructed for the R2DCNN. A comprehensive comparative experiment was 70 

performed to confirm the effectiveness of the R2DCNN, and a model experiment was subsequently performed to demonstrate the 71 

necessity of the R2DCNN on real GPR images. Furthermore, on-site experiments were employed to describe the implementation 72 

process of the R2DCNN in detail. The defect detection method was verified in engineering and was applicable in practical tunnels, 73 

laying a solid foundation for automated inspection of tunnels in the future.  74 

The remainder of this paper is organized as follows: Section 2 describes the dataset, Section 3 introduces the R2DCNN 75 

automatic detection method, Section 4 presents and provides an analysis of the experimental results, Section 5 conducts on-site 76 

experiments and applications of the method, and lastly, Section 6 summarizes the contributions and draws certain conclusions. 77 

2. Dataset construction 78 

Considering that GPR images with reflected signals collected from practical tunnels are quite limited, which is not enough 79 

for the training of the R2DCNN to realize the accurate detection of tunnel lining defects with arbitrary orientations, lots of GPR 80 

images are constructed to improve the adaptability of the proposed method in engineering. This section describes the datasets 81 

consisting of synthetic and real GPR images that are built to train, validate, and test the object detection network. Furthermore, it 82 

elaborates the process of the GPR image annotation.  83 

2.1. Synthetic GPR data 84 

Tunnel linings containing rebars as well as various structural defects, including voids, cracks, and separations, were 85 

modelled. These defects were further divided into water-bearing and water-free defects according to their permittivities and were 86 

referred to as tunnel lining abnormal objects in the following sections.  87 

Various objects with irregular borders of different shapes, categories, and permittivities were deployed at various positions. 88 

In this study, the permittivities of water-free defects, water-bearing defects, and rebars were 1, 81, and 300, respectively. The 89 

permittivities of the lining and surrounding rock were random, i.e., 6–7 and 8–10, respectively [27]. In addition, the interface 90 

between the lining and surrounding rock was considered as a rough and irregular surface. The two-dimensional basic permittivity 91 

models of the tunnel lining internal structure were established based on the above principles, as illustrated in Fig. 2, which 92 

showed that there are various distributions of objects in the permittivity model, including single defects, different combinations 93 

of multiple defects and rebars, and water-bearing and water-free defects distinguished by different permittivities as represented 94 

by different colors. GPR equipment with dominant frequencies of 400 MHz or 600 MHz was relatively common in tunnel lining 95 

detection. Therefore, to increase the diversity of the data and enhance the adaptability of the network, two Ricker wavelets with 96 

dominant frequencies of 400 MHz and 600 MHz were used to forward modelling permittivity models based on the 97 

finite-difference time-domain method. Finally, synthetic GPR data with 800 sampling steps and 99 traces was obtained. In this 98 

work, a total of 1974 synthetic GPR data with different frequencies and conductivities were generated, and it took approximately 99 

three days to generate these datasets. Among them, only the conductivity of 59 synthetic GPR data (0.5) with water-bearing 100 

defects is different from other data (0.0005) to verify the generalization of the network. The specific defect categories and 101 

numbers of the rest of the 1915 synthetic GPR data, including 900 GPR data with a dominant frequency of 600 MHz and 1015 102 

GPR data with a dominant frequency of 400 MHz, are presented in Table 1. The dimensions of the model were 90 × 220 with a 103 

mesh size of 0.01 m. Owing to the absorption boundary conditions of the convolutional perfectly matched layer, the actual model 104 

was reduced by 10 meshes on each side. Therefore, the depth and distance of the tunnel lining covered in the synthetic GPR data 105 

were 0.7 m and 2 m, respectively. It was difficult to annotate the synthetic GPR data containing direct waves covering some 106 

portions of the target areas. Therefore, the direct waves were removed by subtracting the baseline GPR data generated by the 107 

model without any abnormal objects. Fig. 2 depicts the permittivity models and their corresponding synthetic GPR data before 108 

and after removing the direct waves. Moreover, owing to the diffraction signals appearing on the edges of the reflected signals 109 

and the multiple waves and scattering induced by water-bearing defects, GPR images have characteristics that differ from those 110 

of natural images. Hence, GPR images were chosen (instead of ImageNet) to pre-train the feature extraction network for 111 

classification, thereby making it more adaptive to GPR images. Additional 28,600 synthetic GPR data with 800 sampling steps 112 

and 99 traces were generated to pre-train the feature extraction network of the R2DCNN for classification. In total, it took 113 

approximately a month to generate all the 30,574 synthetic GPR data, including 1974 GPR data for training and fine-tuning the 114 

R2DCNN and 28,600 GPR data for pre-training the feature extraction network of the R2DCNN. 115 

 

  116 
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Table 1 

Data distribution in dataset. 
Dataset Crack Void Separation Crack_void Void_ separation Crack_ separation Rebar 

Water-free defects 132 150 150 133 150 150 
150 

Water-bearing defects 150 150 150 150 150 150 

 

 

Fig. 2. The permittivity model of tunnel lining internal structure and its corresponding synthetic GPR data before and after removing direct waves. 

