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Abstract

Early- life environmental conditions can provide a source of individual variation in life- 
history strategies and senescence patterns. Conditions experienced in early life can 
be quantified by measuring telomere length, which can act as a biomarker of survival 
probability in some species. Here, we investigate whether seasonal changes, weather 
conditions and group size are associated with early- life and/or early- adulthood tel-
omere length in a wild population of European badgers (Meles meles). We found sub-
stantial intra- annual changes in telomere length during the first 3 years of life, where 
within- individual effects showed shorter telomere lengths in the winter following 
the first spring and a trend for longer telomere lengths in the second spring com-
pared to the first winter. In terms of weather conditions, cubs born in warmer, wetter 
springs with low rainfall variability had longer early- life (3– 12 months old) telomeres. 
Additionally, cubs born in groups with more cubs had marginally longer early- life tel-
omeres, providing no evidence of resource constraint from cub competition. We also 
found that the positive association between early- life telomere length and cub sur-
vival probability remained when social and weather variables were included. Finally, 
after sexual maturity, in early adulthood (i.e., 12– 36 months) we found no significant 
association between same- sex adult group size and telomere length (i.e., no effect of 
intrasexual competition). Overall, we show that controlling for seasonal effects, which 
are linked to food availability, is important in telomere length analyses, and that varia-
tion in telomere length in badgers reflects early- life conditions and also predicts first 
year cub survival.
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1  |  INTRODUC TION

The early- life environment can affect individual fitness (Lindström, 
1999), with consequences for variation in life- history strategies 
(Metcalfe & Monaghan, 2001) and senescence patterns (Nussey 
et al., 2007). For example, it has been hypothesized that senescence, 
the decline in performance in older age, is faster in individuals that 
experienced adverse early- life environments, due to different en-
ergy allocation trade- offs between early and later life in response to 
the environment (Kirkwood & Rose, 1991; Medawar, 1952; Williams, 
1957). A more stressful early- life environment, either through a sub-
optimal mean or more variable early- life environment, during this 
sensitive developmental period could trigger early reproductive in-
vestment at the expense of somatic maintenance, leading to faster 
rates of senescence (Kirkwood & Rose, 1991; Lemaitre et al., 2015). 
Empirical evidence for such detrimental effects has been found in 
various wild animal populations (Cooper & Kruuk, 2018; Hammers 
et al., 2013; Reed et al., 2008).

Telomere length has been suggested as a noncausal biomarker 
of senescence in some species (López- Otín et al., 2013; Monaghan 
& Haussmann, 2006), that facilitates quantification of physio-
logical consequences of the conditions experienced (Monaghan, 
2014). Telomeres are highly conserved nucleoprotein structures 
at the end of chromosomes consisting of a noncoding sequence 
(5′- TTAGGG- 3′) and shelterin proteins (Blackburn, 2000; de Lange, 
2005). Telomeres maintain genomic integrity by preventing chro-
mosome degradation and fusion of chromosome ends by forming T- 
loops (de Lange, 2004). Generally, telomeres shorten with each cell 
replication due to the end- replication problem (Olovnikov, 1973), 
but telomere shortening can be accelerated potentially by oxida-
tive damage (Boonekamp et al., 2017; Reichert & Stier, 2017; von 
Zglinicki, 2002) and through stressors (Epel et al., 2004; Heidinger 
et al., 2012). Telomeres can, however, elongate via the enzyme telo-
merase (Blackburn et al., 1989)— which shows a negative correlation 
with mammalian body mass (Tian et al., 2018)— and other telomere- 
elongation pathways (Cesare & Reddel, 2010; Mendez- Bermudez 
et al., 2012). Cells with critically short telomeres ultimately enter 
replicative senescence, where the accumulation of senescent cells 
can impair tissue function due to reduced renewal capacity (Campisi, 
2005; Campisi & di Fagagna, 2007) and can potentially lead to organ-
ismal senescence (Young, 2018).

In some species, variation in early- life telomere length has been 
linked to season, specifically with winter effects when torpor and 
hibernation facilitate tolerance of winter food scarcity and reduc-
tion of thermoregulatory costs. During hibernation, more frequent 
arousal— which increases metabolic rate and potentially increases 
oxidative stress— is associated in arctic ground squirrels (Urocitellus 

parryii) with shorter telomere length (Wilbur et al., 2019) and in ed-
ible dormice (Glis glis) with increased telomere shortening (Turbill 
et al., 2013). Telomere shortening is reduced when the animals’ core 
temperature difference between hibernation and arousal is smaller, 
in both edible and garden (Eliomys quercinus) dormice (Nowack 
et al., 2019). Conversely, the use of spontaneous daily torpor in 

nonhibernating Djungarian hamsters (Phodopus sungorus) is associ-
ated with telomere lengthening due to a relatively low energy in-
vestment to return to euthermia along with the benefits of reduced 
metabolic rate in torpor compared to hibernation (Turbill et al., 2012). 
In contrast, nonhibernating juvenile garden dormice that more fre-
quently underwent fasting- induced torpor showed higher telo-
mere shortening than individuals undergoing torpor less frequently 
(Giroud et al., 2014). Species that undergo facultative winter torpor 
may conserve energy for somatic maintenance that could potentially 
be invested in telomere restoration/elongation. Additionally, there 
is evidence in nonhibernating rodents for seasonal effects of food 
availability on telomere dynamics (Criscuolo et al., 2020). However, 
because telomere length, season and body mass might be intercor-
related (Réale et al., 1999; Tian et al., 2018), body mass needs to be 
taken into account when studying seasonal effects.

