

This is a repository copy of Agar/TiO2/radish anthocyanin/neem essential oil bionanocomposite bilayer films with improved bioactive capability and electrochemical writing property for banana preservation.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/180564/</u>

Version: Accepted Version

Article:

Yang, Z, Zhai, X, Zhang, C et al. (8 more authors) (2022) Agar/TiO2/radish anthocyanin/neem essential oil bionanocomposite bilayer films with improved bioactive capability and electrochemical writing property for banana preservation. Food Hydrocolloids, 123. 107187. p. 107187. ISSN 0268-005X

https://doi.org/10.1016/j.foodhyd.2021.107187

© 2021 Elsevier Ltd. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Agar/TiO ₂ /radish anthocyanin/neem essential oil bionanocomposite bilayer films
2	with improved bioactive capability and electrochemical writing property for
3	banana preservation
4	Zhikun Yang ^{a,#} , Xiaodong Zhai ^{a,#} , Changcai Zhang ^a , Jiyong Shi ^a , Xiaowei Huang ^{a,*} , Zhihua Li ^a , Xiaobo Zou ^{a,*} , Yunyun
5	Gong ^b , Melvin Holmes ^b , Megan Povey ^b , Jianbo Xiao ^c
6	^a Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu
7	University, Zhenjiang, Jiangsu 212013, China
8	^b School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
9	^c Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine,
10	University of Macau, Taipa, Macau, China
11	*Corresponding author. Tel.: +86 511 88780174; Fax: +86 511 88780201; Email: zou_xiaobo@ujs.edu.cn
12	(Xiaobo Zou)
13	"These authors contributed equally in this work
14	*Corresponding author. Tel.: +86 511 88780174; Fax: +86 511 88780201; Email: huangxiaowei@ujs.edu.cn
15	(Xiaowei Huang)
16	

17 Abstract

18 Active agar (AG) bilayer films with bioactive capability and electrochemical writing property were 19 developed for improving the postharvest quality of the banana. The antioxidant and antimicrobial 20 capacity of the films were enhanced with the incorporation of red radish extract (RRE) and neem 21 essential oil (NEO) into AG lower layer. The barrier and mechanical properties, retention of total 22 anthocyanin and NEO content in the bilayer films were effectively improved with addition of TiO2 into 23 the AG upper layer. Multicolor patterns were successfully written on the bilayer film containing RRE. 24 The AG-TiO₂+AG-RRE-NEO bilayer film exhibited the optimal preservations on banana fruits during 25 the storage period, based on the characterization by fruits appearance, senescent spotting symptom, 26 microbial analysis, weight loss and firmness. Thus, the AG-TiO2+AG-RRE-NEO bilayer film was 27 expected to be a multifunction packaging material for banana preservation.

Keywords: Active bilayer film; Agar; TiO₂ nanoparticles; Neem essential oil; Red radish
anthocyanins;

31 Introduction

Banana (*Musa nana Lour*) is popular with consumers all over the world due to its rich nutrition and delicious taste (Soradech, Nunthanid, Limmatvapirat, & Luangtana-Anan, 2016). However, bananas are very susceptible to postharvest changes due to their biochemical changes, microbial infections and physiological aging in the supply chain (Lo'Ay & Dawood, 2017).

36 When it comes to fruit preservation, new bio-based degradable packaging materials are always 37 preferred over conventional packaging materials owing to the extensively acknowledge detrimental 38 effect of the latter on the environment and human health (Zhou, He, Liu, Liao, & Li, 2020). Various 39 bio-based degradable materials have been used to develop fruit packaging films (Jridi, Abdelhedi, 40 Salem, Kechaou, & Menchari, 2020; Rocha, et al., 2018; S. Shankar, Khodaei, & Lacroix, 2021). 41 Among them, agar (AG), a gelatinous polysaccharide extracted from marine red algae, is well-known 42 for its film-forming capacity, has been widely developed as a fruit packaging film (Mostafavi & Zaeim, 43 2020). To enhance the preservation effect of bio-based degradable packaging films, various active 44 compounds and ingredients have been incorporated into the film to fabricate active film. Especially, 45 some plant extracts have been used as the natural antioxidant to enhance the antioxidant capability of 46 the film (Akhtar, et al., 2013; Aloui, Deshmukh, Khomlaem, & Kim, 2021). The red radish, a 47 traditional anthocyanin-rich edible fruit source (Nariyuki & Kozo, 1963). The red radish extract (RRE) 48 is rich in anthocyanin, which is an ideal natural antioxidant. Hence, the RRE could be added into the 49 film as the antioxidant.

To broad antioxidant film application in fruit preservation, the antimicrobial capability of the film need to be further improved. Essential oils, a generally safe (GRAS) additives by FDA, are of great potential as natural antimicrobials (Turek & Stintzing, 2013). Neem essential oil (NEO) is non-toxic, biodegradable in nature and possess great antimicrobial capability and therefore could be incorporated into the film as an natural antimicrobial agent for improving the antimicrobial capability of the active film (Sani, Geshlaghi, Pirsa, & Asdagh, 2021).

The antimicrobial and antioxidant effects of the active films are related to whether the active ingredients can maintain a certain effective dose for a long time in the film. However, essential oil and plant extract are sensitive to high temperatures, light, and the presence of oxygen (Bakowska, Kucharska, & Oszmianski, 2003; Lfc, et al., 2020). They have been shown to degrade and volatilized rapidly under the influence of these factors so that result in a loss of quality (Turek, et al., 2013). Particularly, UV light irradiation presented the obviously effect on the stability of active compounds embedded into active films in practical application (Turek, et al., 2013). Because the fruit packaging could inevitably be exposed to sunlight during transportation and storage processes. Therefore, improving the UV-blocking property of the active film can effectively prevent the active compounds from degradation and loss, so that the active film has great biological activity during the application time.

