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A B S T R A C T

Applications of unrigorous mathematics are relatively common in the history and current practice of

physics but underexplored in existing philosophical work on applications of mathematics. I argue that

perspicuously representing some of the most philosophically interesting aspects of these cases requires

us to go beyond the most prominent accounts of the role of mathematics in scientific representations,

namely versions of the mapping account. I defend an alternative, the robustly inferential conception

(RIC) of mathematical scientific representations, which allows us to represent the relevant practices

more naturally. I illustrate the advantages of RIC by considering one such case, Heaviside’s use of his

unrigorous operational calculus to produce and apply an early generalization of Ohm’s law in terms

of “resistance operators.”

1. Introduction

From the early calculus in Newtonian physics to the Dirac

delta function and ill-defined path integrals in quantum the-

ory, physicists have leaned heavily on mathematical tools

that fall well short of the standards of rigor of present-day

pure mathematics. Such tools have facilitated important phys-

ical results despite the mathematics’ not clearly sufficing on

its own to pick out well-defined mathematical structures. The

success of these applications and their relationship to appli-

cations of more rigorous mathematics are among those fea-

tures we might expect a philosophical account of the appli-

cability of mathematics in science to explain. However, in

such work, little attention has been paid to applications of

unrigorous mathematics.

The most prominent accounts of mathematical scientific

representations are mapping accounts, according to which

mathematical representations posit a structure-preserving map-

ping between the structure(s) picked out by the relevant math-

ematics and the structure of the target system (e.g., Pincock,

2004, 2012; Bueno and Colyvan, 2011; Bueno and French,

2018). An alternative, the robustly inferential conception

(RIC), takes a piece of mathematics to represent a physical

target system in virtue of shared patterns of inference be-

ing licensed in reasoning about both the mathematics and

the target system (McCullough-Benner, 2020). The aim of

this paper is to show that applications of unrigorous mathe-

matics give us good reason to adopt RIC. Central to apply-

ing unrigorous mathematics is the use of inference strate-

gies that restrict the use of incoherent, underdeveloped, or

otherwise problematic concepts so that undesirable results

cannot be derived. Because such strategies typically involve

local inferential restrictions that do not naturally correspond

to neat divisions of a mathematical structure, mapping ac-

counts don’t naturally capture them. In contrast, they can be

represented and explained straightforwardly in terms of RIC.

I substantiate these points by examining Oliver Heavi-

side’s application of his operational calculus, which was no-
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toriously unrigorous. His cavalier approach led the Royal

Society to take the unprecedented step of subjecting his work

to peer review and ultimately refusing to publish his work on

the subject.1 Rather than leading Heaviside to pursue greater

mathematical rigor, this seems instead to have strengthened

his convictions:

Shall I refuse my dinner because I do not fully

understand the process of digestion? No, not

if I am satisfied with the result. Now a physi-

cist may in like manner employ unrigorous pro-

cesses with satisfaction and usefulness if he, by

the application of tests, satisfies himself of the

accuracy of his results. (Heaviside, 1899, §224,

pp. 9f)

Heaviside’s operational work was remarkably success-

ful. There have been no credible challenges to his physical

results, and his unrigorous techniques underpinned real con-

ceptual (not just computational) advancement. His “resis-

tance operators,” central to his operational techniques, gen-

eralized the concept of resistance so that he could extend

Ohm’s law to time-varying circuits with reactive elements,

anticipating the later concept of generalized s-plane impedance,

which did the same work more rigorously.

How is it that Heaviside was so successful in applying

his operational calculus despite the highly unrigorous nature

of his work? Heaviside employed a number of strategies

to restrict the inferences one could make with his incoher-

ent, underdeveloped, or otherwise problematic mathemati-

cal concepts. Heaviside often made inferential restrictions in

a strikingly local and ad hoc way, and he frequently used the

physical interpretation of the mathematics in a given case to

inform the mathematical inferences he ultimately took to be

licensed. Explaining how and why these strategies worked

requires us to represent Heaviside’s inferential practices at

a finer level of grain than mapping accounts naturally allow

for—a task for which RIC is perfectly suited.

In section 2, I compare mapping accounts and RIC, and

1For useful discussions of this episode, see Yavetz (1995, pp. 318–20)

and Nahin (2002, pp. 222f).
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Applying Unrigorous Mathematics

I present an initial argument for RIC on the grounds of its

ability to represent applications of unrigorous mathematics.

The rest of the paper is devoted to substantiating these points

through an examination of the application of Heaviside’s op-

erational calculus. In section 3, I introduce the operational

calculus. In section 4, I discuss several ways in which it fails

to meet the standards of rigor of pure mathematics, as well as

the inference strategies Heaviside adopts in order to manage

this lack of rigor. I argue that RIC is better suited to ex-

plaining the contributions of these strategies to the success

of applications of the operational calculus. In sections 5 and

6, I consider two cases in which mapping accounts might be

thought to provide explanatory benefits beyond those avail-

able to RIC. In section 5, I consider Heaviside’s appeals to

the physical interpretation of operational expressions to in-

form his mathematical reasoning. In section 6, I consider

retrospective explanations of Heaviside’s success in relation

to later methods, particularly the Laplace transform. I ar-

gue that neither case favors mapping accounts over RIC. As

a result, there is good reason to favor RIC as an account of

mathematical scientific representations.

2. The problem of mathematical scientific

representation and mathematical rigor

2.1. Accounts of mathematical scientific

representation
Accounts of mathematical scientific representation are

generally intended to perform two tasks. The first is to pro-

vide an answer to what Nguyen and Frigg (2017, p. 3) call

“the general application problem.” This is the problem of

explaining how mathematics can represent target systems in

general, with emphasis on the question of how any piece of

mathematics could “hook on” to the systems it represents.

This problem arises because the subject matter of mathemat-

ics is prima facie distinct from that of the scientific represen-

tations in which it is used. The second task is to serve as a

meta-level device used by philosophers of science to repre-

sent particular episodes of scientific practice in which math-

ematics is applied with an eye to bringing out its philosoph-

ically significant features. For instance, Bueno and French

(2018) emphasize the utility of their account—a combina-

tion of the inferential conception of applications of mathe-

matics (Bueno and Colyvan, 2011) with the partial structures

approach (e.g., da Costa and French, 2003)—as such a de-

vice, spending much of the book applying this framework to

episodes from scientific practice to illustrate philosophical

problems that arise in connection with applied mathematics.

By far the most common approach to both is to adopt

some version of the mapping account. The common core of

these views is that scientists use mathematics to represent

a target system by positing a relation—usually a structure-

preserving mapping—between the structure(s) picked out by

the relevant mathematics and the structure of the target sys-

tem (e.g., Pincock, 2004, 2012; Bueno and Colyvan, 2011;

Bueno and French, 2018). Such representations thus rep-

resent their target systems as bearing a structural similar-

ity to the structures picked out by the relevant mathemat-

ics. This structural relation is central to performing the first

task described above; mathematics “hooks on” to the non-

mathematical world in virtue of the shared structure entailed

by the existence of such a relation.2 It also provides a frame-

work for understanding applications of mathematics in prac-

tice (the second task above). The mathematically mediated

inferences scientists make in using such representations are

licensed by that structural similarity; the existence of the

right sort of mapping is what makes it possible to draw infer-

ences about the target system on the basis of mathematical

reasoning. Many heuristic moves can also be explained in

terms of interpreting surplus mathematical structure (via a

more extensive mapping) or relating the relevant structures

to other structures via further mappings.3

An alternative is to appeal not to shared structure but to

shared patterns of inference. According to the robustly infer-

ential conception (RIC) of mathematical scientific represen-

tation (McCullough-Benner, 2020), all we can say in general

in response to the first task is that a piece of mathematics is

relevant to physical target systems because some of the pat-

terns of inference appropriate for reasoning about the math-

ematics are also appropriate for reasoning about the physical

systems. Mathematics places constraints on what the target

system of a representation must be like by helping to specify

inferences about the target system that must preserve truth if

the representation is (perfectly) accurate. Such representa-

tions have three ingredients:

(RIC1) a physical interpretation of the language of the math-

ematical theory sufficient to provide at least some sen-

tences in this language with physical truth conditions,

(RIC2) an initial description of the target system in the lan-

guage of the mathematical theory, given this interpre-

tation, and

(RIC3) a collection of privileged inference patterns from

those licensed by the original mathematical theory.

The commitments of the representation are the physically in-

terpreted claims in the language of the mathematical theory

that are in RIC2 or can be derived from these via the in-

ference patterns in RIC3. The informational content of the

representation is then given by the conjunction of these com-

mitments.

An important similarity between RIC and mapping ac-

counts is that both ultimately explain the success of a math-

ematically mediated physical inference in terms of the in-

formational content of the representation that licenses it; if

the world is as the representation says it is, the mathemati-

cally mediated inference must be truth-preserving. The dif-

ference is in how that informational content is spelled out.