In addition to these intra- annual changes in telomere length, ex-
tensive evidence links adverse early- life conditions to shorter telo-
meres (McLennan et al., 2016; Mizutani et al., 2013; Watson et al., 
2015), where shorter telomeres are associated with reduced survival 
probability (Wilbourn et al., 2018). Food availability, often deter-
mined by weather conditions (Campbell et al., 2012), has been pos-
itively associated with early- life telomere length (Foley et al., 2020; 
Spurgin et al., 2017). Interestingly, early- life food availability may 
also impact life- history strategies (Bright Ross et al., 2020). It has 
been hypothesized that individuals in temporally stochastic environ-
ments should modulate their energy trade- offs (Erikstad et al., 1998; 
Reid et al., 2003; Weimerskirch et al., 2001) and adopt a bet- hedging 
strategy (Wilbur & Rudolf, 2006). Because weather variability is pre-
dicted to increase in the future (IPCC, 2018), it is important to under-
stand the implications of variable early- life conditions for life- history 
strategies and early- life telomere length. The interplay between the 
mean of and variability in early- life environmental conditions, such 
as the availability and variation in food, foraging success and thermal 
stress for young individuals (Noonan et al., 2015; Nouvellet et al., 
2013; Webb & King, 1984), can thus impact developmental stress 
and longevity, and may be reflected in early- life telomere length.

Social conditions in early life can also shape life- history strategies 
and senescence due to increased competition for food and social 
stress. For example, female red deer (Cervus elaphus) that experi-
enced high levels of resource competition in early life showed faster 
rates of reproductive senescence (Nussey et al., 2007). Additionally, 
there is evidence for conspecific resource competition in early life 
leading to greater telomere shortening in birds (Boonekamp et al., 
2014; Nettle et al., 2015; Stier et al., 2015), and shorter telomere 
lengths in wild meerkats (Cram et al., 2017). Such patterns can be 
explained because stressors (including competition) are associated 
with both shorter telomere lengths and greater telomere shortening 
(Chatelain et al., 2020).

The effects of social conditions on senescence may also become 
apparent after sexual maturity, when individuals compete for mat-
ing opportunities (Andersson, 1994; Beirne et al., 2015). In polyg-
ynous species, sex differences in senescence may be attributable 
to intense intrasexual competition between males (Clutton- Brock 
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& Isvaran, 2007; Promislow, 1992; Williams, 1957). Male invest-
ment for mating opportunities may trade off with self- maintenance 
(Kirkwood & Rose, 1991). Intense male– male competition drives 
selection for shorter lifespan and faster senescence in males, com-
pared to females (Clutton- Brock & Isvaran, 2007; Williams, 1957). 
While this prediction has been challenged (Bonduriansky et al., 
2008; Graves, 2007; Promislow, 2003), and sex- specific senescence 
may be trait- dependent with respect to the underlying physiolog-
ical processes (Nussey et al., 2009), higher rates of male- biased 
actuarial senescence in polygynous and sexual dimorphic species 
exist (Clutton- Brock & Isvaran, 2007; Promislow, 1992). While so-
cial effects may also contribute to senescence in females (Sharp & 
Clutton- Brock, 2011; Woodroffe & Macdonald, 1995), such sex- 
specific social effects on senescence are expected to be greater in 
males (Bonduriansky et al., 2008; Clutton- Brock & Isvaran, 2007; 
Maklakov & Lummaa, 2013). However, whether increased intrasex-
ual competition (e.g., higher local densities of same- sex individuals) 
is associated with shorter telomeres remains to be tested.

To test the effects of early- life social and environmental condi-
tions on telomere length, we use a long- term data set from a wild 
population of European badgers (Meles meles; hereafter ‘badgers’). 
Badgers show reproductive senescence with males having a later 
onset but faster rate of senescence than females (Dugdale et al., 
2011). Additionally, early- life telomere length (3– 12 months old) 
positively correlates with first- year survival and lifespan in bad-
gers (van Lieshout et al., 2019). In the UK and Ireland, badgers are 
natally philopatric and can form large social groups (mean group 
size = 11.3, range = 2– 29; da Silva et al., 1994) with latrine- marked 
borders (Buesching et al., 2016; Delahay et al., 2000), although they 
do transgress these borders when foraging (Ellwood et al., 2017; 
Noonan et al., 2015) without any sex difference in foraging niche 
(Robertson et al., 2014).

Regardless of whether badgers undergo facultative winter torpor 
(Johansson, 1957) or true hibernation (Ruf & Geiser, 2015), badgers 
do reduce their body temperature by up to 8.9℃ (Fowler & Racey, 
1988), thus reducing energy expenditure (Newman et al., 2011). 
Badgers in Britain mainly feed on earthworms (Lumbricus terrestris; 

Johnson et al., 2001; Kruuk & Parish, 1981). Earthworms are sensi-
tive to microclimatic conditions (Edwards & Bohlen, 1996; Gerard, 
1967; Newman et al., 2017), making their abundance and distribution 
highly dependent on weather conditions. High- density badger popu-
lations occur in mild areas with damp conditions where earthworms 
are available (Johnson et al., 2002; Kruuk, 1978; Macdonald et al., 
2015; Newman et al., 2017). Foraging efficiency is reduced in ad-
verse weather conditions, due to reduced availability of earthworms, 
thermal stress when foraging in cold and wet conditions, and/or the 
choice to remain in thermally stable underground dens, termed setts 
(Noonan et al., 2014, 2018; Nouvellet et al., 2013; Tsunoda et al., 
2018). Weather conditions can therefore impact survival probability 
where, for example, higher annual mean daily rainfall is positively 
associated with adult survival probability in badgers, whereas high 
annual variability in temperature has detrimental consequences for 
cub and adult survival (Nouvellet et al., 2013).

Badgers have one litter per year, with a mean litter size of 
1.5 ± 0.3 (95% confidence interval [CI]; range = 1– 5; Annavi et al., 
2014). Badger cub growth and maturation depends on the number of 
other cubs and adults present within the social group (Sugianto et al., 
2019a), potentially indicating resource competition within social 
groups. Adult male badgers invest substantial energy into promis-
cuity and repeated mounting (Dugdale et al., 2011) both within and 
outside their social group, resulting in high rates (i.e., 48%) of extra-
group paternity, of which 85% is from neighbouring groups (Annavi 
et al., 2014; Dugdale et al., 2007). Males also exhibit substantial in-
terindividual variance in reproductive success (Dugdale et al., 2007; 
Dugdale, Pope, et al., 2011) and evidence of reproductive skew 
among females within a group (Dugdale et al., 2008; Woodroffe 
& Macdonald, 1995). With the polygynandrous system (Dugdale, 
Griffiths, et al., 2011), a slight sexual dimorphism and slight male- 
biased mortality (Bright Ross et al., 2020; Johnson & Macdonald, 
2001; Sugianto et al., 2019a, 2019b), and evidence of downstream 
effects of male– male competition on body mass senescence (Beirne 
et al., 2015), such intrasexual competition may be reflected in telo-
mere length in early adulthood.