67 TiO₂ nanoparticles, a generally safe (GRAS) food coloring additives by FDA, are rather cheap and 68 nontoxic, have been widely applied for food preservation due to their UV-absorbing ability and 69 biocompatibility (Ramanavicius & Ramanavicius, 2020; Simonas Ramanavicius, et al., 2020). Hence, 70 TiO₂ nanoparticles could be used as an UV-blocking agent for improving the retention of the active 71 compounds embed in the film by protecting the plant extract and essential oil from UV irradiation.

Additionally, most labels on food packaging are made of traditional petrochemical feedstock to provide consumers with product information, which can brings significant environmental contamination (Patel, 2015; Yang, Zhai, Zou, Shi, & Xiao, 2020). Therefore, the development of edible label is essential for minimizing food safety risk. Our previous reports confirmed that different color patterns could be printed on the polysaccharide film containing anthocyanins using electrochemical writing (Yang, et al., 2020). However, there are only few reports on printing multicolor patterns on active bilayer film with electrochemical writing.

Hence, the aim of this work was to develop active bilayer films with improved bioactive capability and electrochemical writing property for improving the postharvest quality of the banana. The RRE and NEO were incorporated into bottom AG layer as active layer to enhance the bioactive property of the film. The TiO_2 nanoparticles were incorporated into upper AG layer as protective layer to improve the retention of the TAC and NEO in the film. Finally, the active bilayer film was used for improving the postharvest quality of banana.

85 **2. Material and methods**

86 2.1. Materials

87 Chemical agents including agar, TiO₂ nanoparticles, neem essential oil, Folin reagent, ethyl alcohol and

88 2, 2-diphenyl-1-picrylhydrazyl (DPPH) were purchased from Aladdin Industrial Corporation (Shanghai,

- 89 China) and Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China), respectively.
- 90 Fresh red radish (cultivar "carmine") and fresh ripen banana samples were brought from local

91 producers (Zhenjiang, China). Banana fruits with uniform size and healthy outer skins were selected.

92 2.2. Anthocyanins extraction

The extraction method of anthocyanins from red radish was adapted from Yang, et al. (2020). Briefly, the powdered red radish fruit was mixed with ethanol aqueous solution at ratio of 1:60, and then stirred for 30 min. Afterward, the extract solution was passed through the filter paper and freeze-dried to obtain the red radish extract (RRE) powder. The obtained RRE powder was stored at 4 °C in brown air-tight plastic bottle. Total anthocyanins content (TAC) in RRE powder was measured to be 364.0 ± 5.8 mg/g by the pH differential method.

99 **2.3. Development of the bilayer film**

100 Agar (AG) solution (3% w/v) was prepared by dissolving AG powder in distilled water at 98 °C with 101 continuously stirring, and glycerol (0.5% w/v) was also added as a plasticizer. The AG-RRE solution 102 was prepared by dissolving a certain amount of RRE powder in the AG solution at 45 °C. The TAC of 103 AG-RRE solution was 6 mg/100 mL. Meanwhile, NEO in ratio of 2.0 g/100 g of AG was dispersed in 104 AG-RRE solution with continuous stirring, and this mixture solution called AG-RRE-NEO solution. 105 Besides, the AG solution only containing a certain amount of NEO (2.0 g NEO/100 g AG) was also 106 prepared, and this mixture solution called AG-NEO. The AG, AG-RRE, AG-NEO and AG-RRE-NEO 107 solution were continuously stirred for 30 min, homogenized at 10000 rpm for 30 min and then degassed 108 with a sonicator for 10 min. Thereafter, AG, AG-RRE, AG-NEO and AG-RRE-NEO solution (6 mL) 109 were poured into a petri dish, respectively. The AG, AG-RRE, AG-NEO and AG-RRE-NEO hydrogels 110 were formed as the lower layer hydrogel when the solution was cooled.

111 In addition, the AG-TiO₂ solution was prepared by the addition of TiO₂ nanoparticles powders at ratio 112 of 2.0 g/100 g of AG in the AG solution at 45 °C with constant stirring. Subsequently, the mixture was 113 homogenized at 8000 rpm for 5 min, and then degassed at 80 °C for 5 min. Afterward, the AG solution 114 (6 g) was poured over the above-mentioned lower layer hydrogels, respectively. After the AG solution 115 was cooled, AG+AG, AG+AG-RRE, AG+AG-NEO and AG+AG-RRE-NEO bilayer hydrogels were 116 formed. Meantime, 6 g of the AG-TiO₂ solution was poured over the AG-RRE-NEO lower layer 117hydrogel to form the AG-TiO₂+AG-RRE-NEO bilayer hydrogel. The above-mentioned bilayer 118 hydrogels were dried at 45 °C to form films and stored at 4 °C with 75% relative humidity (RH) for 119 further use.

120 **2.4. The procedure of electrochemical writing**

121 The method of printing patterns on the film was adapted from Yang, et al. (2020). Briefly, the bilayer 122 hydrogels incorporating RRE were prepared for electrochemical writing. The electrochemical analyzer 123 (CHI660E, CH Instruments Co., Shanghai, China) was used for printing patterns on the hydrogels. The 124 anode of the electrochemical analyzer made of platinum (Pt) needle (0.5 mm) contacted the upper layer 125 of bilayer hydrogel, and the cathode made of a Pt plate touched the bottom layer surface of the bilayer 126 hydrogel. The movement of the Pt needle was controlled by a DOBOT M1 robotic arm (Yuejiang 127 Technology Co., Ltd., Shenzhen, China) with a step precision of 0.1 μm.