2That said, more would seem to be required to provide an adequate

response to this problem, namely a means of specifying the structure of the

target system, like a “structure-generating description” (Nguyen and Frigg,

2017).
3See, for example, Bueno and Colyvan (2011, pp. 364f) and Bueno

and French (2018, pp. 141ff) on the reasoning that led Dirac to posit the

positron.
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Mapping accounts do so by positing that mathematical and

physical systems themselves stand in a structural relation-

ship. RIC does so by positing shared syntactic structure

between mathematical inferences and truth-preserving infer-

ences about physical systems. In either case, the scientists’

mathematically mediated inferences are ultimately justified

by the supposition that the representation is in fact accurate,

and this is where explanations in either case bottom out.

As a result, mapping accounts can be recovered as a spe-

cial case in which RIC1 is provided by the relevant struc-

ture and mapping, RIC2 by a “structure-generating descrip-

tion” (Nguyen and Frigg, 2017) or something similar, and

RIC3 by the collection of inference patterns that preserve

truth when interpreted in terms of the relevant mathematical

structure. In such cases, the informational content is spelled

out in terms of exactly the same features that mapping ac-

counts appeal to. This means that RIC can appeal to the

full resources of the mapping account in representing par-

ticular applications of mathematics. But these ingredients

should not be spelled out in this way in every case. Most

importantly for the purposes of representing applications of

unrigorous mathematics, RIC3 need not correspond to the

inference patterns that preserve truth in reasoning about any

particular structure but may be specified independently. The

result is a high degree of flexibility in representing scientists’

mathematical inference strategies.

2.2. Adjudicating between mapping accounts and

RIC: Unrigorous mathematics
Because RIC recovers mapping accounts as special cases,

adjudicating between them comes down to the question of

whether RIC’s generality has philosophical benefits that out-

weigh its costs; if RIC had no such benefits, mapping ac-

counts would be preferable on the basis of their greater speci-

ficity. This paper explores one such benefit: RIC, I argue, is

a better tool for representing episodes in which unrigorous

mathematical techniques have been applied in the history of

science.

For the sake of this argument, I am happy to concede that

some versions of the mapping account successfully explain

how unrigorous mathematics can in principle be used to rep-

resent a target system, the first task for accounts of mathe-

matical scientific representation. It is enough for my pur-

poses to show that they have shortcomings in relation to the

second task, as meta-level devices to help philosophers rep-

resent philosophically salient features of episodes in which

scientists apply unrigorous mathematics.

While such episodes raise a number of philosophical ques-

tions, here I focus on the question of how to explain the suc-

cess of these techniques. We might approach this question

in two ways. First, we might be interested in how the tech-

niques scientists used to manage the epistemic shortcomings

of unrigorous mathematics contributed to the success of the

resulting representations. Second, we might be interested in

explaining the success of these techniques retrospectively in

terms of their relation to other, more rigorous techniques.

These approaches are complementary. The former shows

why unrigorous techniques are epistemically respectable in a

way that is accessible to those engaged in the practice; it ex-

plains why it was reasonable for them to reason as they did.

The latter shows why the results of that practice happened to

be correct, regardless of their epistemic status at the time.

Most of the paper will be devoted to supporting the claim

that RIC facilitates more perspicuous explanations of the

first kind. This on its own is a significant theoretical ben-

efit, and it is here that the advantages of RIC are clearest.

However, I will return to the second kind of explanation at

the end of the paper, arguing that RIC allows for a signif-

icant, albeit more modest, improvement to explanations of

this kind as well.

2.3. Why unrigorous mathematics favors RIC
Crucial to using a mapping account as a meta-level de-

vice is identifying an appropriate structure or collection of

structures to represent the relevant mathematics. This is sim-

ple when applications involve well-understood mathemati-

cal theories. Even if scientists skip a few steps or rely on

unarticulated assumptions, we philosophers of science can

straightforwardly represent their practice in terms of a well-

defined mathematical structure associated with the theory.

However, when a mathematical theory or technique in-

volved in an application is not a well-understood piece of

pure mathematics, more work must be done. In the extreme,

the mathematics involved might be inconsistent, as in the

case of the early calculus4 or the Dirac delta function, both

of which found—and in the case of the Dirac delta func-

tion, continue to find—widespread use in physics. Since

no classical, model-theoretic structure satisfies an inconsis-

tent theory, additional work must be done to understand such

cases in terms of the mapping account. Similarly, a piece of

mathematics might fail to pick out a well-defined structure

because it appeals to inchoate or incoherent concepts. If a

mathematical theory appeals to such concepts, there will be a

degree of indeterminacy in its global mathematical commitments—

even if those concepts are well-behaved and well-understood

in more local contexts—due to there being multiple ways to

flesh out these concepts or resolve their incoherence.

One option is to appeal to a more liberal kind of struc-

ture built to accommodate inconsistency and indeterminacy.

The most promising account to do so is the partial structures

approach (da Costa and French, 2003; Bueno and Colyvan,

2011; Bueno and French, 2012, 2018). A unary relation R

in a partial structure partitions the domain into three blocks:

R1, those items of which R holds; R2, those of which R does

not hold; and R3, those for which R is undefined. (n-ary re-

lations and functions are treated similarly.) Total structures

are a special case in which the R3 block of every relation is

empty. A statement � is partially true in a partial structure if

� is true in a total structure that extends the partial structure

(by moving elements from the R3 to the R1 and R2 blocks

of its relations). This means � and ¬� can both be partially

4For extended treatment of this case, see McCullough-Benner (2020).

For arguments against thinking of the early calculus as inconsistent, see

Vickers (2013), but note that even if Vickers is right, it is still unrigorous in

the sense articulated below.
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true in the same partial structure, provided that the structure

can be extended in one way to make � true and in another to

make ¬� true. The same device allows us to represent con-

ceptual indeterminacy in addition to inconsistency. When a

mathematical theory is not clearly inconsistent but also does

not clearly pick out a determinate (total) structure, the the-

ory can be represented as a collection of partial structures in

which propositions to which it is not clear whether the theory

is committed are partially true.

Another option is to explain applications of inconsistent

and otherwise unrigorous mathematics in terms of classical

structures that stand in a more complex relationship to the

practice in question. For instance, one might represent sci-

entists as reasoning about different classical structures in dif-

ferent local contexts, even within the same argument.5 Al-

ternatively, one might appeal to a structure picked out by a

later, more rigorous successor to the mathematical theory.

For instance, we might understand early applications of the

infinitesimal calculus in terms of modern calculus, or we

might understand applications of the Dirac delta function in

terms of Schwartz’s theory of distributions.

Why expect such strategies to produce less perspicuous

explanations of the success of unrigorous mathematical tech-

niques than RIC? Because crucial to these explanations are

the inferentially restrictive methodologies (Davey, 2003) sci-

entists adopt when using these techniques. Such a method-

ology is one in which not just any concept or classically

valid inference may be used at any point in an argument. It

is because such restrictions are in place that physically per-

suasive arguments can incorporate problematic mathemati-

cal arguments as components. In typical cases, this involves

a patchwork of local inferential restrictions (rather than the

more general restrictions that might be involved in adopting

a particular non-classical logic, say). Such restrictions al-

low scientists to quarantine mathematically ill-defined con-

cepts to contexts in which they behave in the desired way,

making it impossible to use them to derive undesirable (or,

in the limit, absurd) results. For example, the properties of

the Dirac delta function6 are inconsistent. But it can be use-

ful provided that one adopts the inference strategy, explicitly

avowed by Dirac (1967), of using it only as a factor within

an integrand.

Regardless of how local or global a set of inferential re-

strictions is, RIC can directly represent it via the specifica-

tion of the RIC3 component of the representation, the set

of privileged inference patterns; disallowed inferences may

simply be excluded from RIC3. With these inferences ex-

cluded, the result of applying the inference patterns in RIC3

to the initial specification of the target system (RIC2), given

the interpretation of the mathematical vocabulary (RIC1),

needn’t be inconsistent or contain otherwise undesirable propo-

sitions meant to be avoided via the inferential restrictions.

The inferential restrictions may be specified in an entirely

5This is the essence of the “chunk-and-permeate” strategy (Brown and

Priest, 2004), even if Brown and Priest don’t explicitly present it in terms

of the mapping account.
6That is, ∫ +∞

−∞
�(x)dx = 1 and �(x) = 0 for x ≠ 0.

piecemeal fashion or at a very high level of generality, but

in applications of unrigorous mathematics an intermediate

level of grain will almost always be called for. Consider

Dirac’s inference strategy. We can very naturally specify

RIC3 in this case by including all inference patterns licensed

in real analysis given the assumption that the Dirac delta is

an extended real-valued function, apart from those in which

it doesn’t appear as a factor in an integrand. Provided the

problematic concepts really do behave in the desired way in

these restricted contexts, we then have a quite straightfor-

ward explanation of the success (and epistemic legitimacy)

of their application: thus restricted, the behavior of those

concepts was sufficiently well understood for scientists to

judge whether the physical inferences they licensed under

a given physical interpretation (RIC1) were in accord with

their understanding of the target system. In Dirac’s case, the

restrictions allowed him to do so by showing that the delta

function could ultimately be dispensed with altogether.