Here, we investigate the relationships between early- life con-
ditions and relative leukocyte telomere length (RLTL), by testing 
whether: (i) between- individual and within- individual variation in 
RLTL in early life and early adulthood can be explained by seasonal 
changes; (ii) adverse early- life weather, as a proxy for food availabil-
ity and thermal stress, is associated with shorter early- life RLTL and 
the social conditions that cubs are exposed to (with more cubs po-
tentially leading to resource competition and associated with shorter 
early- life RLTL, or more cubs reflecting more resources and thus 
being associated with longer early- life RLTL); (iii) the strength of the 
association between early- life RLTL and first- year survival probabil-
ity is dependent on early- life conditions; and (iv) adverse social con-
ditions after sexual maturity (i.e., larger same- sex adult group size for 
females and, for males, more within- group and neighbouring- group 
adult [>1 year old) males] are associated with shorter RLTL in early 
post- maturity adulthood.

2  |  METHODS

2.1  |  Study population and trapping

We conducted this study in a high- density population of badgers 
(mean ± SE = 36.4 ± 2.55 badgers per km2; Macdonald et al., 2009) in 
Wytham Woods, Oxfordshire, UK (51°46′24″N, 1°20′04″W); this is 
a 424- ha mixed seminatural woodland surrounded by mixed arable 
and permanent pasture (Macdonald et al., 2015). The population 
consisted of 19 ± 2 (mean ± 95% CI; range = 14– 26; Dugdale et al., 
2008) mixed- sex social groups (Johnson, Jetz, et al., 2002; Newman 
et al., 2011) during the period that we analysed, with a 50% offspring 
sex ratio (Dugdale et al., 2003). The Wytham badger population is 
geographically discrete (Macdonald et al., 2009) with only ~3% an-
nual immigration/emigration per year (Macdonald & Newman, 2002).
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We used long- term data (1987– 2016) from a badger population 
that was trapped over three 2- week periods in May– June, August– 
September and November, with further trapping in January in focal 
years (i.e., specific years when ultrasound studies were conducted to 
calculate implantation dates, see Figure 1). Badgers were anaesthe-
tized using an intramuscular injection of 0.2 ml ketamine hydrochlo-
ride per kg body weight (McLaren et al., 2005). Upon first capture, 
badgers were assigned a unique inguinal tattoo for permanent iden-
tification. Sex, age class (cub < 1 year old; adult ≥ 1 year old), capture 
date and social group were recorded. Age of badgers was defined 
as the number of days elapsed since the 14th of February, reflect-
ing the average date of synchronized parturition, in the respective 
birth year (Yamaguchi et al., 2006). Age of badgers first caught as 
adults was inferred from tooth wear, which is commonly used and 
highly correlated (r2 =.80) with known age in this population (Bright 
Ross et al., 2020; Hancox, 1988; Macdonald et al., 2009; da Silva & 
Macdonald, 1989). Only badgers that did not have an already- known 
age and had a tooth wear of 2 (on a 1– 5 scale) were included since 
these typically indicate a 1- year- old adult (Bright Ross et al., 2020). 
We used data on cohorts up to and including 2010, as all cohort 
members were dead by the end of 2016. Whole blood samples were 
collected from anaesthetized badgers through jugular venipuncture 
into vacutainers with an EDTA anticoagulant, and stored immediately 
at −20℃. Badgers were released after full recovery from anaesthe-
sia. Additionally, bait- marking (Delahay et al., 2000; Macdonald & 
Newman, 2002) was conducted periodically to delimit group range 
sizes and deduce social groups.

2.2  |  Telomere analyses

Genomic DNA was extracted from whole blood samples 
(n = 814 samples; 533 badgers) using the DNeasy Blood & Tissue 
kit (Qiagen) according to the manufacturer's protocol, with changes 
by conducting a double elution step (2× 75 µl AE buffer) and using 
125 µl of anticoagulated blood. DNA integrity was checked by run-
ning a random selection of DNA extracts (~20%) on agarose gels to 
ensure high molecular weight. The DNA concentration of all sam-
ples was quantified using the Fluostar Optima fluorometer (BMG 
Labtech) and standardized to 20 ng/µl, after which samples were 
stored at −20℃. We used monochrome multiplex quantitative 
polymerase chain reaction (MMqPCR) analysis to measure RLTL 
(Cawthon, 2009). This is a measure that reflects the abundance of 
telomeric sequence relative to a reference gene, which are both ana-
lysed in the same well, and although subject to error represents the 
mean telomere length across cells in a sample. We used a subset of 
814 samples from the full data set of 1248 samples detailed in van 
Lieshout et al., (2019). In the full data set, Cq- values on the qPCR 
plates (n = 34) declined in a log- linear fashion (r2 > .99). Reaction effi-
ciencies were (mean ± SE) 1.793 ± 0.004 for IRBP and 1.909 ± 0.004 
for telomeres. Interplate repeatability (intraclass correlation coeffi-
cient) calculated with rpTr 0.9.2 (Stoffel et al., 2017)— by comparing 
variance among duplicates of the reference sample within a plate, to 
variance of the reference sample among plates— was 0.82 for RLTL 
measurements (95% CI =0.76– 0.87; n = 142 samples; 34 plates). 
Intraplate repeatability calculated with duplicates of the same sam-
ple on the same plate, while controlling for plate effects, was 0.90 
(95% CI =0.86– 0.93; n = 1248 samples; 34 plates) for IRBP, 0.84 
(95% CI =0.79– 0.90; n = 1248 samples; 34 plates) for telomere Cq- 
values and 0.87 (95% CI =0.82– 0.91; n = 1248 samples; 34 plates) for 
RLTL measurements. A detailed description of the MMqPCR analysis 
can be found in van Lieshout et al. (2019).