128 **2.5. Characterization of the films**

129 2.5.1. Microstructure observation

Microstructures of cross-section of the prepared films was examined using field emission scanning electron microscopy (FE-SEM) (S-4800, Hitachi High Technologies Corporation, Japan) coupled with energy dispersive X-ray (EDX). The UV–Vis spectrophotometer was used to analyze the optical transmittance of the films in wavelength range of 200–800 nm.

134 2.5.2. Mechanical test

The mechanic properties (Tensile strength (TS) and elongation-at-break (EB)) of bilayer films were determined with a Tensile Testing Machine (Instron Corporation, Canton, MA) with initial grips separation at 20 mm and tensile speed of 0.6 mm/s. The film thickness was also determined with a hand-held digital micrometer. The sample was cut into a rectangular strip (20×20 mm). TS and EB were calculated by the following Eqs. (1) and (2), respectively:

$$140 TS = \frac{F}{S} (1)$$

141
$$EB(\%) = \frac{\Delta l}{l_0}$$
(2)

142 Where *F* is the maximum load; *S* was the initial cross-sectional area of the films; Δl is the extension 143 of the films and l_0 is the initial length of the films.

144 2.5.3. Water vapor barrier property

The water permeability of the prepared films was determined according to ASTM method (ASTM Standard E96M-05, 1995). A glass cup with silica gel was closed by fixing the prepared bilayer film on top. The cups were placed in a desiccator at 25 °C and 50% RH. The weight of the cups were determined every 4 h until a steady increase in weight was achieved. The water vapor transmission rate (WVTR) and water vapor permeability (WVP) of bilayer films were calculated based on Eqs. (3) and 150 (4):

151
$$WVTR = \frac{\Delta m}{A \times \Delta t}$$
 (3)

152
$$WVP = WVTR \times \frac{x}{\Lambda n}$$
 (4)

153 Where $\Delta m / \Delta t$ is the amount of water gain per unit time of transfer; *A* is the area exposed to water 154 transfer; *x* is the film thickness, and Δp is the partial pressure difference across the film.

155 2.5.4. Oxygen permeability (OP)

The OP of the film was determined referred to the method reported by Akhtar, et al. (2013). The OP value of the film samples were determined by dividing oxygen transmission rate (OTR) by the numerical difference in partial oxygen pressure across the films and multiplying by the average thickness of the film samples, using Eq. (5):

160
$$OP = OTR \times \frac{x}{\Delta P}$$
 (5)

161 Where x is the film thickness and ΔP is the partial pressure of oxygen.

162 2.5.5. Antioxidant capability

163 The antioxidant capability of the bilayer films was evaluated based on the scavenging ability of free 164 DPPH radicals. DPPH assay solution was prepared by mixing 9 mL of the film extract solution with 3 165 mL of methanol solution of DPPH (10^{-3} mol/L). The mixture was incubated in dark at 25 °C for 35 min 166 after shaken for 1 min. The absorbance of the DPPH assay solution was measured at 517 nm. DPPH 167 scavenging activity was calculated by Eq. (6):

168 DPPH scavenging activity (%) =
$$\frac{A_{DPPH} - A_S}{A_{DPPH}} \times 100$$

169 (6)

170 Where A_{DPPH} is the absorbance value at 517 nm of the methanol solution of DPPH; A_s is the absorbance

171 value at 517 nm of the DPPH assay solution.

172 2.5.6. Antibacterial capability

The antibacterial capability of the film against *Escherichia coli* (*E. coli*) and *Staphylococcus aureus* (*S. aureus*) was determined referred to agar diffusion method. The film samples were cut into paper disc (6 mm diameter) and placed on agar plates containing corresponding bacteria. All the plates were incubated in an incubation chamber at 37 °C for 24 h. The antibacterial capacity of films was evaluated based on the size of the inhibition zones, which was measured with a vernier caliper. All the

178 experiments were performed in triplicate.

179 **2.6. Loss of NEO in bilayer film**

180 To simulate the different storage conditions, the loss of NEO in bilayer film under visible light ($\lambda \approx$ 181 400–760 nm) and UV light (λ = 320–400 nm with λ max = 350 nm) were measured at 25 °C with 75% 182 RH, respectively. The bilayer film (1.5 g) was mixed with 5 mL deionized water for hydration swelling, 183then 25 mL hexane was added and continually stirred for 24 h at 25 °C. The mixture containing NEO 184 was centrifuged at 12000 rpm for 10 min. Finally, the UV-Vis spectrophotometer was used to measure 185 the absorbance of the supernatant at 318 nm and 265 nm, respectively. Loss of NEO was calculated 186 based on ratio of decreased amount of NEO in the film with respect to the original amount of NEO in 187 film-forming solution. Triplicate measurements were taken.

188 **2.7. Loss of TAC in bilayer film**

The loss of TAC in film under UV light ($\lambda \approx 400-760 \text{ nm}$) and visible light ($\lambda = 320-400 \text{ nm}$ with $\lambda \max = 350 \text{ nm}$) was determined follow our previous method with slight modification (Yang, Zou, Li, Huang, & Tahir, 2019). Briefly, the digested film samples (1 mL) were mixed with 0.025 M potassium chloride buffer (pH 1.0) and 0.4 M sodium acetate buffer (pH 4.5), with a dilution factor. The TAC was explicated as pelargonidin-3-glucoside equivalent by measuring the absorbance at 510 nm and 700 nm.

194 TAC was calculated based on Eq. (7).

195
$$TAC = \frac{A \times M_W \times D_f \times 1000}{\varepsilon \times L}$$
(7)

196 Where *A* is $(A_{510} - A_{710})_{PH1.0} - (A_{510} - A_{710})_{PH4.5}$, *M_W* is the molecular weight of 197 pelargonidin-3-glucoside (433 g/mol), *D_f* is the dilution factor, ε is the molar absorbance of 198 cyanidin-3-glucoside (26900 M⁻¹cm⁻¹); *L* is the optical length. The *TAC*, mg/l was converted to mg/g 199 dry weight of film.