In contrast, representing such inferential restrictions in

terms of a mapping account is considerably less straight-

forward. Consider, for example, how the partial structures

approach would treat the Dirac delta function. Because the

properties ∫ +∞

−∞
�(x)dx = 1 and �(x) = 0 for x ≠ 0 are in-

consistent, each must be merely partially true in the partial

structure representing the mathematical theory as a whole.

This structure is directly mapped to the target structure.7

But the important properties of this structure are those it

shares with structures in which one or the other is strictly

true. When one reasons as if ∫ +∞

−∞
�(x)dx = 1, one reasons

about a partial structure in which that sentence is strictly

true. This reasoning is connected back to the structure in

which it is merely partially true by means of a partial mor-

phism. The restriction of the delta function to where it ap-

pears as a factor in an integrand can be reflected only indi-

rectly in which structures are mapped back to the one that is

interpreted physically and by which morphisms.

Compared to the RIC-based explanation sketched above,

the partial structures explanation is positively baroque. It re-

quires a proliferation of new resources—at least four struc-

tures and three mappings, even in this relatively simple case—

to indirectly represent surface features of Dirac’s practice

that RIC can capture by appealing directly to syntactic re-

strictions that Dirac makes explicitly. And this divergence

in complexity becomes more pronounced when scientists’

inference strategies are themselves more complex, resulting

in a spider’s web of structures and morphisms.

This in itself needn’t be a problem. A reconstruction of

7This is a simplification. As Dirac saw it, this inferential restriction

meant that the delta function could be dispensed with entirely, albeit at

the cost of expressing quantum mechanics in a more cumbersome way. If

we wished to represent this in terms of the partial structures approach, we

would do so by adding a delta-free structure mapped to both the target struc-

ture and the partial structure just described. In terms of RIC, we would note

that the restriction of the delta function to contexts in which it appears as a

factor in an integrand, together with properties connecting such expressions

to expressions in which the delta function does not appear, means that we

could achieve an equivalent representation by replacing all inference pat-

terns in which the delta function appears in RIC3 with inference patterns in

which it doesn’t appear.
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complicated scientific reasoning should itself be expected

to be complicated. The question is whether the additional

layer of complexity introduced by mapping accounts adds

any value, and it’s not at all clear to me that it does in this

case. I think it’s telling that Bueno and French (2018, pp.

131ff), who treat this case at length, never explicitly appeal

to partial structures, apart from writing, “we would speculate—

although we shall not go into it here—that our framework of

partial homomorphisms could quite naturally capture both

the open-ended nature of Dirac’s theory and the manner in

which it can be related to Schwartz’s” (pp. 136f). Instead,

they write directly about the restriction of the delta func-

tion to contexts in which it is a factor in an integrand and

how that together with Dirac’s algebraic rules for manipulat-

ing the delta function in such contexts ensures that the delta

function is dispensable. These features of Dirac’s practice

are at the center of his successful use of the delta function,

but they can only be represented very indirectly in terms of

partial structures. Explicitly representing the case in terms

of partial structures would have distracted from these more

important features. In contrast, they could be much more di-

rectly represented in terms of the set of inference patterns

RIC3. And so this complexity arguably hinders the par-

tial structures approach in its role as a meta-level device for

representing philosophically significant features of scientific

practice.

Note that the problem here isn’t the move from classi-

cal to partial structures. The first type of classical structure-

based approach, appealing to multiple classical structures

to capture different aspects of the mathematical reasoning

(cf. Benham, Mortensen and Priest, 2014), yields a similar

proliferation of structures and morphisms without introduc-

ing any further resources for representing inferential restric-

tions. And an approach based on later, rigorous structures

has even fewer resources for representing such restrictions.

The right diagnosis, I think, is that the inferential restric-

tions used to successfully apply unrigorous mathematics in

practice rarely correspond to neat divisions of some math-

ematical structure—or even divisions between several such

structures. Even when a structure and mapping that correctly

capture the informational content of the representation can

be found, these don’t lend themselves to a neat account of

how they relate to the relevant inferential restrictions. It’s in

this sense that I claim that RIC facilitates more perspicuous

representations of applications of unrigorous mathematics.

Both RIC- and mapping-based explanations of the success of

such applications, particularly of why it was reasonable for

scientists to reason as they did, must make essential appeal

to strategies of inference restriction used by those scientists.

RIC directly represents such information, while mapping ac-

counts can represent it at best very indirectly, placing more

emphasis on the structural gymnastics required to accommo-

date such episodes.

Still, one might think that the mapping-based explana-

tions are deeper or more substantial than their RIC-based

counterparts in that they provide an explanation in terms of

structures and mappings of the restricted inferences that RIC

directly appeals to. Here, it is worth recalling the important

similarity between RIC and mapping accounts discussed in

§2.1. A mapping account’s structures and mappings do the

same work as the three components of RIC; they represent

the informational content of the relevant mathematical sci-

entific representation, which in turn is used to explain math-

ematically mediated inferences licensed by the representa-

tion. In either case, scientists’ mathematically mediated in-

ferences are ultimately justified by the supposition that the

representation is in fact accurate. And so explanations of

why particular mathematically mediated inferences are jus-

tified ground out in either case in the informational content

of the relevant mathematical representation.

But what about the explanation of Dirac’s success in us-

ing the delta function? Dirac’s inferential restrictions are at

the foundation of the RIC-based explanation of this success:

by choosing the appropriate inferential restrictions, Dirac

ensured the delta function behaved as desired, so that the

resulting representations had the desired content. A propo-

nent of a mapping account should flesh this out as follows:

By making the appropriate inferential restrictions, Dirac en-

sured that he was reasoning about mathematical structures

related in the right way to the relevant quantum mechanical

structures. But it might seem that a mapping-based expla-

nation achieves greater depth than the RIC-based explana-

tion by going one step further, explaining those inferential

restrictions in terms of structures and mappings. While the

mere fact that mapping accounts represent such restrictions

in terms of structures and mappings doesn’t entail that it ex-

plains them in those terms, there is a feature of these restric-

tions that can be profitably explained in terms of structures

and mappings: their appropriateness. Why are the restricted

inferences appropriate? Because they are licensed in rea-

soning about a collection of structures and morphisms that

collectively support using the delta function to reason about

quantum mechanical structures. But this is just to say, in

terms of the mapping account, that they are appropriate be-

cause they ensure that the representation has the desired in-

formational content. And as before, this informational con-

tent can be specified (very often with greater ease) in terms

of RIC to yield a parallel explanation. And so I see no rea-

son to think explanations given in terms of structures and

mappings are in virtue of that deeper than other explanations

formulated in terms of RIC.

The rest of the paper is devoted to substantiating the points

made here through an examination of Heaviside’s operational

calculus. In contrast to Dirac’s, Heaviside’s inference re-

striction strategies are strikingly local, piecemeal, and ad

hoc (§4). I argue that these features put further stress on

mapping accounts. I then consider two ways in which map-

ping accounts may be thought to have an explanatory ben-

efit outweighing these shortcomings: explaining the role of

the physical reasoning in informing Heaviside’s mathemati-

cal reasoning (§5) and explaining Heaviside’s success retro-

spectively in terms of later rigorous techniques (§6). I argue

that neither case favors mapping accounts.
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3. Heaviside’s operational calculus and

resistance operators

3.1. The operational calculus
As a bare mathematical device, Heaviside’s operational

calculus was a method for solving differential equations al-

gebraically by treating differentiation as an operator. As a

toy example, consider the equation dx∕dt = f (t). The first

step was to reformulate the equations in terms of differential

operators. In our example, this would yield px(t) = f (t),

with p the operator corresponding to d∕dt. Next, Heaviside

treated these operators as ordinary algebraic quantities, al-

lowing him to solve the reformulated equations algebraically

in terms of functions of these operators, construed as al-

gebraic quantities. Call this the “operational solution.” In

our example, solving for x(t) in the operationalized equation

yields the operational solution x(t) = p−1f (t). Heaviside

would then “algebrize” this solution to eliminate all refer-

ence to functions of differential operators, yielding the de-

sired solution to the original differential equations. He most

often achieved this by expanding functions of p in his oper-

ational solution in ascending or descending powers of p and

applying rules for replacing particular expressions contain-

ing pwith expressions for functions of t, though he occasion-

ally used substitutions that did not require such power series

expansions.8 In our simple example, no power series ex-

pansion is required, but the expression p−1 requires an inter-

pretation. Heaviside usually interpreted p−1 as the definite

integral ∫ t

0
du, which in this case gives us x(t) = ∫ t

0
f (u)du.