The water-bearing defects or rebars and water-free defects are represented by different colors. 

 

2.2. Real GPR data 117 

To verify the applicability of the proposed method in practical situations, model experiments were performed to obtain real 118 

GPR data using a 600 MHz Impulse Radar as the GPR, as shown in Fig. 3. A sandbox was exploited to simulate the tunnel lining 119 

internal structure, while acrylic boxes and waterproof boxes were used for simulating cracks and voids within the tunnel lining, 120 

respectively. Furthermore, acrylic boxes and waterproof boxes with different rotated angles were deployed at various positions 121 

and depths in the model of different depths to increase the diversity of real GPR data. The number of samples per trace and the 122 

trace-interval distance of this GPR device were 512 and 0.01 m, respectively. 123 

 

 

Fig. 3. The sketch of model experimental environment. (a) Simulated underground structure defects; (b) Acrylic box for the simulating crack; (c) 

Waterproof box for the simulating void; (d) GPR system utilized in the experiment; (e) Experiment after increasing the height of the model. 
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Unlike synthetic GPR data, real GPR data is inevitably accompanied by noise signals because of the heterogeneity of the 124 

subsurface medium, mutual wave interactions, and the influence of external conditions during data collection. Therefore, these 125 

data should be subjected to visualization enhancement using pre-processing techniques, such as time-zero correction, clutter 126 

removal, and noise reduction. After a series of pre-processing techniques, the real GPR data with 10 ns of depth in a two-way 127 

time domain and 2 m of spacing in the horizontal direction was obtained due to the limitation of sandbox depth. Their 128 

morphology patterns varied in terms of abnormal objects and complex geological structures. In total, 118 real GPR data 129 

comprising diverse reflected signals representing rebars as well as various structural defects, including voids, cracks, and 130 

separations, were obtained. 131 

2.3. GPR image annotation 132 

In this study, additional 28,600 synthetic GPR data with 800 sampling steps and 99 traces, mentioned in Section 2.1, were 133 

converted into images with resolutions of 224 × 224 pixels to pre-train the feature extraction network of the R2DCNN for 134 

classification. They need not be annotated by inclined rectangular boxes using the LabelImg software. Therefore, a total of 2092 135 

GPR datasets were used for annotation, including 1974 synthetic GPR datasets and 118 real GPR datasets, to train the R2DCNN. 136 

For subsequent image annotation, 2,092 GPR datasets (800 sampling steps and 99 traces) were converted into images with 137 

resolutions of 533 × 533 pixels. The reflected signal features of each GPR image could be related to specific types of tunnel 138 

lining internal objects. In particular, the reflected signals generated by the abnormal objects may have phases that are reversed 139 

compared with that of the direct waves when the permittivity of the abnormal objects is higher than that of the tunnel lining [11]. 140 

Therefore, different objects can be distinguished and discriminated based on the reflected signal features of their GPR images. 141 

The object determination of real GPR images primarily depends on the position and type of the object buried in the sand, 142 

whereas the abnormal objects of synthetic GPR images were annotated according to the established permittivity model and the 143 

GPR image corresponding to the model. Finally, GPR image annotation was manually performed using the open-source software 144 

LabelImg in which dissimilar objects were framed using inclined rectangular boxes in various categories in GPR images with 145 

resolutions of 533 × 533 pixels. These GPR images were randomly divided into a training set including 1,300 synthetic GPR 146 

images and 38 real GPR images, a validation set of 290 synthetic GPR images, and a test set including 384 synthetic GPR images 147 

and 80 real GPR images according to the types of images to ensure equal distribution in each type for training and fine-tuning the 148 

R2DCNN. 149 

3. Methodology 150 

Although object detection networks based on horizontal rectangular boxes can detect abnormal objects in GPR images 151 

[28-29], they cannot accurately delineate the locations of the distributed reflected signals with arbitrary orientations in GPR 152 

images. For example, for crack defects shown in Fig. 1, object detection networks based on horizontal rectangular boxes may 153 

produce relatively large regions, which cannot locate the objects very precisely. Thus far, various object detection networks based 154 

on inclined rectangular boxes have been used for detecting objects with arbitrary orientations [26,30-31]. However, such 155 

networks cannot achieve ideal detection for GPR images of the tunnel lining for several reasons described in Section 1. Therefore, 156 

it is essential for deep learning networks to have powerful feature representation and feature fusion abilities to learn various 157 

abnormal objects adaptively and generalize the trained models for application to real GPR images with limited data.  158 

In view of the characteristics and challenges related to the GPR images of tunnel linings, we developed an improved 159 

R2DCNN method based on the R2CNN architecture for automatic detection of abnormal objects with arbitrary orientations in 160 

complex GPR images. The R2DCNN can improve the rapidity and intelligence of detection methods, laying a solid foundation 161 

for the automated inspection of tunnels in the future. The R2DCNN comprises inter-related modules, specifically, DC, feature 162 

fusion, and rotated region detection modules. The flowchart of the R2DCNN is shown in Fig. 4. Firstly, a DC based feature 163 

extraction network is employed to extract powerful features from original GPR images with the irregular convolution kernels that 164 

change their shape according to the shape of the object. Secondly, the feature fusion module that concatenates the shallow and 165 

deep feature maps in the feature extraction network provides a rich feature map with both detailed and semantic information for 166 

the following detection. Finally, rotated region detection is used to perform image classification and regression on a series of 167 

candidate boxes obtained through region proposal network (RPN) using multi-scale ROI Align, so as to obtain the final detection 168 

results. The specific structure of each module is illustrated in Fig. 5. The following sections will describe each of the 169 

corresponding modules in detail. 170 

 