200 **2.8. Application of bilayer films in preserving the banana**

To investigate preservation effect of the above-mentioned films, fresh banana was immersed in deionized water for 1 h in order to remove any impurities. Afterward, the banana was air-dried at $25 \pm$

- 203 1°C and wrapped with the prepared film. The wrapped banana was stored at 25 ± 1 °C for 8 days. The
- 204 postharvest quality of banana at 0, 2, 4, 6, 8 days were recorded.
- 205 2.8.1. Weight loss and firmness determination
- 206 The initial weight of banana samples was explicated as W_0 . The weight of stored bananas was

207 expressed as W_l . The weight of stored banana was measured at 2, 4, 6 and 8 days. The weight loss was 208 calculated using Eq. (8):

209 Weight loss (%) =
$$\frac{W_0 - W_1}{W_0} \times 100$$
 (8)

210 Firmness of banana was measured using a Texture Analyzer. The tested banana sample was punctured 5

- 211 mm in depth with a speed of 1.0 mm s^{-1} . The banana firmness was recorded as Newton (N).
- 212 2.8.2. Assessment of senescent spotting
- 213 The severity of surface spotting of banana was assessed by the analysis of the number, occurrence and
- 214 expansion of spotting on banana peel and evaluated by using the scales of 0 to 4. Where score 0 means
- no dark spot on the peel; score1: 1–25 % dark spot on the peel; score 2: 26–50 % dark spot on the peel;
- score 3 : 51–75 % dark spot on the peel; score 4 :76–100 % dark spot on the peel.
- 217 2.8.3 Microbial analysis
- 218 Briefly, 20 g of banana samples were milled and transferred to Duran flask with 180 ml of 0.1%
- 219 peptone water using an aseptic technique. The prepared samples were serially diluted and then spread
- 220 on potato dextrose agar (PDA) plates. The plates were nurtured at 25 °C for 72 h and total
- 221 moulds/yeasts colony forming units (CFU) were determined. Triplicate measurements were taken at 0,
- 222 2, 4, 6 and 8 days of storage.

223 **2.9. Statistical test**

- Tukey's test was used for the comparisons between the means at the 95% confidence level, the data were analyzed using one-way analysis of variance (ANOVA) in SPSS 15.0 software.
- 226 **3. Results and discussion**

227 **3.1. Characterization of the films**

228 3.1.1. Morphology analysis

The cross section of AG+AG bilayer film was smooth and homogeneous (Fig. 1a), and no clear gap was noticed between the two layers, Indicating that the upper layer and lower layer had outstanding compatibility with each other. With the incorporation of NEO, the cross-section of lower AG layer hardly changed (Fig. 1c). Similar result was also observed by Norcino, Mendes, Natarelli, Manrich, and Mattoso (2020), who found that the cross-section of the pectin film enriched with low concentration of copaiba oil was smooth and compact. When the RRE was incorporated into the AG layer, the AG-RRE layer presented obvious aggregation of spindrift-like structures (Fig. 1b). This result 236 accord with the fact that the presence of hydrophilic compounds in the RRE could lead to some 237 discontinuities in the AG film. However, the AG-RRE layer became less rough (Fig. 1c) with the 238 incorporation of NEO. This change was also similar to those reported by Rocha, et al. (2018). The 239 aggregated TiO₂ nanoparticles with sheet shapes were apparently presented in Fig. 1e, and the result of 240 EDX analysis certified the existence of TiO₂ in the upper AG layer (Fig. S1). The TiO₂ nanoparticles 241 could be observed in the AG-TiO₂+AG-RRE-NEO bilayer film (Fig. 1f). With the addition of TiO₂, the 242 AG layer indicated some irregularities representative of semi-crystalline structures, and the interface of 243 the AG-TiO₂ layer and AG-RRE-NEO layer maintained well-crosslinked. This result revealed that AG 244 based bilayer active films with decent integrity were developed successfully.

246 Figure. 1. SEM images of cross section of AG+AG (a), AG+AG-RRE (b), AG+AG-NEO (c),

247 AG+AG-RRE-NEO (d), TiO₂ nanoparticles (e) and AG-TiO₂+AG-RRE-NEO films (f).

249 Mechanical properties of bilayer films were shown in Fig.2. The TS of the AG+AG film was 250 obviously decreased with incorporation of the RRE (Fig.2a). This result could be due to the interaction 251 between AG and RRE decreased the strength of the film. The TS of AG+AG film altered little with the 252 incorporation of NEO. This result is in consonance with the micrographs presented above in Fig. 1c, 253the cross-section of AG layer changed hardly with the incorporation of NEO. Similar trend was also 254showed in EB of AG based bilayer film (Fig.2b). The EB of AG+AG bilayer film presented a weak 255 change with addition of NEO while the EB of AG+AG film increased significantly with the addition of 256 RRE (p < 0.05). This increase in EB could be due to that a large amount of anthocyanin in RRE can 257 increase the mobility of polymeric chain. The TS of AG based bilayer film reached the highest value 258 $(30.0 \pm 2.9 \text{ Mpa})$ with the incorporation of TiO₂ nanoparticles. This result might be due to the fact that 259 TiO₂ nanoparticles with high surface energy and large specific surface area could facilitate the 260 interfacial bonding between nanoparticles and the AG so that improved the strength of the films (Li & 261 Li, 2010; Liu, et al., 2019). This change was also similar to those observed by Vejdan, Ojagh, Adeli, 262 and Abdollahi (2016), who developed the GN/AG bilayer film incorporated with TiO2 nanoparticles. In 263 contrast, the EB of the AG based bilayer film decreased significantly (p < 0.05) with incorporation of 264 the TiO₂ (Fig.2b). Similar result was also found by Salarbashi, et al. (2016), who conducted that the 265 incorporation of nanoparticles into the polysaccharide matrix limited the moving scale of 266 polysaccharide chain segments, so that decreased the EB of the film.