Heaviside is far from the originator of methods treat-

ing differential operators as algebraic quantities independent

of the functions they operate on. This was made possible

by Leibniz’s d∕dx notation for differentiation and subse-

quently developed by many of the biggest names in late-

eighteenth- and nineteenth-century mathematics, including

Lagrange, Laplace, Fourier, Cauchy, and Boole, among oth-

ers.9 Heaviside is known to have studied the relevant work

of Fourier and Boole in particular (Cooper, 1952, p. 12),

on the basis of which he likely developed his own version

of the operational calculus. While the novelty of Heavi-

side’s approach, construed purely as a piece of mathemat-

ics, is up for debate,10 the primary contribution of Heavi-

side’s operational calculus was not that it taught mathemati-

cians anything they did not already know about differential

equations. Indeed, these mathematicians were able to prove

more general results—and with greater rigor—than Heavi-

side. Rather, Heaviside’s primary contribution in this work

was, as Nahin (2002, p. 218, emphasis in original) puts it,

to show “how to apply to real, physical problems of techno-

8Cf. the schema presented by Lützen (1979, §I.5, pp. 170–2).
9For detailed treatment of these historical antecedents, albeit without

reference to Heaviside, see Koppelman (1971). For a discussion that more

explicitly ties this history to Heaviside, see Cooper (1952).
10For instance, Cooper (1952) argues that Heaviside’s results are not

very novel at all, Lützen (1979) responds by citing a number of distin-

guishing features of Heaviside’s techniques. Petrova (1987) argues in turn

that these distinguishing features were anticipated by Cauchy, Gregory, and

Boole, but there is no consensus on this (see, e.g., Yavetz, 1995, p. 310,

note 4).

logical importance analytical techniques that had up till then

been symbolic abstracts.”

3.2. Resistance operators
Central to this task were what Heaviside called “resis-

tance operators.” These he used to present an early general-

ization of Ohm’s Law:11

If we regard for a moment Ohm’s law merely

from a mathematical standpoint, we see that the

quantity R, which expresses the resistance, in

the equation V = RC ,12 when the current is

steady, is the operator that turns the current C

into the voltage V . It seems, therefore, appro-

priate that the operator which takes the place of

R when the current varies should be termed the

resistance-operator. To formally define it, let

any self-contained electrostatic and magnetic com-

bination be imagined to be cut anywhere, pro-

ducing two electrodes or terminals. Let the cur-

rent entering at one and leaving at the other ter-

minal be C , and let the voltage be V , this being

the fall of potential from where the current en-

ters to where it leaves. Then, if V = ZC be

the differential equation (ordinary, linear) con-

necting V and C , the resistance-operator is Z.

(Heaviside, 1894, p. 355)

While Ohm’s Law could be used only for the analysis of DC

circuits in steady state or time-varying circuits without reac-

tance, the concept of resistance operator generalized it to cir-

cuits with reactive elements and arbitrary time-varying volt-

ages or currents: V = ZC with Z the resistance operator for

the circuit rather than its total resistance. While some work

had been done to generalize Ohm’s law to time-invariant

AC circuits in the years immediately preceding Heaviside’s

work,13 Heaviside’s resistance operators were a significant

step forward in that they could be used to analyze the behav-

ior of a much wider range of systems.

Heaviside’s operational calculus was central not just to

how resistance operators played these roles, but also to the

very possibility of expressing them. Resistance operators for

circuit elements were derived from the usual equations de-

scribing their relation to voltage and current by solving for

V ∕C . In the case of a resistor with resistance R, the rele-

vant equation is just Ohm’s Law, yielding ZR = VR∕CR =

R. For reactive elements, the operational calculus becomes

11Prior to introducing this concept in 1887 in “On Resistance and Con-

ductance Operators” (Heaviside, 1894, pp. 255–74), Heaviside used these

techniques extensively in “On the Self-Induction of Wires” (Heaviside,

1894, pp. 168–323), first published in 1886–7. Aspects of them appear as

early as “The Induction of Currents in Cores” (Heaviside, 1892, pp. 353–

416), first published in 1884–5.
12Heaviside deviates from modern usage here in using C rather than

I for current. I follow him in this throughout this paper for the sake of

consistency.
13The first to do so seems to have been Wietlisbach (1879), and these

techniques were subsequently refined by Oberbeck (1882) and popularized

in Britain by Lord Rayleigh (1886a; 1886b; 1891). For a useful discussion

of this history, see Kline (1992, pp. 77ff).
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Figure 1: A DC circuit with a resistor and inductor in series,
as treated in (Heaviside, 1899, §283, pp. 129f).

crucial, as the relevant equations are differential equations

relating inductance or capacitance to voltage and current.

The equation for an inductor with inductance L is VL(t) =

L
dCL(t)

dt
, derived from Faraday’s law. Heaviside derived its

resistance operator by substituting his p operator for d∕dt,

yielding VL = LpCL. Solving for VL∕CL yields ZL =

VL∕CL = Lp. The resistance operator for the circuit as a

whole is then calculated from those of its parts in much the

same way as the total resistance of a configuration of resis-

tors. For circuit elements with resistance operatorsZ1,… , Zn

in series, Ztotal = Z1+…+Zn. For circuit elements in par-

allel,
1

Ztotal
=

1

Z1
+…+

1

Zn

.

3.3. A simple example: Step response of an RL

circuit
For a simple example of how this worked in practice,

consider a circuit consisting of an ideal resistor with resis-

tance R and an ideal inductor with inductance L in series—

or, equivalently, a coil with resistance R and inductance L—

with a constant external voltage e applied at t = 0. One

thing we might want to know about this circuit is the result-

ing current C as a function of time. Heaviside discusses this

problem in §283 of the second volume of Electromagnetic

Theory (Heaviside, 1899, pp. 129f).

Since the resistor and inductor are in series, the resis-

tance operator for the whole circuit is just the sum of the

resistance operators of these elements—i.e., Z = ZR +

ZL. And so, making the appropriate substitutions, we have

Z(p) = R+Lp. To represent the external voltage’s being ap-

plied at time t = 0, we represent the voltage by that external

voltage e multiplied by the unit step function14:

1(t) =

{

0 if t ≤ 0

1 if t > 0
.

Making the relevant substitutions in V = ZC and solving

for C then yields C = e1∕(R + Lp). This is the operational

solution of the problem.

Heaviside’s next step was to “algebrize” this solution to

yield an expression for C as a function of t, rather than p.

14In more recent texts, it is more common to use H(t) for the unit step

function in Heaviside’s honor. Here I use a boldface 1 to remain close to

Heaviside’s own notation, while marking the difference between the unit

step function and the integer 1. Heaviside typically left multiplication by

the unit step function 1 implicit in such cases, much as one normally leaves

multiplication by the integer 1 implicit. In the rest of this discussion, I’ve

added in instances of 1 where Heaviside leaves them implicit in his treat-

ment of this example in (Heaviside, 1899, pp. 129f) for the sake of clarity.

Heaviside expands the right-hand side of the operational so-

lution in descending powers of p, yielding

C =
e

R + Lp
1 =

e

Lp(1 + R∕Lp)
1

=
e

R

(

R

L
⋅

1

p
−
(

R

L

)2

⋅

1

p2
+
(

R

L

)3

⋅

1

p3
−…

)

1.

Heaviside then had to give meaning to the expression 1∕p

(or p−1). In cases like this, Heaviside interpreted this as the

inverse operator of p = d∕dt—since algebraically we should

have p ⋅ p−1 = 1, and multiplication by 1 should correspond

to the identity operator—and took this inverse operator to be

1∕p = ∫ t

0
du. 1∕pn then comes to represent n-fold integra-

tion.

So we have

1

p
⋅ 1 = ∫

t

0

1 du =

{

0 if t ≤ 0

t if t > 0

and so

1

pn
⋅ 1 =

{

0 if t ≤ 0

tn∕n! if t > 0.

So the power series can be rewritten as

C =
e

R

(

R

L
⋅

1

p
1 −

(

R

L

)2

⋅

1

p2
1 +

(

R

L

)3

⋅

1

p3
1 −…

)

=
e

R

(

R

L
t −

(

R

L

)2 t2

2!
+
(

R

L

)3 t3

3!
−…

)

,

which Heaviside recognized as the power-series expansion

of

C =
e

R

(

1 − �−(R∕L)t
)

for t ≥ 0, the correct result.15

4. Failures of rigor and inferential restrictions

4.1. Layered local inferential restrictions
We are already in a position to observe several ways in

which these techniques failed to live up to the standards of

mathematical rigor—in the hands of Heaviside at any rate.

In each case, the failures of rigor do not involve the deriva-

tion of any straightforwardly incorrect result, but rather, as

Yavetz (1995, p. 317) puts it, “the use of terms and proce-

dures that are seldom fully defined”. As in other examples

of unrigorous mathematics, the result is a degree of inde-

terminacy in the global mathematical commitments of the

operational calculus, and Heaviside avoided deriving incor-

rect results by adopting an inferentially restrictive method-

ology. However, as we will see, these restrictions were more

local, piecemeal, and ad hoc than in other cases, and his ul-

timate justification for them was atypical. As a result, these

15Here again, I follow Heaviside in using � rather than e for Euler’s

number.
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inference strategies are even more difficult to treat straight-

forwardly in structural terms that those considered in section

2, while RIC can again represent them with relative ease.