Deformable convolution based 

feature extraction network
Feature fusion layer Rotated region detection Final detection resultsOriginal GPR images

Concat
Shallow layer Deep layer

Candidate boxes

Water-free crack

DC

Water-free crack

 

Fig. 4. The flowchart of the R2DCNN. 
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Fig. 5. The network structure of the R2DCNN. 

 

3.1. Deformable convolution based feature extraction network 171 

The reflected signals of the GPR images show considerable diversity and irregularity due to the various geometric shapes 172 

and filling materials of the complex tunnel lining defects. In addition, unpredictable interference in the real world may induce 173 

significant noise in the real GPR images, thereby diversifying and complicating the GPR images under the influence of noise. 174 

However, real GPR images obtained by model experiments are limited. Thus, it is preferable for deep learning networks to learn 175 

the geometric transformations of reflected signal morphologies adaptively and generalize the trained models for application to 176 

real GPR images with limited data. CNNs with fixed sampling locations are inherently limited for modelling geometric 177 

transformations [32]. DC realizes anisotropic sampling by learning the offsets of the sampling points, as shown in Fig. 6 (a). 178 

Therefore, a DC module that can adapt to various reflected signals with different sizes and shapes was introduced into the feature 179 

extraction network, as shown in Fig. 5.  180 

The backbone network is based on VGG16 [33], consisting of five convolution blocks (Conv1, Conv2, Conv3, Conv4, and 181 

Conv5), a max pooling layer following each convolution block, and the activation function, ReLU, which is used after each 182 

convolution layer. The max pooling layers are mostly utilized to reduce the size of the feature map, making it focus on important 183 

areas. The activation function is employed to ensure that the values in the feature map are within a reasonable range. Moreover, 184 

to reduce the computational burden on the feature extraction network, the number of channels of the feature maps in the five 185 

convolution blocks was modified and varied block-wise, as shown in Fig. 5. In this study, DC with learned offsets and a 186 

modulation mechanism derived from Deformable ConvNets v2 [22] were employed because of the blurred boundaries between 187 

the object and background in the GPR images of the tunnel lining. To better utilize the DC to produce superior detection results, 188 

two DCs were added to the relatively backward convolution layers, containing Conv4_2 and Conv5_2 of the feature extraction 189 

network, which are more sensitive to the position information of the GPR images [32], and the numbers of convolutional layers 190 

in the latter two convolution blocks were reduced accordingly. Meanwhile, atrous convolution with a dilation of 2 was used in 191 

the DC module to increase the receptive fields of the offsets and modulation learning with the same complexity as common 192 

convolution in terms of the parameters and computation. The offsets of the sampling points, which are learned from the 193 

preceding feature maps in the standard convolution, and the modulation mechanism, which adjusts the scope of deformation 194 

modelling, enable better adaptation to the sizes and shapes of the reflected signals without the influence of irrelevant content, 195 

such as noise, diffraction signals, and multiple waves in the GPR images, thereby preventing the spread of samples beyond the 196 

area of interest. 197 

Owing to the different characteristics of the GPR images and natural images, GPR images were chosen (instead of 198 

ImageNet) to pre-train the feature extraction network for classification. To achieve pre-training of the feature extraction network, 199 

two fully connected layers followed by dropout and the softmax layer were added. The dropout layers following fully connected 200 

layers were applied to combat the overfitting problem. The obtained pre-trained model parameters were exploited to initialize the 201 

CNN model of the R2DCNN.  202 

3.2. Feature Fusion Layer 203 

Conventional CNNs, such as R2CNN, only use the feature learned from the last convolutional layer of the network to 204 

perform image classification and regression by multi-scale ROI Align, which provides more semantic information but less details. 205 

This method may compromise the accuracy of the location information that is crucial for abnormal object detection in GPR 206 

images because the sizes and shapes of the abnormal objects are changeable. In particular, cracks with large aspect ratios can be 207 

regarded as small objects [34], the boundaries between the objects and background are blurred in GPR images of tunnel linings, 208 

and multiple waves and scattering are produced by water-bearing defects. The features of the lower layer contain more detailed 209 
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information, such as information regarding the underlying texture and color, but the semantic information is less abundant. 210 

Therefore, the feature fusion layer is employed for detection instead of using the last feature map to improve the detection effect 211 

for multi-scale objects in complex GPR images.  212 

In terms of the sizes of abnormal objects in GPR images and the receptive field of the feature extraction network, rich 213 

multi-scale features of the low-level layer Conv4_2 and high-level layer Conv5_2 are fused, as shown in Fig. 6 (b). The sizes and 214 

numbers of feature maps vary for different layers, which implies that the fusion layers are not directly stacked together. Thus, the 215 

feature map of the same size as Conv4_2 is generated by upsampling Conv5_2 using nearest neighbor interpolation. 216 

Subsequently, the layers of Conv5_2 and Conv4_2 are concatenated along their channel axis to perform fusion. Thereafter, 3 × 3 217 

convolution is utilized to generate the final fusion feature maps for detection to eliminate the aliasing effect of the upsampling 218 

and adjust the number of channels of the feature map.  219 
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Fig. 6. (a) Different calculation positions under traditional convolution or deformable convolution; (b)Architecture of feature fusion module. 