2.3  |  Weather conditions

Four weather metrics (mean daily temperature, temperature vari-
ability, mean daily rainfall and rainfall variability) were calculated for 
each season (Spring = end of March to end of June, Summer = end 
of June to end of September, Autumn = end of September to end of 
December, Winter = end of December to end of March) from 1987 
to 2010 to characterize the developmental stress associated with 
variation in earthworm food availability and thermoregulatory costs 
(Macdonald et al., 2010; Noonan et al., 2014; Nouvellet et al., 2013). 
Wytham Woods had a mean annual temperature of 10.6℃ (±5.5 SD) 

and mean annual precipitation of 684 mm (±129 SD), 1987– 2010. 
Mean daily temperature and rainfall were calculated using mean 
daily temperature and total daily precipitation values provided by the 
Radcliffe Meteorological Station, School of Geography, University 
of Oxford (6 km from the field site). Daily temperatures followed a 
sinusoidal pattern, and so seasonal temperature variability was cal-
culated as the sum of daily squared residuals from a sinusoidal fit to 

F I G U R E  1  Variation in early- life relative leukocyte telomere 
length (RLTL) among seasons in European badgers. The data 
distributions and probability densities are shown (n = 814 samples; 
533 badgers— the sum of badgers in the plot is >533 due to 
repeated measures). Data were collected in 19 years, across 59 
trapping periods. The line in the boxplot represents the median, 
with first and third quartiles, and whiskers represent 1.57 times the 
interquartile range
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the corresponding year's temperatures (i.e., cumulative unpredict-
ability). Rainfall did not show annual trends and its seasonal variabil-
ity was therefore characterized simply as the coefficient of variation 
(SD/mean) in daily rainfall.

2.4  |  Group sizes

Natal group sizes were determined by the number of individuals 
(cubs and adults) that were present in a social group in the year of an 
individual's birth. Given high lifetime natal philopatry (35.8%), low 
permanent dispersal rates (19.1%) and high levels of short- term in-
tergroup movements (Macdonald et al., 2008), individuals (n = 1726) 
were assigned as a resident of a social group each year, according to 
published criteria (van Lieshout, Badás, et al., 2020). The number of 
individuals in a natal social group was then calculated as the sum of 
individuals present in the social group in that year.

Yearly social group size measures were then separated by age 
class (i.e., cub/adult) and sex (i.e., male/female) to determine sex-  and 
age- specific group sizes per year. To measure intrasexual competi-
tion in females, we calculated female adult group sizes, as females 
compete with other within- group females (Woodroffe & Macdonald, 
1995). However, for males, extragroup paternity is high (48%) and 
affected by the number of within- group and neighbouring- group 
candidate fathers (Annavi et al., 2014), so we combined the num-
ber of both within- group males and neighbouring- group males. The 
mean number of cubs in a social group for badgers in our data set 
(n = 533 badgers) was 3.4 (±2.3 SD; range 0– 14), the mean number of 
female adults in a social group was 6.1 (±3.4 SD; range 0– 19) and the 
mean number of male adults in focal plus neighbouring social groups 
was 25.2 (±11.5 SD; range 1– 59).

2.5  |  Statistical analyses

Statistical analyses were conducted in R 3.3.1 (R Development Core 
Team, 2020), using parametric bootstrapping (n = 5000) to estimate 
95% confidence intervals and determine significance of predictors in 
LmE4 1.1- 14 (Bates et al., 2015). Model fit was assessed using stand-
ard residual plot techniques to ensure approximately normal distri-
bution and constant variance, and fixed effects were ensured not to 
be collinear (variance inflation factor [VIF] < 3). RLTL as a response 
variable was first square- root and then Z- transformed (mean =0, 
SD =1) for comparability (Verhulst, 2020). Quadratic fixed effects 
were included if such relationships were plausible a priori, and re-
moved if p > .1 to test the significance of first- order effects.

In this study, we focus on early life (3– 12 months old), but bad-
gers typically reach sexual maturity by 2 years of age (Sugianto 
et al., 2019a), occasionally at age 1 year (Dugdale et al., 2007). Due 
to delayed implantation resulting in a full year between conception 
and parturition, badgers thus first produce offspring when they are 
2– 3 years of age, and therefore we define early adulthood as 12– 
36 months old.

2.5.1  |  Seasonal effects on RLTL in early life and 
early adulthood

We first tested for an association between season and RLTL 
(≤36 months old) in early life and early adulthood in a Gaussian dis-
tribution model (identity link function) with RLTL as the response 
variable (n = 814 samples; 533 badgers). Including threshold func-
tions of age at 29 months, such that the slope of the regression of 
RLTL with age differed for ≤29 months and >29 months of age best 
explained the relationship between RLTL and age (van Lieshout 
et al., 2019). Threshold age, age at last capture, season, weight and 
body length were included as fixed effects, and qPCR plate, row on 
qPCR plate, social group, cohort (i.e., birth year; 24 levels), year and 
individual ID as random effects as these may impact RLTL in badgers 
(van Lieshout, Sparks, et al., 2020).

As we found a significant cross- sectional difference in RLTL 
between spring and winter, we then applied the “within- subject 
centring” approach described by van de Pol and Wright (2009) to 
distinguish within-  and between- individual effects between spring 
and winter. Following Schroeder et al., (2012), we included two new 
fixed effects: (i) to estimate the within- individual variation compo-
nent (βW) we removed between- individual variation by subtracting 
the mean season value (coded as: spring =0, winter =1) for each in-
dividual across all years, from the season value for each RLTL mea-
surement. So, if an individual was measured once in spring and once 
in winter, it was scored as −0.5 for spring and 0.5 for winter; and (ii) 
to estimate the between- individual variation between seasons (βB), 
we included the mean season value for each individual (van de Pol & 
Wright, 2009). We then ran a Gaussian distribution model (identity 
link function) with RLTL as the response variable (n = 503 samples; 
402 badgers) and threshold age (van Lieshout etal., 2019), age at last 
capture, within- individual season effect (βW), between- individual 
season effect (βB), weight and body length as fixed effects, and 
qPCR plate, row on qPCR plate, social group, cohort, year and indi-
vidual ID as random effects. Subsequently, we tested whether the 
within- individual (βW) and between- individual (βB) slopes differed by 
including season and the between- individual effect (βB; i.e., mean 
season value) in the same model (i.e., season now reflects the within- 
individual effect).