267 The WVP of the AG+AG film was significantly decreased (p < 0.05) to 4.3 \pm 0.23 268 g·mm·m⁻²·Kpa⁻¹·h⁻¹ after incorporation of RRE (Fig.2c). This because phenolic components in RRE 269 could form noncovalent hydrophobic interactions with AG so that reduce the hydrophilicity of the films. 270 The WVP of the AG+AG film was also significantly decreased with the addition of NEO, because the 271 chemical nature of the NEO exhibited the important effect on improving the water vapor barrier 272 properties of edible films. The WVP of AG+AG-RRE film showed a weak decrease after addition of 273 NEO. Similar result was also observed by Mehdizadeh, Tajik, Langroodi, Molaei, and Mahmoudian 274 (2020), who developed the chitosan-starch film enriched with plant extract and essential oil. The WVP 275of the AG+AG-RRE-NEO film decreased obviously with the incorporation of TiO₂, indicating that 276 incorporating the nanoparticles into the polymer matrix could increase the flexuous path for water 277 vapor diffusion (Shiv Shankar & Rhim, 2017). This result revealed that the addition of RRE and NEO 278 could decrease the WVP of the bilayer film, and TiO₂ nanoparticles is optimal for improving the water

279 vapor barrier property of AG bilayer film.

289

290

291

292

293

294

280 The OP of the AG+AG film, AG+AG-RRE and AG+AG-NEO films were 29.5 ± 2.6 , 25.2 ± 1.9 281 and 25.6 ± 1.7 cm³·µm·m⁻²·d⁻¹·Kpa⁻¹, respectively (Fig. 2d). This decreased OP of the bilayer film after 282 incorporation of RRE or NEO could be due to that the incorporation of RRE or NEO might decrease 283 the ability of the nonpolar oxygen molecules to condense in the film and decrease the partition 284coefficient (Wang, Hu, Ma, & Wang, 2016). The OP of the AG-TiO₂+AG-RRE-NEO film attained the 285 lowest value (19.5 \pm 1.5 cm³·µm·m⁻²·d⁻¹·Kpa⁻¹), indicating that the incorporation of TiO₂ nanoparticle 286 could increase the diffusive path for oxygen molecules (Nafchi, Nassiri, Sheibani, Ariffin, & Karim, 287 2013; Vaezi, Asadpour, & Sharifi, 2019). This result revealed that the oxygen barrier property of the 288 AG based bilayer film could be improved with the incorporation of RRE and NEO, and it can be

The content of the bioactive compounds in the active film during the storage time is essential for practical application. The loss of NEO and TAC in the films exposed to visible light and UV light were 297 checked in this work, respectively. The loss of NEO in the bilayer film under visible light was shown in 298 Fig. 3a. At the 0 days, the loss of NEO in AG+AG-NEO, AG+AG-RRE-NEO and 299 AG-TiO₂+AG-RRE-NEO were 52.4, 53.0% and 48.2%, respectively. This accord with the fact that 300 NEO could suffer a great loss in the drying process (Tian, et al., 2018). In addition, the NEO in 301 AG+AG-NEO, AG+AG-RRE-NEO film were almost absolutely evaporated after 8 days of storage, 302 while the AG-TiO₂+AG-RRE-NEO film enhanced its retention time up to 14 days. Similar result was 303 also studied in the loss of NEO in the film under the UV light (Fig. 3b). At the 0 h, the loss percent of 304 NEO in AG+AG-NEO and AG+AG-RRE-NEO film were 43.2% and 42.5%, respectively. After 18 h, 305 the loss of NEO in AG+AG-NEO and AG+AG-RRE-NEO film all increased to 100%. As for 306 AG-TiO₂+AG-RRE-NEO film, NEO was completely evaporated or degraded in 28 h. The higher 307 retention of NEO in AG-TiO2+AG-RRE-NEO film under UV light and visible light could be owing to 308 TiO₂ nanoparticles with visible light barrier and UV-light absorption property in the upper layer (Fig. 309 S1) that could effectively decrease the evaporation and degradation of NEO in the lower layer.

310 The loss of TAC in the bilayer film under visible light for 32 d was shown in Fig. 3c. After 32 days of 311 storage, the loss of TAC in AG+AG-RRE film and AG+AG-RRE-NEO were 49.9% and 43.6%, 312 respectively. While the loss of TAC in AG-TiO₂+AG-RRE-NEO film was 14.8%. This was due to the 313 fact that the incorporating TiO₂ nanoparticles into the film can effectively block light (Fig. S1) and 314 oxygen (Fig. 2d) so that protect the anthocyanins from degradation. The loss of TAC in the bilayer film 315 under the UV light was presented in Fig. 3d. The TAC of all bilayer films presented a downward trend 316 during the test time. After 40 h, the TAC of AG+AG-RRE and AG+AG-RRE-NEO film were $3.35 \pm$ 317 0.14 and 3.82 \pm 0.31 mg P3G g⁻¹, respectively. The AG-RRE-NEO film with the incorporation of TiO₂ 318 maintained the highest TAC (6.76 \pm 0.54 mg P3G g⁻¹). This result can be due to the presence of TiO₂ 319 nanoparticles with excellent UV absorbing property in the upper layer, which could convert UV light 320 into less detrimental heat or fluorescence. The above-mentioned results proved the validity of TiO_2 321 incorporation on maintaining the content of NEO and TAC in AG film during the storage period.