An illustrative problem present in the example in §3.3

was that Heaviside’s techniques often involved interpreting

the inverse of his time-differentiation operator p = d∕dt as

p−1 = ∫ t

0
du, but, thus interpreted, these are not generally

inverse operators. Following Nahin (2002, p. 232), consider

again the simple differential equation dx∕dt = f (t). As we

saw in the previous section, applying Heaviside’s operational

techniques yields the solution x(t) = ∫ t

0
f (u)du. But this

entails that x(0) = 0, since ∫ 0

0
f (u)du = 0 for any f we like.

Since not every function x has this property, p and p−1 are

not generally inverse operators. This problem is blatant and

easily avoided in this simple case by restricting the use of this

reasoning to cases in which we know that x(0) = 0 (for all

functions x that might be the operand of p or p−1). Heaviside

observed this in practice by restricting his attention almost

exclusively to circuits in which the voltage and current are

enveloped by the unit step function 1.

However, further restrictions turn out to be required. If

p and p−1 are inverse operators, they must also be commu-

tative, and Heaviside ultimately rests his justification of this

property on an interpretation of p1 as the (inconsistent!) Dirac

delta function:

Thus pp−11 = pt = 1 but p−1p1 = [p−1]0 =

0, unless we say p−1p1 = p−1
t−1

(−1)!
=

t0

0!
= 1.

This property has to be remembered sometimes.

(Heaviside, 1899, §358, p. 298)

p1(t) must be zero except when t = 0, since it jumps from 0

to 1 at t = 0 and is otherwise constant. If p−1p1 = ∫ t

0
p1(u)du =

1, then p1 can only be the Dirac delta function.16

We should interpret Heaviside’s move here not as an at-

tempt to rigorously justify the commutativity of the p and

p−1 operators but instead as a way of managing inconsis-

tent demands on the behavior of these operators. In essence,

Heaviside is adopting an inferential strategy that makes the

line of reasoning that leads to the contradiction in this case—

namely, p−1p1 = p−10 = 0—off-limits. Rather, p1 must

be reasoned with as if it were the Dirac delta function, so

that only the second line of reasoning—p−1p1 = p−1
t−1

(−1)!
=

t0

0!
= 1—is allowed. This second line of reasoning is still

unrigorous, since it appeals to the Dirac delta function un-

der the guise of p1 =
t−1

(−1)!
. But by limiting oneself to one or

the other of these lines of reasoning, one rules out an obvious

way of deriving an explicit contradiction from the inconsis-

tent properties of the Dirac delta function.

16Recall that the Dirac delta function is defined by the properties �(x) =

0 for x ≠ 0 and ∫ ∞

−∞
�(x)dx = 1. In the presence of the first property, the

second is equivalent to ∫ t

0
�(x)dx = p−1� = 1. This, incidentally, is why

the many attempts to provide the operational calculus with a purely alge-

braic, as opposed to analytic, foundation failed. Making p and p−1 commute

means living with the Dirac delta function or something very much like it.

For a useful historical treatment of such approaches, see Lützen (1979, pp.

188ff).

While this on its own is not enough to guarantee that

one won’t derive explicit contradictions via the inconsistent

properties of the delta function, Heaviside does seem to have

implicitly adopted a strategy similar to Dirac’s strategy of

using the delta function only as a factor in an integrand. In

Heaviside’s case, it was the step of “algebrization” that al-

lowed instances of p1 to be dispensed with via identification

of p−n1 with tn∕n! only after the algebraic manipulation of

p-expressions required to derive the operational solution had

been completed.

So to ensure that p and p−1 were inverse operators while

avoiding nasty side effects, Heaviside had to observe sev-

eral inferential restrictions at different levels of grain: (1)

That property could only be appealed to when those oper-

ators were applied to functions enveloped by the unit step

function, (2) p must be taken to be the ordinary time deriva-

tive except when applied to step functions, in which case

its integral is non-zero, and (3) reasoning as if p1 were the

Dirac delta was restricted to a certain part of Heaviside’s

overall operational procedure, during which those operators

are treated merely algebraically prior to the (counterintu-

itively named) step of “algebrization,” during which they

were again interpreted analytically.

While Heaviside’s practice was far from ideal, RIC al-

lows us to express a natural account of why it was nonethe-

less reasonable. Each of these local inferential restrictions

served to rule out certain ways of working with p and p−1

that produced undesirable algebraic behavior by appealing

to properties of those operators that were otherwise useful.

When these concepts were constrained to contexts in which

their algebraic behavior was understood—represented by RIC

in terms of excluding the relevant patterns of inference from

RIC3—they yielded determinate numerical results, which

could be compared with known results or with Heaviside’s

physical understanding of his target systems via the interpre-

tation given by RIC1. In essence, by restricting those oper-

ators to contexts in which they are well-behaved, Heaviside

ensured that his representations (at least as far as those oper-

ators are concerned) have determinate accuracy conditions

and so could be evaluated in terms of their agreement with

both theoretical understanding of the target phenomena and

experimental results.

Mapping accounts may be able to tell a similar story,

but only in a cumbersome way. Consider how the partial

structures approach might do so, which can again be natu-

rally adapted to an approach based on classical structures.

Directly mapped to the target structure will be a structure

in which, for each problematic property of p and p−1, it is

merely partially true that they have that property: that p and

p−1 are inverse operators, that p and p−1 aren’t inverse op-

erators, that p and p−1 commute, that p and p−1 don’t com-

mute, that p−1p1 = 0, that p−1p1 = 1, and so on. In partic-

ular contexts, one reasons with partial structures extending

this one in which some of these statements are strictly true.

Each of these structures is then mapped back to the struc-

ture is which all these statements are merely partially true ei-

ther directly or through mappings to intermediary structures.
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Heaviside’s inferential restrictions are then represented indi-

rectly in terms of which structures can be reasoned about in

which contexts and how they can be mapped to other struc-

tures in this family. As in the case of the Dirac delta, I sus-

pect that the inclusion of partial structures gives only a false

appearance of explanatory depth here. Each explanation ul-

timately bottoms out in properties of the inferential restric-

tions Heaviside observes. Representing those restrictions in-

directly in terms of structures adds unnecessary complexity

and obscures the features of Heaviside’s practice that do the

explanatory heavy lifting.

4.2. Ad hoc inferential restrictions
A further striking feature of Heaviside’s inference strate-

gies is their often ad hoc nature. Heaviside generally didn’t

lay them out in advance and expressed comfort with the pos-

sibility that such techniques might, if used injudiciously, lead

to inconsistent results.

One striking example is that Heaviside frequently treated

his operators in general (not just p and p−1) as if they were

commutative, though they don’t generally have this property.

Heaviside explicitly noted this but made no attempt at a gen-

eral explanation of when such moves were permissible. In a

representative passage, he writes,

The reader may have noticed in the above, and

perhaps previously, that we change the order of

operations at convenience, as in f (p)�(p)1 =

�(p)f (p)1, and that it goes. But I do not as-

sert the universal validity of this obviously sug-

gested transformation. It has, however, a very

wide application, and transforms functions in

a remarkable manner. Reservations should be

learnt by experience. (Heaviside, 1899, §251,

pp. 59f, my italics)

The idea seems to be to freely appeal to the commutativity

of his operators in contexts where this works, determining

which contexts these are through experimentation.

Heaviside expressed the same attitude toward one of his

most central results, the expansion theorem, which Lützen

(1979) calls “Heaviside’s most important tool in algebrizing

procedures” (p. 170): where e = ZC is an operational so-

lution, e is a constant multiplied by the unit step function,

and “the form of Z [is] such as to indicate the existence of

normal solutions for C ,”

C =
e

Z0

+ e
∑ �pt

p
dZ

dp

(Heaviside, 1899, §282, p. 127). This was a powerful tool

because it worked in such a wide range of circumstances, in-

cluding for algebrizing operational solutions of partial dif-

ferential equations describing continuous telegraph circuits.

But again it was not true generally. Heaviside insisted that it

was actually undesirable to state precisely the conditions in

which it can be used:

Now it would be useless to attempt to state a for-

mal enunciation to meet all circumstances. [. . . ]

It is better to learn the nature and application

of the expansion theorem by actual experience

and practice. (Heaviside, 1899, §282, p. 128,

my italics)

So what do we make of this? What Heaviside seems to be

proposing is what we might call an ad hoc inference restric-

tion strategy: inferences are restricted not in advance, but

only as we discover that certain patterns of inference pro-

duce incorrect or undesired results. Until we make such a

discovery we must “keep [our] eyes and [our] mind open,

and be guided by circumstances” (Heaviside, 1899, §223, p.

3). How do we make sense of the success of such a strat-

egy, and, in particular, to what extent was it reasonable for

Heaviside to adopt it?

Ultimately, such a strategy balances the benefits of a math-

ematical opportunism with a recognition that results thus

obtained are more fallible than those obtained by rigorous

means. Recognizing this fallibility means continually scru-

tinizing the results achieved with suspect mathematics on

the basis of their agreement with known results and one’s

independent understanding of the target system. RIC offers

considerable flexibility in how we represent this scrutiny.