Lastly, to test whether telomere length decreases or increases 
from spring to winter we used a subset of individuals measured ei-
ther in their first spring or first winter, plus 11 individuals measured 
in both their first spring and first winter (n = 214 samples; 203 bad-
gers). For the direction of the effect from winter to spring we used 
a subset of individuals measured either in their first winter or sec-
ond spring, plus six individuals measured in both their first winter 
and second spring (n = 84 samples; 78 badgers). In the two models 
(spring to winter and winter to spring) with a Gaussian distribution 
and RLTL as the response variable, we included age, age at last cap-
ture, season, weight and body length as fixed effects, and qPCR 
plate, row on qPCR plate, social group, cohort, year (not in winter to 
spring model due to singularity) and individual ID as random effects. 
Subsequently, we used the within- subject centring approach again 
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to separate within-  and between- individual effects and test whether 
these slopes differ (van de Pol & Wright, 2009).

2.5.2  |  Weather and natal group size effects on 
early- life RLTL

We tested whether weather and social conditions experienced as 
a cub (3– 12 months old) were associated with early- life RLTL. We 
first used a generalized linear mixed model (GLMM) to confirm the 
previous observation (van Lieshout et al., 2019) that early- life RLTL 
did not vary with age (in months), controlling for season, weight and 
body length (n = 406, β = 0.154, 95% CI = −0.158 to 0.464), and ex-
cluded age from subsequent analyses. The effects of first- year con-
ditions on early- life RLTL were then modelled with early- life RLTL 
as the response variable in a Gaussian- distributed model (identity 
link function; n = 406, samples; 406 badgers). First, we determined 
the season in which the weather conditions (i.e., mean temperature, 
mean rainfall, temperature variability and rainfall variability) best ex-
plained the variation in early- life RLTL (corrected Akaike information 
criterion [AICc] spring =1,133.1 was lowest, vs. summer ΔAICc =11.3, 
autumn ΔAICc =10.3, winter ΔAICc =11.0), with models with ΔAICc 
<7 from the top model being plausible (Burnham et al., 2011). The 
weather window of spring (end of March to end of June) is the sea-
son in which cubs grow the most and thus encounter the strongest 
developmental stress. This period includes when cubs first emerge 
above ground from the end of February, are weaned around mid- 
May and reach independence at the start of June (Dugdale et al., 
2010) during which time cubs exhibit high growth rates depending 
on food availability and social conditions (Sugianto et al., 2019a,  
2019b). Second, we determined whether the number of cubs, adults 
or the total number of individuals in the natal group best predicted 
early- life RLTL using AICc (the lowest AICc = 1,133.1 was for number 
of cubs, vs. number of adults ΔAICc = 3.8, total number of individu-
als ΔAICc = 4.0, number of cubs plus number of adults ΔAICc = 5.8, 
number of cubs plus total number of individuals ΔAICc = 5.6). Since 
ΔAICc < 7, and VIF > 3 for the other combinations in the same model, 
we ran five separate models with either the number of cubs, number 
of adults, the total number of individuals, number of cubs plus adults 
or number of cubs plus total number of individuals in the natal group 
as a fixed effect along with season, weight, body length, mean daily 
temperature, temperature variability, mean daily rainfall and rainfall 
variability in spring. qPCR plate, row on qPCR plate, social group and 
cohort were included as random effects.

2.5.3  |  Covariation between early- life RLTL and 
weather conditions on cub survival probability

To understand whether the association between early- life RLTL 
and cub survival probability (van Lieshout et al., 2019) is due to or 
independent of weather effects, we tested whether the associa-
tion between early- life RLTL and cub survival probability was still 

detected when social and weather conditions were included in the 
model. We first modelled survival to adulthood (≥1 year old) as a 
binary term in a binomially distributed model (logit link function; 
n = 406 samples; 406 badgers), where cubs only caught in their 
first year of life were coded as 0 and cubs that were caught when 
older than 1 year of age were coded as 1, with early- life RLTL, 
weight and body length as fixed effects and qPCR plate, row on 
qPCR plate, social group and cohort included as random effects. 
We then also included as fixed effects: number of cubs in the natal 
group, mean daily temperature, temperature variability, mean daily 
rainfall and rainfall variability in a given season. We determined the 
season in which weather conditions best explained the variation in 
cub survival probability, using AICc (the lowest AICc =408.9 was in 
winter, vs. spring ΔAICc =21.6, summer ΔAICc =16.3 and autumn 
ΔAICc =22.5) where models with ΔAICc <7 from the top model 
are plausible (Burnham et al., 2011). The model was not overdis-
persed. While cub survival is negatively impacted by endoparasitic 
coccidia infection (Newman et al., 2001), we did not have data to 
control for coccidia infection. We then applied model selection to 
test whether including weather and social variables knocked early- 
life RLTL out of the plausible models. This would indicate that 
the early- life RLTL and survival probability relationship is driven 
by covariation between the environment and physiological state 
(early- life RLTL). As early- life RLTL was retained, we estimated the 
RLTL model- averaged parameter and 95% CI using the natural av-
eraged method (where the parameter was averaged over models 
in which it was present; Burnham & Anderson, 2002). This avoids 
the parameter estimate shrinking towards zero, from inclusion of 
the relatively less important models where the parameter was not 
retained (Nakagawa & Freckleton, 2011).