 

3.3. Rotated region detection 220 

For the detection of tunnel lining abnormal objects using GPR images, horizontal region detection with a relatively large 221 

redundant region is not feasible because of the arbitrary orientations of the reflected signals in GPR images. Rotated region 222 

detection based on R2CNN was introduced into the proposed network to enable accurate detection of abnormal objects with 223 

arbitrary orientations. 224 

As shown in Fig. 5, the rotated region detection also involves a RPN and Fast R-CNN, which share a common feature 225 

extraction network. The RPN is employed to generate a set of horizontal proposals that may enclose the reflected signals of the 226 

input GPR images. Thereafter, each horizontal proposal obtains feature maps of different sizes (7 × 7, 11 × 3, 3 × 11) through the 227 

multi-scale ROI Align layer to preserve the complete feature information. The Fast R-CNN stage only predicts inclined 228 

rectangular boxes (x, y, h, w, and α), which are represented using the coordinates of the center points, the height, width, and 229 

rotated angle of the rectangular box [34]. The classification is conducted using concatenated multi-scale features, and the final 230 

inclined rectangular boxes are obtained by inclined non-maximum suppression.  231 

4. Experimental results and discussion 232 

This section is divided into four parts. Section 4.1 describes the experimental details and introduces the evaluation indicators. 233 

Section 4.2 presents the comprehensive comparative experiments and results on synthetic GPR images. Section 4.3 conducts 234 

model verification experiments to discuss the results of the R2DCNN on real GPR images. Finally, Section 4.4 presents 235 

discussion. 236 

4.1. Experimental details and evaluation indicators 237 

The training of the R2DCNN consists of two main stages. The first stage was used to obtain pre-training model parameters 238 

by pre-training the feature extraction network for classification using 28,600 synthetic GPR images. The second stage was 239 

utilized to obtain a detection model of defects and rebars within the tunnel lining by training and fine-tuning the R2DCNN using 240 

the pre-trained model parameters and 2092 synthetic and real GPR images with different frequencies described in Section 2. 241 

Before training the network, the intensity values of the GPR images were standardized to enhance their contrast. 242 

Our method was implemented on the TensorFlow framework, and an Intel Xeon (R) Gold 5118 CPU with a GTX 1080 Ti 243 

GPU was employed for training. In the pre-training phase of the feature extraction network, the input GPR image was resized to 244 

224 × 224. The Adam [35] optimization algorithm was employed during 50 epochs of training. The weight decay and batch size 245 

were 0.0005 and 50, respectively. The initial learning rate remained 5e–5 for the first 25 epochs and decayed to 5e–6 at epoch 25. 246 

For the R2DCNN, the GPR image remained the original size of 533 × 533. The training step was 50,000 epochs with an initial 247 

learning rate of 5e–5, and the learning rate decay strategy was stepped at the 20,000th and 40,000th epochs with a coefficient of 248 

0.1. The weight decay and batch size were 0.0005 and 1, respectively. The multi-task loss containing cross-entropy loss for 249 

classification and smooth L1 loss for regression was utilized to optimize the R2DCNN through the Adam optimization algorithm. 250 
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Although the training of the R2DCNN may take a relatively long time, the detection time for a GPR image would be significantly 251 

short. 252 

In our experiment, recall, precision, F-measure, and average precision (AP) were used as evaluation indicators for the 253 

detection of internal defects and rebars in the tunnel lining. Recall and precision are the basic indicators to measure the 254 

performance of an algorithm under a specific Intersection over Union (IoU) between the predicted boxes and ground truth. The 255 

F-measure is the weighted average of recall and precision. The AP, average precision under different recalls, is a comprehensive 256 

evaluation indicator that is not affected by the selected thresholds. The mean average precision (MAP) is the average of the AP 257 

across all the different defect types. 258 

4.2. Experimental results 259 

This section conducts a comprehensive comparative experiment using synthetic GPR images to confirm the superior 260 

performance of the R2DCNN. The ablation experiments were initially performed on synthetic GPR images. Comparisons with 261 

the existing optimal methods were subsequently conducted. Finally, we present comparisons of evaluation indicators for various 262 

methods. 263 

4.2.1. Ablation experimental results 264 

We benchmarked the R2DCNN along with variant architectures using our synthetic and real GPR images of the tunnel lining 265 

to evaluate the contribution of each module in our model, such as the feature fusion and DC modules. Notably, the feature 266 

extraction network of the R2DCNN without DC is VGG16.  267 

Fig. 7 presents the results of the R2DCNN along with those of variant methods for synthetic GPR images with different 268 