323

Figure. 3. The loss of NEO in the bilayer films under visible light (a) and UV light (b), and the loss of
 TAC in the bilayer films under visible light (c) and UV light (d).

326 **3.3. Antibacterial and antioxidant capability**

327 The photos of inhibition zone of different films were presented in Fig. 4a. The AG+AG bilayer film 328 showed no inhibition zone for all test bacterial. With the incorporation of RRE, the bilayer film displayed positive antibacterial effect to all tested bacteria strains, and the diameter of inhibition zone 329 330 were 8.7 \pm 0.25 and 7.3 \pm 0.14 mm for *E. coli* and *S. aureus*, respectively. This result could be due 331 to that the polyphenols in RRE could damage the structure of cell walls and change the permeability of 332 cell membranes. Notably, the antimicrobial capability of the AG+AG film improved significantly (p < p333 0.05) with the incorporation of NEO, and no significant difference (p > 0.05) was studied in 334 antibacterial activity of AG+AG-NEO and AG+AG-RRE-NEO films. This could be attributed to the 335 large amount of antimicrobial compounds in NEO (sterols, triterpenoids and active ester derivatives),

which can effectively inhibit microbial growth (Islas, Acosta, G-Buentello, Delgado-Gallegos, & Moreno-Cuevas, 2020). The inhibition zone of bilayer film for *E. coli* and *S. aureus* reached the highest value (24.8 ± 1.50 and 20.2 ± 1.10) with the addition of TiO₂. This result may be due to the fact that metal ions can destroy the structure of microbial cells and cause cell inactivation (Khatoon, Rao, Mohan, Ramanaviciene, & Ramanavicius, 2018). Similar result was also found by Khatoon, Nageswara Rao, Mohan, Ramanaviciene, and Ramanavicius (2017).

342 The antioxidant capability of the AG+AG bilayer film was $4.9 \pm 0.25\%$ (Fig. 4b), and it increased to 343 $13.5 \pm 0.24\%$ with the addition of NEO. The antioxidant capability of the AG bilayer film increased 344 significantly (p < 0.05) to $43.9 \pm 1.5\%$ with the incorporation of RRE. Similar result was also reported 345 by Kaya, Ravikumar, Ilk, Mujtaba, and Erkul (2017), who developed the chitosan based edible film 346 enriched with berberis crataegina's fruit extract and seed oil. Our previous study has found that the 347 RRE contained large amount of acylated anthocyanins (Zhai, Li, Zhang, Shi, & Povey, 2018), which 348 showed strong antioxidant capability. This improvement of AG+AG bilayer film could be attributed to 349 the strong antioxidant capability of acylated anthocyanins in RRE. The antioxidant capability of 350 AG+AG-RRE bilayer film presented a weak increase with the addition of NEO and TiO₂, and no 351 significant (p > 0.05) difference was observed in antioxidant capability of AG+AG-RRE, 352 AG+AG-RRE-NEO and AG-TiO₂+AG-RRE-NEO films. Similar change was also observed by Lan, 353 Wang, Zhang, Liang, and Zhang (2020), who found that there was no improvement of the antioxidant 354 capability of CS film with the incorporation of TiO₂ nanoparticles. The above-mentioned results 355 illustrated that the antioxidant capability of AG bilayer film was mainly attributed to the incorporation 356 of RRE, and the antibacterial capability of AG bilayer film was mainly due to the addition of NEO and 357 TiO₂. The AG based bilayer film enriched with RRE, NEO and TiO₂ can be used as an effective 358 antimicrobial and antioxidant film.

Figure. 4. The antimicrobial capability (a) and antioxidant capability (b) of the AG+AG, AG+AG-RRE,
 AG+AG-NEO, AG+AG-RRE-NEO, and AG-TiO₂+AG-RRE-NEO films.

361 **3.4.** The electrochemical writing property of bilayer films

362 The AG bilayer hydrogels containing high water content were successfully produced in this work. The 363 electrochemical writing pattern with multicolor was developed based on the color changes of 364 anthocyanins induced by hydrogen ions and hydroxyl ions generated from water electrolytic reactions 365 (Yang, et al., 2020). In our previous study, we found that when we use a monolayer hydrogel for 366 electrochemical writing, the entire lower surface of the monolayer hydrogel connected with the Pt plate 367 would be changed to yellow or red due to the water electrolysis reaction (Zhai, et al., 2018). Notably, in 368 this work, all the bilayer hydrogels showed a good performance for electrochemical writing. The 369 English letters (Fig. 5a), smiley face pattern (Fig. 5b) and Chinese characters (Fig. 5c) were 370 successfully written on AG+AG-RRE, AG+AG-RRE-NEO and AG-TiO2+AG-RRE-NEO films, 371 respectively, and no color change was occurred on the surface of the hydrogel connected with the Pt

plate. This due to the fact that the water electrolysis reaction round the Pt plate could not change the color of AG or AG-TiO₂ layer hydrogel of the bilayer hydrogel without anthocyanins. This result indicated that the AG-RRE layer incorporated with low concentration of NEO will not affected the electrochemical writing property of the bilayer film, and the AG based bilayer film can be used for electrochemical writing with good performance.

Figure. 5. The images of English letters written on the AG+AG-RRE film (a), smiley
 face pattern written on AG+AG-RRE-NEO (b), and Chinese characters written on
 AG-TiO₂+AG-RRE-NEO film (c).