2.5.4  |  Same- sex group size effects on RLTL in 
early adulthood

We examined whether same- sex adult group sizes were reflected 
in RLTL in early adulthood (i.e., 12– 36 months old). In a GLMM 
with RLTL in early adulthood as the response variable with one age 
threshold separating two periods of 12 to ≤29 months and >29 and 
≤36 months (see van Lieshout et al., 2019) and season, weight and 
body length as fixed effects, we determined that RLTL did not vary 
with age (n = 376, 12 to ≤29 months, β = −0.064, 95% CI = −0.175 
to 0.050; >29 and ≤36 months, β = −0.040, 95% CI = −0.184 to 
0.110), and excluded age from the subsequent analysis. The effects 
of same- sex adult group sizes on RLTL in early adulthood were then 
modelled with RLTL in early adulthood as the response variable 
(n = 376 samples; 308 badgers). Same- sex adult group size (within- 
group for females and within-  plus neighbouring- group for males), 
sex and its interaction with group size (to model differential strength 
in intrasexual competition among the sexes), age at last capture (to 
control for selective disappearance), season, weight and body length 
were included as fixed effects, and qPCR plate, row on qPCR plate, 
social group, cohort, year and individual ID as random effects.
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3  |  RESULTS

3.1  |  Seasonal effects on RLTL in early life and 
early adulthood

When controlling for age, weight and body length, we found a sig-
nificant effect of season on RLTL with badgers having shorter RLTL 
in winter compared to spring (Figure 1; Table S1). After partitioning 
the within-  and between- individual effects we found that there was 
a within- individual effect of shorter RLTL in winter than in spring 
and a significant between- individual effect (Table S2). There was no 
significant difference between the within-  and between- individual 
slopes (Table S3). Using a subset of individuals measured only at 
consecutive seasons, combined with individuals measured once, 
we found that from spring to winter there was a within- individual 
decline in RLTL (Table S4 and Figure S1), whereas from winter to 
the following spring there was a marginally nonsignificant within- 
individual increase in RLTL (Table S5 and Figure S1). For both spring 
to winter and winter to spring the slopes for within-  and between- 
individual effects did not differ (Table S6).

3.2  |  Weather and natal group size effects on 
early- life RLTL

We found a positive association between spring temperature and 
early- life RLTL (Figure 2; Table 1; Tables S7– S10), with cubs expe-
riencing cooler- than- average first springs having shorter early- life 
RLTL. We also found that cubs experiencing intermediate- to- high 
mean daily rainfall had longer early- life RLTL (Figure 3; Table 1; Tables 
S7– S10) than cubs developing during drier years. Cubs experiencing 

low rainfall variability also had longer early- life RLTL (Figure 4; 
Table 1; Tables S7– S10). We found, while controlling for weather 
effects, a marginal effect where more cubs in the natal group was 
correlated with longer early- life RLTL. In contrast, we found no 
evidence for an association between the number of adults or total 
number of individuals in the natal group and early- life RLTL (Table 1; 
Tables S7– S10).

3.3  |  Covariation between early- life RLTL and 
weather conditions on cub survival probability

We first replicated our published finding (van Lieshout et al., 2019) 
of a positive association between early- life RLTL and survival to 
adulthood, not controlling for social and weather effects (Table S11). 
Then we included social and weather conditions in the model: cub 
survival probability exhibited a negative quadratic relationship with 
mean daily temperature (Figure S2; Table S12), a negative quadratic 
association with winter temperature variability (Figure S3; Table 
S12), a marginal nonsignificant positive effect of mean daily rain-
fall (Table S12), a negative association with winter rainfall variabil-
ity (Figure S4; Table S12) but no significant effect of the number of 
cubs in a group (Table S12). Using model selection, early- life RLTL 
was present in the top 39 models and retained in 82/100 plausible 
models (Table S13). The naturally averaged estimate for RLTL in the 
plausible models was 0.366 (95% CI =0.064– 0.666; Table S14) and 
thus the 95% CIs of early- life RLTL overlapped between the models 
with and without (β = 0.386, 95% CI =0.095– 0.713, Table S11) early- 
life social and weather variables.

3.4  |  Same- sex group size effects on RLTL in 
early adulthood

We found no evidence of same- sex adult group size effects on RLTL 
in early adulthood for females or males (Table S15).

4  |  DISCUSSION

Our results show both between- individual variation and within- 
individual changes in RLTL across seasons, where a cub's RLTL in 
their first spring was longer than in the following winter, and an indi-
cation that RLTL was longer again in the following spring compared 
to the preceding winter. The between-  and within- individual slopes 
did not differ. Although we detect a between- individual effect, it 
was negative so there was no evidence of selective disappearance, 
and the between- individual effect may be driven by sampling vari-
ance. We also found that cubs born in conditions that were warmer 
and wetter, with little variation in rainfall, had longer early- life RLTL. 
Sociologically, the number of cubs had a positive effect on early- 
life RLTL, but there was no effect of the number of adults or total 
number of individuals. Our results also suggest that the link between 

F I G U R E  2  The association between mean spring temperature 
and early- life relative leukocyte telomere length (RLTL). Raw data 
points (n = 406 samples; 406 badgers) are shown, and jittered 
for clarity on the amount of data. The fitted line represents the 
regression from the mixed model, and the 95% confidence intervals 
as shaded areas
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early- life RLTL and cub survival probability is driven by conditions 
experienced in addition to the early- life social and weather condi-
tions modelled. Additionally, we found no effect of the number of 
within- group adult females, or both within- group and extra- group 
adult males (i.e., intrasexual competition) on RLTL in early adulthood.

Our finding that badgers had shorter early- life RLTL (both be-
tween and within individuals) in winter compared to the preceding 
spring could be linked to the end- replication problem and stress-
ful effects such as disease (Newman et al., 2001), suboptimal 

foraging conditions and food availability (Macdonald & Newman, 
2002; Newman et al., 2017). The within- individual effect means that 
between seasons there is an increase or decrease in telomere length 
for the same individual.