frequencies. The detection result is a GPR image with inclined rectangular boxes used to locate the object, a defect type of each 269 

box, and a confidence of each box in the upper right corner that indicates the probability that the object is of this type. In Fig. 7, 270 

the first column presents the permittivity model corresponding to the GPR image, the second column presents GPR images with 271 

different frequencies, and the third, fourth, and fifth columns provide the detection results of the R2DCNN without DC, R2DCNN 272 

without fusion, and R2DCNN, respectively. It can be seen from Fig. 7 that the R2DCNN can accurately locate various reflected 273 

signals of GPR images with precise inclined rectangular boxes, whereas there are missing detected objects and imprecise 274 

detection boxes in the results of the other variants. These observations indicate that the feature fusion module, which provides 275 

accurate location and shape information, together with the DC module, which achieves anisotropic sampling, can jointly improve 276 

the ability to detect various abnormal objects with irregular shapes of GPR images with different frequencies in tunnel linings.  277 

 

 

Fig. 7. Object detection results of the R2DCNN along with variant methods when applied to synthetic GPR images with different frequencies. 

Different types of abnormal objects are indicated by boxes of different colors, as shown in the last row. 

 

4.2.2. Comparative study and results 278 
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We selected two well-known methods, the Faster R-CNN for buried object detection using B-scan GPR images [36] and the 279 

R2CNN for scene text detection [26], for comparison to verify the effectiveness and superiority of the R2DCNN in tunnel lining 280 

defect detection.  281 

Fig. 8 shows the object detection results obtained by applying different methods to synthetic GPR images, including GPR 282 

images of single and combined defects as well as synthetic GPR images with defects of different types and conductivities 283 

compared to those in the training set. The first column depicts the permittivity model corresponding to the GPR image; the 284 

second column shows the GPR images with different frequencies; and the third, fourth, and fifth columns present the detection 285 

results of the Faster R-CNN, R2CNN, and R2DCNN, respectively. As shown in Fig. 8, the R2DCNN can accurately locate all 286 

abnormal objects in the GPR images, whereas the other two methods produce relatively poor detection results. The Faster 287 

R-CNN is designed to generate horizontal rectangular detection boxes including more background with relatively large redundant 288 

regions. Moreover, certain detection results cannot be accurately marked or are overlooked. The R2CNN is used for the detection 289 

of inclined rectangular boxes, which can address the problem of the detection of abnormal objects with arbitrary orientations in 290 

GPR images. But as a result of inaccurate prediction of the direction information of inclined rectangular boxes, this method 291 

cannot conduct accurate detection of abnormal objects in GPR images. Additionally, for certain abnormal objects with large 292 

changes in shape and unknown forms, the other two methods may yield missing, redundant, or false object detection boxes. 293 

These observations indicate that the adaptability and transferability of the two methods are weak. The R2DCNN performs well in 294 

a variety of situations and is more adaptive to the detection of various reflected signals with arbitrary orientations of GPR images 295 

with different frequencies in tunnel linings. 296 

 

 

Fig. 8. Object detection results of different methods when applied to synthetic GPR images with different frequencies, containing GPR images of 

single (the first row) and combined (the middle two rows) defects along with GPR images with defects of different types and conductivities 

compared to those in the training set (the last two rows). 

 

4.2.3. Comparisons of evaluation indicators 297 

To quantitatively evaluate the performance of various methods and the effect of each module on the model performance, the 298 

evaluation indicators detailed in Section 4.1 are utilized to assess the comprehensive performance of the R2DCNN along with 299 

other methods when applied to GPR images. Table 2 compares the overall performances of the different methods on synthetic 300 

GPR images. The R2DCNN achieves competitive results with a recall of 81.11%, a precision of 87.46%, an F-measure of 84.07%, 301 

and a MAP of 73.91% when applied to synthetic GPR images.  302 

For synthetic GPR images, the R2DCNN is slightly worse than the Faster R-CNN, but considerably better than the R2CNN 303 

for all indicators. The R2DCNN can locate various abnormal objects more accurately with inclined rectangular boxes, which have 304 

the smallest enclosing areas. And few objects were repeatedly detected, as evidenced by the visual outputs. Therefore, for 305 
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abnormal objects with larger aspect ratios, if the box size and location are not sufficiently precise, the recall and precision 306 

decrease easily, making the indicators have lower values than when the Faster R-CNN is applied. According to the results from 307 

Table 2, R2DCNN without fusion achieves 2.97% and 4.21% performance gains in F-measure and MAP, respectively, compared 308 

to the R2CNN. Adding the feature fusion module to the R2CNN also improves the F-measure by 2.28% and MAP by 3.09%. This 309 

confirms that powerful feature representation and feature fusion abilities both contribute towards improved detection in 310 

complicated GPR images. The R2DCNN provides greater improvements compared to other variant methods. The F-measure and 311 