On one hand, we might think of such a strategy as one

in which inferences are added to RIC3 in piecemeal fashion,

so that the commitments of the representation never outstrip

those results that have actually been derived. When an in-

ference would lead to an inconsistent result or to a result

that can otherwise be ruled out—for instance, because it has

physical consequences that are known to be incorrect—that

inference is simply not added to RIC3. As a result of this ex-

treme conservatism, the representation cannot be committed

to anything undesirable. This might be relaxed in contexts

in which the problematic mathematics is better understood.

Heaviside writes of “numerical groping” only as a technique

of last resort “when [physical] intuition breaks down” (Heav-

iside, 1899, §437, pp. 461f). In less desperate cases, these

piecemeal additions might be higher-level inference types in

which one has gained confidence.

On the other hand, we might think of such a strategy as

one in which inferences are excluded from RIC3 in piece-

meal fashion, so that inferences are only disallowed when

they are shown to lead to results that are inconsistent or can

otherwise be ruled out. In this case, the representation is

very likely to be inconsistent, but its use does not require

its users to commit themselves to its accuracy. Instead, a

user of such a representation might only commit themselves

to the accuracy of those results actually derived and scru-

tinized (in parallel fashion to the previous case), reserving

judgment about other commitments of the representation or

at least keeping their fallibility well and truly in mind.

Ultimately, a combination of the two approaches is likely

to be most useful, with the former accounting for Heaviside’s

own commitments and the latter accounting for his oppor-

tunistic heuristic use of less well-understood techniques. In-

ference patterns from the latter are incorporated into the for-

mer only after they have been suitably scrutinized. This al-

lows epistemically suspect results of unrigorous techniques
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to be quarantined even when one does not yet have a good

understanding of the contexts in which they can safely be

applied.

Now consider how the partial structures approach would

treat this inference strategy.17 In this case, the move corre-

sponding to the addition of an inference to RIC3 is extend-

ing the existing morphisms between the partial structures at

work in the representation in a way that licenses the inference

and, when the representation cannot be made to license the

inference otherwise, adding a further partial structure and

morphism. In this way, the partial structures approach repre-

sents ad hoc reasoning in terms of ad hoc choices of structure

and mapping. Now, as the addition of inferences becomes

more and more piecemeal, it becomes less clear to me that

the partial structures approach has the resources to license

exactly those inferences without licensing further inferences

not licensed by the corresponding RIC representation. But

more importantly, this again introduces more complexity to

do the same explanatory work. Because the relevant struc-

tures will often in practice be several morphisms away from

the one that is directly mapped to the target structure, par-

ticularly when other strategies of inference restriction are

also in use, the requisite additions will often be less than

straightforward. And it is again unclear that the formal ap-

paratus used to represent these inferential restrictions adds

depth or substance to the explanation. What seems to do the

work in explaining why such techniques were epistemically

justifiable is simply the practice of withholding judgment

about certain mathematical inferences until further support

for their conclusions is found. And this practice is again

more straightforwardly represented in terms of RIC.

5. Failures of rigor and “physical

mathematics”: The physical demand for

fractional differentiation

Rather than the failures of rigor considered so far, it was

Heaviside’s treatment of fractional differentiation and diver-

gent series that most upset his contemporaries. The latter

ultimately led the Royal Society to begin subjecting his sub-

missions to peer review and justified the rejection of his final

submission (Cooper, 1952, p. 14).

The second volume of Heaviside’s Electromagnetic The-

ory (Heaviside, 1899) begins with a spirited, but sometimes

bitter and defensive, justification of his unrigorous techniques

in the wake of this rejection. In addition to presenting a num-

ber of practical virtues of his unrigorous techniques, he pre-

sented an approach to mathematics that is deeply grounded

in physical reasoning. In physics, the physical interpretation

of the mathematics is to be kept in mind at all times, so that

physical knowledge and intuition can guide one’s mathemat-

ical work. (Heaviside, 1899, §224, pp. 4f; see also §437,

pp. 460f) We’ve already seen one way in which it can do

so: serving as means of checking results derived mathemat-

ically. But mathematics, according to Heaviside, is also an-

17It can again be adapted to an approach positing multiple classical

structures in a straightforward way.

swerable to physics in that, if a physical representation re-

quires us to use a mathematical expression that appears to be

mathematically meaningless, we can conclude that that piece

of mathematics is indeed meaningful and use the physics to

elucidate its behavior (Heaviside, 1899, §224, pp. 6f). Even

if we reject the idiosyncratic empiricist philosophy of math-

ematics Heaviside used to bolster these claims, we can make

sense of them in a context where the needs of physics out-

strip existing mathematical resources. In such cases, physics

can legitimately guide the development of new mathematical

theories and techniques tailored to particular kinds of phys-

ical problem. This sort of inferential move from physics to

mathematics is common in Heaviside’s practice.

Heaviside was driven to the topics of fractional differ-

entiation and divergent series by his representation of semi-

infinite, continuous systems, particularly the representation

of a semi-infinite transmission line via the telegraph equa-

tions

−
)V (x, t)

)x
= RC(x, t) + L

)C(x, t)

)t

−
)C(x, t)

)x
= KV (x, t) + S

)V (x, t)

)t
,

where R, L, K , S are resistance, inductance, “leakance”

(conductance between the signal and return wires), and ca-

pacitance per unit length of the telegraph wire, respectively.18

Replacing )∕)t with Heaviside’s p and doing some algebra

yields

V =

√

R + Lp

K + Sp
C.

Producing numerical solutions or indeed any solutions ex-

pressed in terms of functions of t rather than p, even for spe-

cial cases in which we ignore one or more of R, L, K , and

S, requires making mathematical sense of expressions like

‘p
1

2 1’. Heaviside’s confidence in the representation of such

systems given by the telegraph equations grounded his con-

viction that this operational equation must have numerical

solutions (if it is to adequately represent these systems) and

thus that there was indeed sense to be made of such expres-

sions.19

18Heaviside’s treatment of this case can be found in (Heaviside, 1899,

chapter 7).
19Heaviside made a similar move in interpreting the divergent series

expansions of various operational solutions of the telegraph equation. He

made no reference to the then-burgeoning theory of divergent series, but

he rightly recognized certain divergent series expansions as what we would

now call “asymptotic expansions” of the relevant functions on the basis of

their physical meaning (i.e., the meaning of the physically interpreted math-

ematical expression). He even correctly conjectured that the divergent parts

of these asymptotic expansions are meaningful, carrying information about

the exact value of the function that they approximate, again based on a phys-

ical interpretation of the components of the series. Nonetheless, as John R.

Carson observed, “the precise sense in which the expansion asymptotically

represents the solution cannot be stated in general, but requires an indepen-

dent investigation in the case of each individual problem” (Carson, 1926,

p. 78). This relied on a notion of “equivalence” between convergent and

divergent series that Heaviside left undefined (e.g., Heaviside, 1899, §340,

p. 250).
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Heaviside did so via the equation p
1

2 1(t) = (�t)
−

1

2 , a

result known at least as early as 1819 by Sylvestre Lacroix

(1819, pp. 409f), but derived independently by Heaviside by

more “experimental” means.20 One such derivation is the

following. If we ignore leakage and inductance, we can de-

rive the equation

C = (Sp∕R)
1

2 e1

for the current at x = 0 where e = V (0, 0). One way to al-

gebrize this operational equation is by considering the case

in which the wire has finite length l, producing a Fourier se-

ries expansion for the finite case (via Heaviside’s expansion

theorem), and taking the limit as l → ∞. Using the result

to calculate the current at x = 0 yields a new expression for

the current at x = 0:

C =
2e

R� ∫
∞

0

�−s
2t∕RSds = (S∕R�t)

1

2 e.

Comparing our two formulae for current at x = 0 and doing

a little more algebra yields p
1

2 1 = (�t)
−

1

2 (Heaviside, 1899,

§350; cf. §240). After deriving this, he writes, “The above

is only one way in a thousand. I do not give any formal proof

that all ways properly followed must necessarily lead to the

same result” (Heaviside, 1899, §350, p. 288). Despite the

lack of assurance that this is the unique possible result and

despite its reliance on a particular special case (the telegraph

equation without inductance or leakance), in the rest of the

same chapter Heaviside uses this equation to provide an ac-

count of more general fractional differentiation, including

half-integer differentiation and cases in which polynomials

in p occur under the radical, as well as the operational solu-

tion of the telegraph equations in their full generality.

Here Heaviside moves from a physical system represented

in operational terms, a semi-infinite telegraph cable with no

inductance or leakage, to a conclusion about the mathemat-

ics apparently used to represent this very system. The thought

seems to be that, whatever the underlying mathematics, if it

is to play the right role in representing this particular phys-

ical case, then it must interpret p
1

2 1 as (�t)
−

1

2 (at least in

this instance). And if it does that, it must interpret p
n

2 1 for

odd n as p
n−1

2 p
1

2 1. Consideration of other cases determines

a value for p
1

4 1. Using these values that are necessitated

by the physics (in its operational representation), Heaviside

then can test possible extensions of px for arbitrary x ∈ ℝ.