We then found a nonsignificant trend for positive within- individual 
changes in RLTL from the first winter to the following spring. Body 
temperatures in badgers fall from November to December (by a max-
imum of 8.9℃ compared to late spring) and steadily rise until euther-
mic levels are reached by late April (Fowler & Racey, 1988; Geiser & 

TA B L E  1  Parameter estimates and 95% confidence intervals of fixed effects from a mixed model and parametric bootstrap tests of the 
number of cubs in the natal group, season and weather effects in spring on early- life (3– 12 months old) relative leukocyte telomere length 
(Z- score) in European badgers (full model and with p > .10 second- order effects removed)

Parameter (reference level) β SE 95% CI

Intercepta  −0.009 0.118 −0.228 to 0.218

Number of cubs in natal group 0.106 0.052 0.008 to 0.206

Season (Spring)

Summer 0.196 0.137 −0.072 to 0.464

Autumn 0.131 0.277 −0.409 to 0.656

Winter −1.001 0.383 −1.741 to −0.232

Mean temperature −4.036 3.767 −11.38 to 3.367

Mean temperature2 4.519 3.830 −3.089 to 11.94

Daily temperature variability 0.588 1.709 −2.849 to 3.850

Daily temperature variability2 −0.457 1.733 −3.780 to 3.044

Mean daily rainfall −1.894 0.810 −3.473 to −0.267

Mean daily rainfall2 2.074 0.836 0.368 to 3.692

Daily rainfall variability −3.911 2.019 −7.818 to 0.014

Daily rainfall variability2 3.790 2.041 −0.211 to 7.698

Weight 0.075 0.101 −0.124 to 0.275

Body length −0.089 0.097 −0.274 to 0.100

After removing second order effects p >.10

Interceptb  0.009 0.110 −0.197 to 0.216

Number of cubs in natal group 0.100 0.051 0.001 to 0.200

Season (Spring)

Summer 0.178 0.136 −0.088 to 0.446

Autumn 0.097 0.274 −0.447 to 0.614

Winter −0.995 0.380 −1.726 to −0.237

Mean temperature 0.403 0.087 0.227 to 0.577

Daily temperature variability 0.135 0.095 −0.053 to 0.321

Mean daily rainfall −1.225 0.559 −2.333 to −0.124

Mean daily rainfall2 1.356 0.555 0.255 to 2.467

Daily rainfall variability −2.843 1.414 −5.563 to −0.112

Daily rainfall variability2 2.745 1.405 0.039 to 5.464

Weight 0.072 0.100 −0.124 to 0.272

Body length −0.082 0.096 −0.266 to 0.104

Notes: β = parameter estimate, SE = standard error, 95% CI =95% confidence intervals; reference terms in parentheses = reference level for factors. 
Significant parameter estimates (95% CI does not overlap zero) are in bold.
Random effect estimates (variance):
aqPCR plate (4.955 ××10−2), Row on qPCR plate (1.861 × 10−3), Social group (2.798 × 10−2), Cohort (7.745 × 10−2), Residual (7.537 × 10−1);
bqPCR plate (4.911 × 10−2), Row on qPCR plate (2.895 × 10−3), Social group (2.642 × 10−2), Cohort (5.287 × 10−2), Residual (7.572 × 10−1).
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Ruf, 1995). During harsh winter conditions, badgers use facultative 
torpor to reduce their core temperature and metabolic rate, conserv-
ing energy (Newman et al., 2011). This reduction of basal metabolic 
rates (Geiser, 2004) can reduce mitosis (Kruman et al., 1988) and 
therefore potentially reduce telomere shortening. Similarly, daily tor-
por cycles in Djungarian hamsters had a positive effect on telomere 
length (Turbill et al., 2012). However, for species using torpor as a 
seasonal energy conservation strategy (e.g., edible dormice, garden 

dormice and arctic ground squirrels; as do badgers), arousal and re-
turn to euthermia has been linked to telomere shortening; however, 
this appears to be in proportion to the extent that body temperature 
must be rewarmed (Giroud et al., 2014; Hoelzl et al., 2016; Turbill 
et al., ,2012, 2013; Wilbur et al., 2019). We postulate that badgers 
use torpor and their ability to remain within thermally stable setts 
(Tsunoda et al., 2018) to try to mitigate RLTL shortening that would 
otherwise be incurred by the stresses of maintaining activity during 
winter, when food is scarce and thermal losses are high. More de-
tailed analyses are needed to explore this further, such as by com-
paring badgers in different regions that experience different degrees 
of winter severity, with a large longitudinal sample size to disentangle 
within-  and between- individual effects. Importantly, we would need 
to track which badgers go into torpor, for how long and how often, 
and then calculate how much energy is conserved. We also do not 
yet know to what extent torpor– arousal cycles may affect telomere 
shortening, and where there is probably an optimal balance. In this 
regard, predicted increases in weather variability (IPCC, 2018) that 
may cause more frequent warm– cold winter episodes could add to 
the allostatic load of badgers, causing accelerated RLTL shortening. 
Since positive within- individual changes in badger telomere length 
occur, which are greater than measurement error (van Lieshout et al., 
2019), such seasonal patterns may explain some of the variability in 
telomere length patterns across life in badgers. Indeed, there is also 
evidence of seasonal telomere dynamics in nonhibernating rodents 
(Criscuolo et al., 2020). Even though we accounted for body weight 
and length, other factors such as seasonal changes in leukocyte cell 
composition can also lead to apparent changes in telomere length 
(Beaulieu et al., 2017), which would require further investigation. 
For example, there is a greater proportion of neutrophils and lym-
phocytes that were lymphocytes in spring compared to autumn in 
badgers (van Lieshout, Badás, et al., 2020), and lymphocytes have 
shorter telomere lengths than neutrophils in humans and baboons 
(Baerlocher et al., 2007; Kimura et al., 2010). Nonetheless, our find-
ings also highlight the importance of controlling for seasonal effects 
when analysing telomere dynamics.

Cubs born into more energetically favourable springs (warm, 
rainy and low rainfall variability) had longer early- life RLTL. These 
weather conditions present optimal soil conditions for earthworm 
surfacing, enhancing food supply (Kruuk, 1978; Newman et al., 
2017). Dry conditions in spring have negative consequences for bad-
ger foraging success (Macdonald & Newman, 2002). However, while 
we found no effect of spring temperature variability on early- life 
RLTL, cubs experiencing lower daily rainfall variability in spring had 
longer early- life RLTL. Greater rainfall variability can reduce the pre-
dictability of food availability and impact foraging activity (Noonan 
et al., 2014), and may require individuals to modulate their energy 
trade- offs (Erikstad et al., 1998; Reid et al., 2003; Weimerskirch 
et al., 2001) and adopt a bet- hedging strategy (Wilbur & Rudolf, 
2006). The variability in spring rainfall and thus early- life conditions 
experienced shape life- history trade- offs, and since variability is 
likely to increase under current climate change (IPCC, 2018), this can 
impact ecological and individual resilience (Bright Ross et al., 2020).