MAP are improved by 5.62% and 8.21%, respectively. Meanwhile, our method only consumes a little time (0.0877s) for 312 

detecting a GPR image using the configuration described in Section 4.1 (Table 3). And it also increases little time cost compared 313 

to the R2CNN baseline. This means that the R2DCNN can detect GPR images with higher accuracy and little time cost. Therefore, 314 

our proposed method can provide a more accurate suggestion for a less experienced analyst with very little time cost, which can 315 

save a considerable amount of time for tunnel lining defect detection. In summary, the R2DCNN is superior to the other methods 316 

when applied to GPR images with different frequencies in tunnel linings.  317 

As can be seen from the object detection results and evaluation indicators of the R2DCNN along with other methods on 318 

GPR images, only using the DC or feature fusion module could not produce good experimental results. The two modules need to 319 

be introduced simultaneously to enhance the stability and generalization of the network. The R2DCNN is more sensitive to 320 

abnormal objects in complex GPR images than the other methods, thereby exhibiting appropriate stability and robustness when 321 

applied to GPR images with different frequencies in tunnel linings.  322 

 

Table 2 

Comparison of experimentally obtained indicators for synthetic GPR images. 

Methods Recall Precision F-measure MAP 

Faster R-CNN 0.8166 0.9113 0.8601 0.7668 

R2CNN 0.7473 0.8285 0.7845 0.6570 

R2DCNN without DC 0.7731 0.8474 0.8073 0.6879 

R2DCNN without fusion 0.7799 0.8553 0.8142 0.6991 

R2DCNN 0.8111 0.8746 0.8407 0.7391 

 

Table 3 

Detection time of the R2DCNN and R2CNN. 

Methods R2CNN R2DCNN 

Time 0.0842s 0.0877s 

 

4.3. Results on real GPR images 323 

Because we aim to apply the R2DCNN to practical situations, it is vital to demonstrate the applicability and effectiveness of 324 

the R2DCNN using real GPR images. Compared to the synthetic GPR images, real GPR images produce reflected signals with 325 

more prominent irregularity and complexity under the influence of considerable noise due to the unpredictable interference in the 326 

real world. Moreover, real GPR images are limited. Hence, three real GPR images with rebars and water-free voids of different 327 

rotation angles, depths, and positions were used to evaluate our scheme; different depth sandbox models were also used. Fig. 9 328 

compares the results of the R2DCNN with those of some existing algorithms on real GPR images. The first column depicts the 329 

sandbox model corresponding to the GPR image; the second column shows the real GPR images obtained by sandbox model 330 

experiments; and the third, fourth, and fifth columns present the detection results of the Faster R-CNN, R2CNN, and R2DCNN, 331 

respectively. Because the depth of the sandbox models presented in Fig. 9 is different, the position of the interface of the GPR 332 

image corresponding to the sandbox model is also inconsistent. Moreover, the signal below the interface of the GPR image is 333 

generated by the medium under the sandbox, which is not related to the medium inside the sandbox. For rebars and defects under 334 

rebars of the third row in Fig. 9, these three methods fail to recognize the right defect under rebars due to the weaker signal 335 

caused by the interference of reflected signals from rebars. Except for defects under rebars, the R2DCNN can accurately locate 336 

abnormal objects with arbitrary orientations on real GPR images, while the Faster R-CNN produces missing and imprecise object 337 

detection boxes with relatively large redundant regions, and the R2CNN produces missing object detection boxes that face 338 

difficulty in detecting the real GPR image. In summary, the R2DCNN obtains convincing detection results, far superior to other 339 

methods. The comparative results indicate that the R2DCNN can be applied to complicated datasets effectively, thereby providing 340 

a good basis for the recognition of real GPR images. 341 
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Fig. 9. Object detection results of different methods when applied to real GPR images. 

 

4.4. Discussion 342 

An ablation and comprehensive comparative experiment with the existing optical methods, as well as model verification 343 

experiments, are performed as described in Section 4.2 and 4.3. The results confirm that the R2DCNN overcomes the negative 344 

effects of complicated real GPR images with limited data in the tunnel lining and exhibits good stability and generalization when 345 

applied to GPR images with different frequencies. For further verification of the feasibility of the R2DCNN, the intermediate 346 

processes of the network are visualized. 347 

The reflected signals of GPR images yielded by abnormal objects of different sizes and shapes within the tunnel lining show 348 

diversity and irregularity, and the real GPR images are limited and accompanied by considerable noise. It is difficult to detect 349 

abnormal objects of various shapes and sizes on more complex GPR images using traditional convolution because of the fixed 350 

sampling location. Hence, a DC module, composed of offset learning of sampling points and a modulation mechanism, was 351 

introduced, making the sampling points more suitable for the shapes and sizes of the abnormal objects in GPR images than if a 352 

fixed rectangular form had been used.  353 

For improved understanding of the behavior of the DC module, we visualized the spatial support of the network nodes using 354 

their effective sampling locations and compared those of DC with traditional convolution methods using synthetic GPR images. 355 