380 **3.5. Preservation of banana**

381 3.5.1. Appearance and senescent spotting symptom

382 Fig. 6a presented the appearance changes of banana fruits during the storage period. Initially, the 383 surfaces of all bananas were green and intact. After 8 days of storage, the appearance quality of 384 unpackaged bananas was deteriorated obviously, as evidenced by the appearance of black spots and 385 senescent symptom (Fig. 6b). The appearance of black spots in banana peel could be due to the 386 browning reactions and microbial infection (Kamdee, Ketsa, & Doorn, 2009). Compared with the 387 unpackaged banana, the AG+AG packaged banana appeared less black senescent spots (Fig. 6b). This 388 could be due to that the AG based bilayer film can act as a physical barrier to isolate foreign bacteria 389 and reduce the entry of oxygen. As compared with the AG+AG packaged fruit, the bananas packaged 390 with AG bilayer film enriched with functional agent presented a slight change in physical appearance. 391 Notably, AG-TiO2+AG-RRE-NEO bilayer film exhibited the best effect on maintaining the appearance 392 and senescent spotting symptom of banana. This accord with the fact that AG-TiO₂+AG-RRE-NEO 393 films maintain the highest content of TAC and NEO (Fig. 3), which would enormously effect the 394 antibacterial and antioxidant capabilities of film during the storage so that could improve the 395 postharvest quality of banana. It was intuitively reflected that the AG based bilayer film incorporated

396 with RRE or NEO can improve the appearance of banana, and the AG-TiO₂+AG-RRE-NEO film

- 397 showed the optimal performance.
- 398 3.5.2. Microbial analysis

399 The microbial analysis is essential factor for evaluating the preservation effect of banana. The effect of 400 different packaging materials on the total moulds and yeasts counts of the banana samples was shown 401 in Fig. 6c, and all the banana samples presented an upward trend. No significantly difference (p > 0.05) 402 was observed in the total moulds and yeasts of each group at the beginning of storage. After 8 days of 403 storage, total moulds/yeasts counts of the unpackaged banana increased to 4.50 ± 0.31 Log CFU/g, and 404 the value of AG+AG, AG+AG-RRE packaged banana were 2.33 ± 0.24 , 2.00 ± 0.12 , respectively. 405 Notably, the AG based bilayer film incorporated with NEO presented a good performance on inhibiting 406 moulds and yeasts growth, and the AG-TiO2+AG-RRE-NEO film packaged banana showed the lowest 407 moulds and yeasts population $(1.33 \pm 0.11 \text{ Log CFU/g})$. This effect is consistent with the determination 408 of antimicrobial capacity of the film, indicating that the AG based bilayer film with high antimicrobial 409 activity could effectively inhibited the growth of microbial from the banana. Similar result was also 410 reported by Chowdhury, Teoh, Ong, Rafflisman Zaidi, and Mah (2020), who found that poly(vinyl) 411 alcohol-glyoxal-AuNPs film with enhanced antimicrobial property revealed excellent effect on 412 inhibiting the microbial growth in banana. The comparison of the effect of various packaging materials 413 on microbial analysis of bananas was presented in Table S1. It is noticeable that the bilayer film in 414 present work exhibited the best performance on inhibiting the growth of moulds and yeasts over other 415 reported packaging materials in the literature. This good inhibition effect could be attributed to the 416 presence of TiO₂ and NEO in the bilayer film, which are well-known as effective antimicrobial agent.

417 3.5.3. Weight loss and firmness

418 Weight loss is a crucial indicator for evaluating the postharvest quality of fruit. Although all the banana 419 fruits presented an upward trend in weight loss percent (Fig. 6d), the unpackaged fruits presented more 420 rapid in weight loss (13.55%) over packaged fruits during the storage period. The unpackaged fruits 421 were exposed to the environment directly, resulting in rapid water loss. Compared with the AG+AG 422 packaged group, significantly (P < 0.05) lower weight loss percent were studied in the AG+AG-RRE, 423 AG+AG-NEO, and AG+AG-RRE-NEO films package fruits (8.92 \pm 0.31, 9.03 \pm 0.20, and 8.89 \pm 424 0.34%, respectively). These results could be due to that bilayer films enriched with functional agents 425 cause a powerful enhancement in the water barrier property so that decreased the loss of water from banana surface. This result was similar to those reported by Zhou, et al. (2020), who observed that
films with lower gas penetrability and WVP could improve the quality of stored fruit. Among them, the
AG-TiO₂+AG-RRE-NEO bilayer film showed the optimal performance on slowing down the weight
loss from banana.

430 Fruit firmness is an essential parameter related to the consumer acceptability. Fig. 6e showed that the 431 firmness of all banana fruits decreased during the storage period. After 8 days of storage, the 432 unpackaged banana presented the lowest firmness value (8.5 ± 0.84 N) while the packaged banana exhibited significantly (P < 0.05) higher firmness over the unpackaged banana. This slower drop of 433 434 firmness in the packaged banana could be closely associated with the gas exchange, water loss, and 435 moisture migration, thus, slowing down the softening of the fruit (La, et al., 2021). These results 436 revealed that the AG based bilayer film enriched with RRE, NEO can be utilized to retard the ripening 437 process and slow down the loss of water from banana, and the AG-TiO2+AG-RRE-NEO exhibited the 438 best effect.

By comparing the effect of various packaging materials on weight loss and firmness of bananas (Table S2), the packaging materials fabricated in this work presented satisfaction effect among several reported packaging materials in the literature, especially for improving the firmness of banana.