F I G U R E  3  The association between mean daily rainfall in 
spring and early- life relative leukocyte telomere length (RLTL). 
Raw data points (n = 406 samples; 406 badgers) are shown, and 
jittered for clarity on the amount of data. The fitted line represents 
the quadratic regression from the mixed model, and the 95% 
confidence intervals as shaded areas
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F I G U R E  4  The association between rainfall variability in 
spring and early- life relative leukocyte telomere length (RLTL). 
Raw data points (n = 406 samples; 406 badgers) are shown, and 
jittered for clarity on the amount of data. The fitted line represents 
the quadratic regression from the mixed model, and the 95% 
confidence intervals as shaded areas

−2

−1

0

1

2

3

1.6 1.8 2.0 2.2 2.4 2.6 2.8

Rainfall variability in spring (σ µ)

E
a
rl
y
−

lif
e
 R

L
T

L
 (

Z
−

s
c
o
re

)



10  |    van LIESHOUT ET aL.

Our estimate of post- dependence social effects was positive. An 
explanation for this positive effect may be that, in badgers, variation 
in maternal capacity to lactate may exceed the low variation that is 
observed in litter size (Dugdale et al., 2007), causing the per- offspring 
suckling rate to increase with litter size. In contrast, in other species 
or experimental brood size enlargements in birds, variation in clutch 
size can exceed variation in parental resource acquisition, caus-
ing the per- offspring feeding rate to decrease with litter size (van 
Noordwijk & de Jong, 1986; Vedder et al., 2017; Wilson & Nussey, 
2010). An increase in the per- offspring suckling rate with litter size 
could result in more available resources for cubs and thus longer 
early- life telomere length. Second, groups with more independent 
cubs may also potentially have more food available per capita, which 
permits faster growth and cell replication without inducing stress, 
hence facilitating longer early- life telomere length. This result is in 
contrast to studies reporting that competition for food within litters 
and juvenile cohorts can cause telomere shortening (Boonekamp 
et al., 2014; Cram et al., 2017; Nettle et al., 2015). However, these 
studies were able to measure telomere length within the first month 
of life. In contrast, we were unable to sample individuals until at least 
3 months of age, due to welfare legislation (Protection of Badgers 
Act, 1992), when the weakest cubs could have already succumbed, 
reducing group sizes. We therefore do not have a measure of the 
number of dependent cubs in a group and could only measure RLTL 
in the first year from 3 to 12 months of age; thus, we cannot test 
for social effects during the dependent period, including selective 
disappearance, which may also lead to similar positive associations 
between the number of cubs and early- life RLTL.

We found that the association between early- life RLTL and cub 
survival probability was retained in the top 39 most plausible models 
and 82/100 plausible models when including early- life weather and 
social variables. This indicates that, in badgers, the association be-
tween early- life RLTL and survival is not solely driven by covariation 
between the early- life environment and early- life RLTL (i.e., physio-
logical state). While early- life RLTL in badgers appears to reflect the 
physiological consequences of conditions experienced, independent 
of the weather and social variables included in the models, there could 
still be a genetic component to telomere length or telomere length 
may genetically covary with survival as seen in other species (Froy 
et al., 2021; Vedder et al., 2021). Nonetheless, in badgers telomere 
length can be used as a comprehensive measure of the environmental 
consequences for physiology and first- year survival probability.

There was no significant association between same- sex adult 
group size and RLTL in early adulthood. While female– female repro-
ductive competition occurs in badgers (Sharp & Clutton- Brock, 2011; 
Woodroffe & Macdonald, 1995), in polygynous species, theory pre-
dicts intrasexual competition for mating opportunities to be stronger 
among males than females. In Wytham badgers, there is slight sex-
ual dimorphism (Johnson & Macdonald, 2001) and slight male- biased 
mortality (Bright Ross et al., 2020). Reproductive skew is higher in 
sexually mature males than females (Dugdale et al., 2008) and males 
with a higher body- condition index attain more reproductive suc-
cess (Dugdale, Griffiths, et al., 2011). High levels of polygynandrous 

and repeated mounting behaviour may, however, reduce male– male 
aggression and infanticide from males (Dugdale, Griffiths, et al., 
2011; Wolff & Macdonald, 2004). Second, cryptic female choice 
(i.e., delayed implantation, superfecundation and superfetation) may 
promote sperm competition and mask paternity, and reduce precop-
ulatory male– male competition (Birkhead & Pizzari, 2002). Finally, 
group size and/or density could be a poor metric for competition 
due to foraging niche variation or variation in sex- ratio; additionally, 
although the resource dispersion hypothesis predicts that groups 
approximate territorial carrying capacity, results are mixed (Revilla, 
2003). In fact, in our study population results vary with year such 
that only in some situations larger groups may have proportionally 
more resources available (Johnson et al., 2001, 2002). In line with 
this, we found no evidence that variation in telomere length is due 
to intrasexual competition in early adulthood. Badger early- life telo-
mere length may reflect the consequences of the weather conditions 
experienced, with little impact of early- adulthood social conditions. 
However, in low- quality years only females in good condition breed, 
whereas in high- quality years breeding success is related to status 
(Woodroffe & Macdonald, 1995). We can therefore not exclude 
that there may only be female– female competition in good years. 
Additionally, early- adulthood male– male competition impacts on 
body mass senescence in a badger population at the Woodchester 
Park study population (Gloucestershire, UK) (Beirne et al., 2015). 
While we detected no significant evidence of direct effects of early- 
adulthood intrasexual competition on telomere length, there may be 
downstream effects on senescence.

In conclusion, we demonstrate the importance of accounting for 
seasonal variation when analysing telomere dynamics because of 
potential decreases as well as increases in telomere length across 
seasons. We also evidence that early- life adversity is reflected in 
shorter early- life telomere lengths in badgers, where the physical 
(weather) and social environment predict early- life telomere length. 
When accounting for these environmental effects, the positive as-
sociation between early- life telomere length and survival probability 
remains. We conclude that variation in telomere length in badgers 
reflects early- life conditions, and in addition to this predicts first 
year cub survival.
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