The standard operations in DC were neglected because they did not affect the offsets of the sampling points. Fig. 10 shows the 356 

relative contributions of these sampling locations to the network nodes. The two different types of GPR images with different 357 

frequencies are shown in the first two and last two rows of Fig. 10. The receptive field and sampling locations in the standard 358 

convolution were fixed, whereas the DC module adaptively adjusted them according to the sizes and shapes of the abnormal 359 

objects. Although GPR images are different from natural images because of the existence of considerable clutter interference and 360 

abnormal objects with relatively large aspect ratios in GPR images, the spatial support of DC can approximately cover the entire 361 

object and enable better adaptation to various objects when the nodes are on the abnormal objects in GPR images. In the first 362 

column of Fig. 10, all sampling points in the DC are more widely distributed when the nodes are in the background of the GPR 363 

images. Therefore, DC enables better detection of different types of abnormal objects within the tunnel lining according to the 364 

shapes and sizes of the reflected signals from abnormal objects in GPR images. 365 
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Fig. 10. Spatial support of network nodes in deformable and standard convolution networks. The visualized nodes (center points in black for 

synthetic GPR images with different frequencies) are in the background (left) and on abnormal objects in the GPR images (middle and right). 

 

The boundaries between the object and background are blurred in the GPR images of the tunnel lining due to diffraction 366 

signals, and multiple waves and scattering are induced by water-bearing defects. The feature fusion module was exploited to 367 

reuse the feature information. The module combines the advantages of shallow features (Conv4_2) that provide accurate location 368 

and shape information and deep features (Conv5_2) that contain more semantic information. The shallow, deep, and fused feature 369 

maps were visualized on synthetic and real GPR images, as shown in Fig. 11, to demonstrate the role of the feature fusion 370 

module more clearly. The first and second rows present the visualizations of the synthetic and real GPR images, respectively. For 371 

the shallow feature maps in the second column, multiple objects in the GPR images represented different specific types of defects. 372 

Subsequently, the areas of interest were circled using dashed lines of different colors. In Fig. 11, all defects of shallow features in 373 

the second column contain more detailed information than deep features in the third column, such as those related to the 374 

underlying texture, shape, and location; the deep features produce large swaths of highlighted information, which is semantic 375 

information about the defects, and there is no clear information about the location or shape; the feature maps fusing the shallow 376 

and deep features in the fourth column contain the detailed information, wherein the defects that are circled using dashed lines of 377 

different colors have dark and bright colors that are extremely similar to the shallow features, and semantic information, wherein 378 

the outsides of the defects surrounded by dashed lines of different colors have large swaths of highlighted information that are 379 

similar to those of the deep features. This observation further confirms the effectiveness of the feature fusion module when 380 

applied to GPR images. 381 

 

 

Fig. 11. Visualization of feature fusion module effects using synthetic and real GPR images. 

 

5. On-site experiments 382 

The R2DCNN produced convincing results upon application in real GPR images obtained by model experiments, which 383 

reflects its excellent adaptability, and it can be used in engineering due to the greater similarity between real GPR images 384 
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collected from the model experiments and practical tunnels. To further verify the applicability of the proposed method in 385 

engineering, it was implemented to automatically detect reflected signals in GPR images obtained from the surveys of multiple 386 

tunnels, such as the Nanshibi Tunnel in Jiangxi Province and the Shuiquanwan Tunnel in Shanxi Province. The implementation 387 

process of the proposed method in practical tunnels is summarized in Fig. 12.  388 

 389 

 

PreprocessingData collection on-site GPR images
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Fig. 12. The implementation process of the proposed method in practical tunnels. 

 

Firstly, it is necessary to collect a large amount of raw GPR data at the tunnel site through GPR equipment to verify the 390 

proposed method. During this verification process, a 600 MHz Impulse Radar system was used to scan multiple tunnel walls to 391 

collect the GPR data on-site. The number of samples per trace and the trace-interval distance of this GPR device were 512 and 392 

0.01 m, respectively. Secondly, certain pre-processing techniques were employed to highlight the reflected signals from tunnel 393 

lining defects and obtain the GPR data of the corresponding size. A total of 219 GPR data were obtained, in which each GPR data 394 

covered a detection distance of 2m and a time window of 20ns in depth over the tunnel lining. The GPR data was then converted 395 

into images with resolutions of 533 × 533 pixels to fine-tune and test the R2DCNN. Unlike synthetic GPR data, real GPR data is 396 

inevitably accompanied by considerable noise. Therefore, it is difficult for the R2DCNN, trained through both synthetic and real 397 

GPR images obtained from the previously described sandbox experiments, to directly test the GPR images collected from 398 

practical tunnels. Thus, after a series of pre-processing techniques, only 99 GPR images were annotated to fine-tune the 399 