It is agreement with these results, rather than reasoning from

first principles, that justifies his choice of extension of px to

arbitrary real x.21 (Heaviside, 1899, ch. 7)

20For an extended treatment of the history of fractional differentiation,

see Ross (1977).
21This reasoning from first principles would likely involve the gamma

function, which extends the factorial function to the complex numbers. In

the end, Heaviside does much of the work of defining the gamma function

for arguments with non-positive real parts via analytic continuation (albeit

restricting his attention to the reals), but this again is used because it is the

most expedient way to define px for negative x to suit the physical cases at

hand. (Heaviside, 1899, §425, p. 435)

It might seem at first that this is a case in which map-

ping accounts can provide a significant explanatory benefit

even in the absence of a well-understood mathematical the-

ory, contrary to my claims in section 2 and in contrast to

the cases considered in the previous section. Such a benefit

might in turn justify the greater complexity with which map-

ping accounts must represent Heaviside’s strategies of infer-

ence restriction. According to this line of thought, Heav-

iside learned about the relevant mathematical structure by

making inferences about that structure on the basis of its

structural relation to its target system. So even if Heaviside

didn’t start with a well-understood mathematical theory that

neatly picked out a particular structure, mapping accounts

can nonetheless explain how he came to understand some

of the properties of the mathematics needed to represent his

chosen target systems.

But closer analysis of the case doesn’t bear this out. In

this case, the only conclusion that Heaviside used consider-

ations about the physical system to directly support is that

fractional powers of p must be able to be used meaningfully.

The operational version of the telegraph equations, which

Heaviside took to accurately represent the relevant physical

systems, can only be algebrized if such expressions can be

manipulated, and only the algebrized equations, expressed

in terms of functions of time rather than p, can be used to

derive numerical solutions, which, when interpreted, yield

determinate predictions about the behavior of the target sys-

tem. That is, if the operational representation can be used at

all, fractional powers of p must be able to be manipulated.

So far, this means only that inferences in which such expres-

sions appear can’t be ruled out wholesale by any inference

restriction strategy Heaviside might adopt for reasons like

those discussed in the previous section.

When Heaviside determined how p
1

2 1 should be reasoned

with, it was by comparing an operational expression for a

given physical quantity—C = (Sp∕R)
1

2 e1—with an expres-

sion for the same quantity that can be derived by extend-

ing existing algebrization procedures to this new context—

C = (S∕R�t)
1

2 e. The result can be interpreted as telling us

how p
1

2 1 must be reasoned with provided that the expansion

theorem can be extended to this context in this way. But, as

we saw earlier, Heaviside made a point of not committing

to the uniqueness of his interpretation of p
1

2 1. A simple ex-

tension of his algebrization strategies to this new case might

yield inconsistent results, in which case some of the infer-

ences involved in deriving these inconsistent results might

need to be restricted, perhaps even those that allowed him

to derive p
1

2 1(t) = (�t)
−

1

2 . So the inference of the prop-

erties of fractional powers of p shouldn’t be represented as

a simple inference of the properties of one (mathematical)

structure on the basis of another (physical) structure and a

morphism between them. Instead, the same sorts of strate-

gies of inference restriction discussed in the previous section

must still be at the heart of an explanation of why Heavi-

side’s treatment of fractional differentiation was epistemi-
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cally respectable—at least from a physical, rather than math-

ematical, perspective. And so the arguments from that sec-

tion apply here as well.

6. The Laplace transform in heavy disguise?

So far, I have largely ignored the possibility of making

sense of Heaviside’s success in terms of a structure picked

out by later, more rigorous alternatives to his techniques.

This is because I have focused on why his techniques were

epistemically justifiable at the time he used them, and I see

no reason to think that a mapping account appealing to later

rigorous structures would be any better situated to provide

that sort of explanation than the versions of the mapping ac-

count I’ve considered so far. But there is another sort of ex-

planation of Heaviside’s success that explains why the re-

sults of those techniques were correct, regardless of their

epistemic status at the time, in terms of later mathematics.

We can appreciate the importance of such explanations

regardless of whether we feel the pull of mapping accounts.

For instance, Wilson (2006, ch. 8) uses the case of Heavi-

side’s operational calculus to argue against a classical view

of concepts according to which their meaning must be grasped

once and for all at the outset. This presents a difficulty for

mapping accounts, as it means that many of scientists’ math-

ematically mediated inferences aren’t explicitly grounded in

the existence of structural relations, as scientists’ concepts

don’t suffice to pick out the needed structures. But Wil-

son makes sense of Heaviside’s inferences in a local way

through what he calls “correlational pictures”, “generic sto-

ries that speakers tell themselves with respect to how their

predicate’s usage matches to worldly support within normal

circumstances of application” (p. 516). Heaviside’s contem-

poraries gave him grief because “he was unable to supply

orthodox mathematical underpinnings for his procedures in

terms of an adequate associated picture” (p. 521). But Heav-

iside was vindicated by subsequent rigorous work that pro-

vided such a picture. And mapping accounts have a neat

story to tell about how this later work did so. The question

is then whether this gives us good reason to favor mapping

accounts over RIC, and in this section I argue that it doesn’t.

This later mathematics was largely built on the Laplace

transform and its inverse.22 Heaviside biographer Paul J.

Nahin goes as far as to write, “in fact, Heaviside’s opera-

tional calculus is just the Laplace transform in heavy dis-

guise” (2002, p. 218). The Laplace transform maps func-

tions in the time domain to functions in the s-domain, where

s is a complex number whose imaginary component repre-

sents the function’s periodic behavior (frequency response)

and whose real component represents its non-periodic be-

havior (e.g., its decay). The Laplace transform F (s) of a

function f (t) is given by the integral F (s) = ∫ ∞

0−
f (t)e−stdt.

22As Wilson (2006, p. 531) points out, the Laplace transform on its own

doesn’t suffice to vindicate all of Heaviside’s techniques. In particular, those

involving his use of p1, interpreted as the Dirac delta, should be understood

in terms of Schwartz’s theory of distributions. Here I focus on the Laplace

transform, but the points I make can be naturally extended to other pieces

of mathematics used to retrospectively vindicate Heaviside.

The result typically looks a lot like Heaviside’s operational

solution of the same problem, but with s taking the place of

p. Consider again the example in §3.3. Just as Heaviside

started by calculating the resistance operators for the com-

ponents of the circuit, a contemporary electrical engineer-

ing student could start by calculating the s-plane impedance

of each circuit component by applying the Laplace trans-

form to the differential equation characterizing it, yielding

ZR(s) = R where Heaviside has ZR(p) = R, ZL(s) =

Ls where Heaviside has ZL(p) = Lp, and so on. Corre-

sponding to Heaviside’s operational solution C = e1∕(R +

Lp), they would arrive at the Laplace transform for the cir-

cuit I(s) = 1∕(R + Ls) (using the modern notation, I in-

stead of C , for current) and multiply it by the Laplace trans-

form of the input signal, in this case V0∕s (the Laplace trans-

form of the unit step function multiplied by the value of

the voltage source).23 Corresponding to Heaviside’s “al-

gebrization”, they would translate this back to the time do-

main via the the inverse Laplace transform, given by f (t) =
1

2�i
limT→∞ ∫ +iT

−iT
F (s)est ds. In this case, applying the in-

verse Laplace transform to both sides yields i(t) =
V0

R

(

1 − exp(−
R

L
t)
)

,

the same result Heaviside achieved.24

Now, the relationship between Heaviside’s operational

calculus and the Laplace transform cannot be one of sim-

ple identification, as Nahin suggests. Heaviside himself cer-

tainly didn’t think so.25 More importantly, significant dif-

ferences arise in practice between the two techniques. For

one thing, it is certainly not the case that we can simply

substitute s for each instance of p. Note that even in this

simple case, we cannot do this for Heaviside’s operational

solution (C =
e1

(R+Lp)
) and its equivalent in the s domain

23 Strictly speaking, one should take the Laplace transform of each side

of the differential equation characterizing the circuit as a whole, and most

treatments work directly with this equation. But this can be done in terms

of the Laplace transforms of the circuit elements thanks to the linearity of

the Laplace transform, which allows for an approach closer to Heaviside’s.
24For a representative recent treatment of this example, see Salivahanan

et al. (2000, pp. 157f).
25In fact, he wrote to Bromwich, the first to rigorize the operational

calculus via the inverse Laplace transform, “I never could stomach your

complex integral method” (letter to Bromwich on 7 April, 1919, quoted in

Nahin (2002, p. 230)). For a useful summary of Bromwich’s (1916; 1928)

approach, see Lützen (1979, pp. 176–180, 184–7).