R2DCNN (based on R2DCNN weights in Section 4.1), and the number of iterations was 10000. The training time of the R2DCNN 400 

was approximately 3 hours. Finally, the detection model of defects and rebars was utilized to detect abnormal objects of the 401 

specific tunnel.  402 

Fig. 13 depicts the results of the R2DCNN on the remaining 120 GPR images. The first row shows the real GPR image 403 

collected from practical tunnels, and the second row shows the detection results of the R2DCNN. It can be seen that the R2DCNN 404 

produces superior detection results. In particular, the R2DCNN could detect small abnormal objects in GPR images in the first 405 

column of Fig. 13. The practical tunnel we selected for on-site experiments has a large number of structural defects, which 406 

needed to be repaired by reinforcing the surrounding rock after the lining. Therefore, grouting pipes were hit in the tunnel to 407 

reinforce the surrounding rock. Considering that the defect inside the tunnel lining is concealed, the GPR images collected from a 408 

tunnel lining with grouting pipes are utilized to further demonstrate the adaptability of our proposed method. The detection 409 

results are shown in Fig. 14. The R2DCNN can accurately locate and recognize reflected signals from grouting pipes in the GPR 410 

image. The reflected signals are recognized as a water-bearing void because of the similar defect characteristics between the 411 

grouting pipe and the water-bearing void. The evaluation indicators detailed in Section 4.1 are utilized to analyze the 412 

comprehensive performance of the R2DCNN on practical tunnels, as presented in Table 4. The R2DCNN produces favorable 413 

performance with a recall of 60.13%, a precision of 72.45%, an F-measure of 60.43%, and a MAP of 47.45% when applied to 414 

real GPR images collected from practical tunnels. The indicators of real GPR images are slightly lower than those of synthetic 415 

GPR images. This gap may be because the real GPR images are limited and more complicated under the influence of noise, 416 

revealing various reflected signal morphologies. Thus, the R2DCNN enables the accurate detection of defects inside the tunnel 417 

lining, which proves it is applicable in engineering. 418 

In case of other tunnels, the raw GPR data collected using the GPR equipment needs to be pre-processed (such as time-zero 419 

correction, clutter removal, or noise reduction, etc.) to obtain a large number of GPR images with appropriate sizes and clear 420 

reflected signals. Subsequently, only a small number of GPR images with reflected signals, manually annotated by inclined 421 

rectangular boxes using the LabelImg software, are exploited to fine-tune the R2DCNN due to the different characteristics of the 422 

GPR data collected from different tunnels. As long as the GPR image between the training and test set has similar settings, there 423 

is no specific setting for data collection and the size of GPR images. Although it might take a relatively long time for data 424 

annotation and network training to obtain a defect detection model for tunnel linings (approximately 4 hours), the detection time 425 

for a GPR image would be significantly short (approximately 0.0877 s). Moreover, the model can detect different defect types 426 

and their locations. For example, detecting a continuous scan of a tunnel wall, including approximately 10,000 GPR images, 427 

might take nearly 16 min using our proposed method, which has a high detection efficiency. As an automatic detection system, it 428 

has the potential to analyze more GPR images than a trained analyst in a shorter period, and it can also serve as an aid to a less 429 

experienced analyst by suggesting interpretations that might not be obvious. 430 
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Fig. 13. Object detection results of the R2DCNN when applied to real GPR images collected from practical tunnels. 

 

 

Fig. 14. On-site experiment results. 

 

Table 4 

Results of the R2DCNN on real GPR images collected from practical tunnels. 

Method Recall Precision F-measure MAP 

R2DCNN 0.6013 0.7245 0.6043 0.4745 

 

6. Conclusions 431 

In this study, we propose the R2DCNN for the automatic detection of abnormal objects with arbitrary orientations in GPR 432 

images of tunnel lining, and the following conclusions are obtained. 433 

(1) The R2DCNN is capable of fine-grained feature extraction and has a powerful modelling ability for abnormal objects of 434 

various shapes and sizes, using DC, feature fusion, and rotated region detection modules. This method enables accurate detection 435 

of defects and rebars of various shapes and sizes with arbitrary orientations in tunnel linings.  436 

(2) A comprehensive comparative study shows that the F-measure and MAP of the R2DCNN are improved by 5.62% and 437 

8.21%, respectively, compared to the R2CNN when applied to synthetic GPR images. And the R2DCNN only increases little time 438 

cost for detecting a GPR image compared to the R2CNN baseline. Additionally, a model verification experiment confirms the 439 

effectiveness of the R2DCNN on real GPR images. The R2DCNN exhibits appropriate stability and generalization when applied 440 

to synthetic and real GPR images with different frequencies, as well as GPR images with defects of different types and 441 

conductivities compared to those of the training set in tunnel linings. 442 

(3) On-site experiments are employed to describe the implementation process of the R2DCNN in detail and confirm its 443 

effectiveness in practical tunnels. The R2DCNN produces favorable performance with a recall of 60.13% and a precision of 72.45% 444 

when applied to real GPR images collected from practical tunnels. As an automatic detection system, it has the potential to 445 

analyze numerous more GPR images than a trained analyst in a shorter period. Furthermore, the R2DCNN could serve as an aid 446 

to a less experienced analyst by suggesting interpretations that might not be obvious. Therefore, the proposed method can 447 

improve the key technical links of automated tunnel inspections in the future and has practical prospects. 448 

(4) Although the R2DCNN achieves suitable results when applied to both synthetic and real GPR images, it poses certain 449 

limitations on the diversity of real GPR images. Further experimentation on a larger and more diverse set of real GPR images is 450 

required in order to better verify the system performance for practical applications. In our future research, we also wish to 451 

compare and analyze the experimental results of the deep learning model using GPR images of different frequencies and sites to 452 

verify the stability and superiority of the network. 453 
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