Similarly, Heaviside’s operational treatment of AC looks similar to Stein-

metz’s phasor method, the basis of the current treatment of impedance in

terms of the complex plane, but Heaviside again resisted any such identi-

fication. In such cases, Heaviside interpreted p as ni, where n was angular

velocity and i a differential operator that behaved like the imaginary unit.

Heaviside explicitly contrasted this approach with approaches like Stein-

metz’s, which take the use of complex numbers seriously. In the latter case,

one “[assumes] a complex form of solution at the beginning. It comes out

complex at the end. [. . . ] The algebra is that of the real imaginary.” (Heav-

iside, 1899, §284, p. 132) In contrast, the i in Heaviside’s p = ni “must

be finally interpreted correctly, as a differentiator, of course” (Heaviside,

1899, §284, p. 132). Putting it more strongly later, he wrote, “if i be used at

all, it is only a spurious imaginary” (Heaviside, 1899, §437, p. 459). There

is interesting historical and philosophical work to be done to make sense

of Heaviside’s claim not to be working with complex numbers in the same

way as the likes of Steinmetz. Regrettably, space constraints mean I cannot

discuss this further here. For a useful survey of early approaches to AC in

terms of complex numbers and their relation to Steinmetz’s phasor method,

see Kline (1992, pp. 77ff).
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(in modern notation, I(s) =
V0

s(R+Ls)
) as a result of the addi-

tional factor of 1∕s in the latter.26 Calculations involving the

Laplace transform were also often more cumbersome than

the corresponding calculations in the operational calculus.

Harold Jeffreys, who harshly criticized Heaviside’s lack of

rigor, nonetheless wrote

[A]s a matter of practical convenience there can

be no doubt that the operational method is far

the best for dealing with the class of problems

concerned. [. . . ] [I]t is certain that in a very

large class of cases the operational method will

give the answer in a page when ordinary meth-

ods take five pages, and also that it gives the

correct answer when ordinary methods, through

human fallibility, are liable to give a wrong one.

(Jeffreys, 1927, p. v)

But if we’re only interested in a retrospective explanation

of Heaviside’s success, regardless of the epistemic status of

his techniques at the time, no such identification is required.

For example, in response to Wilson (2006), Pincock (2012,

ch. 13) concedes that a scientist might not grasp concepts

sufficient to pick out a determinate mathematical structure,

but he suggests that we adopt a kind of semantic externalism

according to which such scientists can be understood to ar-

ticulate claims that go beyond the features of their concepts

(both mathematical and physical) that they explicitly grasp.

If so, we can understand Heaviside as unknowingly appeal-

ing to the sort of structure picked out with Laplace trans-

form techniques. We then have a new explanation of Heavi-

side’s success: Heaviside’s mathematically mediated physi-

cal inferences succeeded because, unbeknownst to him, their

mathematical part correctly characterizes structures picked

out by the theory of Laplace transforms, and those structures

stand in the right relationship to his target systems.

I am happy to concede that this is a perfectly good retro-

spective explanation of Heaviside’s success, but I don’t think

it gives us reason to favor a mapping account. For one thing,

retrospective explanations are also available in terms of RIC.

Because RIC recovers mapping accounts as a special case,

one option is to simply coopt the explanation just consid-

ered. But this is unnecessary. Why are Laplace transform

techniques appropriate to do the work of the operational cal-

culus? Because the inferences licensed by applications of the

operational calculus, under the inference restriction strate-

gies discussed so far, are a subset of those licensed by ap-

plications of Laplace transform techniques. And so the in-

formational content of the former, treated in terms of RIC,

is a subset of the informational content of the latter. Due to

the rigor of Laplace transform techniques, we can be about

as sure of their consistency and coherence as we can of any

mathematical theory. As a result, experimental and theoreti-

cal agreement with representations involving Laplace trans-

form methods confers a higher degree of epistemic support

than similar agreement with representations appealing only

26What is more, the means of reaching these two equations will gener-

ally differ. See footnote 23.

to the operational calculus. When we can’t be so sure of a

mathematical theory’s consistency and coherence and must

therefore adopt flexible inference restriction strategies, we

have less assurance that any such agreement won’t be under-

mined by the derivation of problematic results that necessi-

tate further inferential restrictions. In this way, the relation-

ship between Heaviside’s techniques and subsequent rigor-

ous ones retrospectively bolsters the epistemic standing of

applications of the former.

Is there reason to favor the mapping-based explanation

on the grounds that it further explains the informational con-

tent of representations using Laplace transforms in terms of

a mathematical structure? I don’t think so. As I argued in

section 2, RIC provides an alternative account of representa-

tions’ informational content to explain how it licenses math-

ematically mediated inferences. We therefore don’t need to

appeal to later rigorous theories to explain how Heaviside’s

representations came to have informational content that jus-

tified his inferences. We only need to appeal to such theo-

ries to explain why these representations enjoyed a stronger

epistemic status than he or his contemporaries could have

appreciated.

Moreover, RIC has more to say about the relationship

between applications of unrigorous techniques and their un-

rigorous counterparts than this sort of mapping account al-

lows for. For example, different uses of the operational cal-

culus bear remarkably different relationships to more rig-

orous mathematics, which must be understood in terms of

different inferentially restrictive methodologies. Like Jef-

freys, Bromwich recommended working with Heaviside’s

operational calculus rather than more rigorous mathemat-

ics as a matter of practical convenience. But he suggested

an alternative inferentially restrictive methodology to Heav-

iside’s “experimental” one: the operational calculus should

not be used to derive any result that could not be derived in-

dependently via the method of Laplace transforms.27 While

Heaviside’s inferentially restrictive methodology may have

been appropriate in the absence of more rigorous alterna-

tives, Bromwich’s approach seems entirely more appropri-

27Bromwich suggested such an approach in a letter to Heaviside:

After coming back to these questions after 2½ years of war-

work, I found myself able to work more readily with opera-

tors than with complex-integration. [. . . ] I at once saw that I

must make the operator-method take the leading place: and

complex-integrals have accordingly been pushed into foot-

notes. I still regard the complex-integral as a useful method

for convincing the purest of pure mathematicians that the

p-method rests on sound foundations: but I am sure that the

p-method is the working-way of doing these things. (Letter

to Heaviside on 5 April, 1919, quoted in Nahin (2002, p.

229))

Bromwich was not rewarded for his kindness. Heaviside responded,

I rejoice to know that you have seen the simplicity and ad-

vantages of my way [. . . ]. Now let the wooden headed rig-

orists go hang, and stick to differential operators and leave

out the rigorous footnotes. It is easy enough if you don’t

stop to worry. [. . . ] I never could stomach your complex in-

tegral method. (Letter to Bromwich, 7 April, 1919, quoted

in Nahin (2002, pp. 229f))
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ate once Laplace transform methods have been shown to do

rigorously what Heaviside’s methods could only do unrig-

orously. Once one can calculate inverse Laplace transforms

via the Bromwich integral, one has a reliable, general means

of checking results derived via the operational calculus, so

that more ad hoc inferential restrictions serve little purpose.

Finally, even limiting our attention to “correlational pic-

tures” in Wilson’s sense, the costs of limiting ourselves to

retrospective explanations is high. Pace Wilson, the expla-

nation of Heaviside’s success is not simply “because he was

lucky” (Wilson, 2006, 528) to have picked out algebraic rules

that both were useful and could be vindicated by later rigor-

ous work, but rather that he took great care to calibrate his

techniques to the physical problems in which he used them.

As I argued in section 4, Heaviside’s inference restriction

strategies served to ensure that his representations had de-

terminate accuracy conditions in restricted contexts and so

could be evaluated in terms of their agreement with theo-

retical and experimental results. His ad hoc restrictions en-

sured that he could continually submit his results to theo-

retical and experimental scrutiny when he ventured out onto

shakier ground. This certainly seems to allow him to tell

a convincing story about how the usage of his operational

techniques “matches to worldly support within normal cir-

cumstances of application” (Wilson, 2006, p. 516), albeit not

one with all of the epistemic benefits of a more rigorous ap-

proach. An approach to supplying correlational pictures to

justify Heaviside’s inferences that is limited to retrospective

explanations in terms of rigorous theories therefore misses

an important part of the justification of Heaviside’s practice.

7. Conclusion

Central to how unrigorous mathematics can be success-

fully applied are the inferentially restrictive methodologies

scientists use to manage the risks of working with an unrig-

orous theory. This is particularly clear in the case of Heavi-

side’s operational calculus, which required him to make largely

piecemeal inferential restrictions and to appeal, among other

things, to the physical interpretation of the mathematics to

determine how his mathematical tools ought to behave. These

practices are naturally represented in terms of RIC, but at

best in a cumbersome and indirect way in terms of mapping

accounts. As a result, RIC can be used to formulate bet-

ter explanations of the success of physical inferences based

on unrigorous mathematics—both why it was reasonable for

Heaviside to adopt such techniques and why, in light of later

developments, the results of these techniques were correct.

Since RIC can recover the mapping account as a special case,

and so does at least as well as mapping accounts in contexts

where the mapping account succeeds, this gives us good rea-

son to favor RIC.
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