443

444 Figure. 6. The bananas preservation indexes of the AG+AG, AG+AG-RRE, AG+AG-NEO,

445 AG+AG-RRE-NEO, and AG-TiO₂+AG-RRE-NEO films during 8 days of storage at room temperature.

446 A: Physical appearance; b: Senescent spotting; c: Total moulds and yeasts; d: Weight loss; e: Firmness.

448 **4. Conclusion**

449 The AG based active bilayer films with enhanced bioactive capability and electrochemical writing 450 property were fabricated successfully for banana preservation. The antioxidant and antimicrobial 451 capacities of the film were improved by the incorporation of RRE and NEO into AG lower layer. The barrier and mechanical properties and the retention of TAC and NEO content in the bilayer film were 452 453 significantly enhanced by the addition of TiO₂. The multicolor patters were successfully written on the 454 AG based bilayer film. Finally, all the bilayer films were used for preserving the banana. Compared to 455 other films, the AG-TiO2+AG-RRE-NEO bilayer film presented obvious preservations on 456 stored-banana fruits by the analysis of the result of banana appearance, senescent spotting symptom, 457 microbial analysis, weight loss and firmness. Hence, the AG-TiO2+AG-RRE-NEO bilayer film was 458 expected to be a multifunction packaging material for banana preservation.

- 459 Acknowledgments
- 460 This study was supported by the National Key Research and Development Program of China
- 461 (2018YFD0400800,2017YFC1600806); National Natural Science Foundation of China
- 462 (31601543,31801631,31671844,1601360061); Natural Science Foundation of Jiangsu Province
- 463 (BK20160506, BK20180865).

464 Supplementary data

465 Some essential tables and figures to this article.

466 **References**

- Akhtar, M. J., Jacquot, M., Jamshidian, M., Imran, M., Arab-Tehrany, E., & De Sobry, S. (2013).
 Fabrication and physicochemical characterization of HPMC films with commercial plant
 extract: Influence of light and film composition. *Food Hydrocolloids*, *31*(2), 420-427.
- Aloui, H., Deshmukh, A. R., Khomlaem, C., & Kim, B. S. (2021). Novel composite films based on
 sodium alginate and gallnut extract with enhanced antioxidant, antimicrobial, barrier and
 mechanical properties. *Food Hydrocolloids*, *113*, 106508.
- Bakowska, A., Kucharska, A. Z., & Oszmianski, J. (2003). The effects of heating, UV irradiation, and
 storage on stability of the anthocyanin–polyphenol copigment complex. *Food Chemistry*,
 81(3), 349-355.
- 476 Chowdhury, S., Teoh, Y. L., Ong, K. M., Rafflisman Zaidi, N. S., & Mah, S.-K. (2020). Poly(vinyl)
 477 alcohol crosslinked composite packaging film containing gold nanoparticles on shelf life
 478 extension of banana. *Food Packaging and Shelf Life*, *24*, 100463.
- Islas, J. F., Acosta, E., G-Buentello, Z., Delgado-Gallegos, J. L., & Moreno-Cuevas, J. E. (2020). An
 overview of Neem (Azadirachta indica) and its potential impact on health. *Journal of Functional Foods*, 74(104171), 1-13.
- 482 Jridi, M., Abdelhedi, O., Salem, A., Kechaou, H., & Menchari, Y. (2020). Physicochemical, antioxidant

- and antibacterial properties of fish gelatin-based edible films enriched with orange peel pectin:
 Wrapping application. *Food Hydrocolloids*, 103, 105688.
- Kamdee, C., Ketsa, S., & Doorn, W. (2009). Effect of heat treatment on ripening and early peel spotting
 in cv. Sucrier banana. *Postharvest Biology & Technology*, *52*(3), 288-293.
- Kaya, M., Ravikumar, P., Ilk, S., Mujtaba, M., & Erkul, S. K. (2017). Production And Characterization
 Of Chitosan-Based Edible Films From Berberis Crataegina's Fruit Extract And Seed Oil.
- Khatoon, U. T., Nageswara Rao, G. V. S., Mohan, K. M., Ramanaviciene, A., & Ramanavicius, A.
 (2017). Antibacterial and antifungal activity of silver nanospheres synthesized by tri-sodium
 citrate assisted chemical approach. *Vacuum*, 146, 259-265.
- Khatoon, U. T., Rao, G. V. S. N., Mohan, M. K., Ramanaviciene, A., & Ramanavicius, A. (2018).
 Comparative study of antifungal activity of silver and gold nanoparticles synthesized by facile
 chemical approach. *Journal of Environmental Chemical Engineering*, 6(5), 5837-5844.
- La, D. D., Nguyen-Tri, P., Le, K. H., Nguyen, P. T. M., Nguyen, M. D.-B., Vo, A. T. K., Nguyen, M. T.
 H., Chang, S. W., Tran, L. D., Chung, W. J., & Nguyen, D. D. (2021). Effects of antibacterial
 ZnO nanoparticles on the performance of a chitosan/gum arabic edible coating for
 post-harvest banana preservation. *Progress in Organic Coatings*, *151*, 106057.
- Lan, W., Wang, S., Zhang, Z., Liang, X., & Zhang, J. (2020). Development of red apple pomace
 extract/chitosan-based films reinforced by TiO2 nanoparticles as a multifunctional packaging
 material. *International Journal of Biological Macromolecules*, 168.
- Lfc, A., Qig, A., Mcv, B., Sg, B., Afo, B., Bmh, A., & Sgm, C. (2020). Development of nanoemulsions
 containing Lavandula dentata or Myristica fragrans essential oils: Influence of temperature
 and storage period on physical-chemical properties and chemical stability ScienceDirect.
 Industrial Crops and Products.
- Li, S. C., & Li, Y.-N. (2010). Mechanical and antibacterial properties of modified
 nano-ZnO/high-density polyethylene composite films with a low doped content of nano-ZnO.
 Journal of Applied Polymer Science, 116(5), 2965-2969.
- Liu, X., Chen, X., Ren, J., Chang, M., He, B., & Zhang, C. (2019). Effects of nano-ZnO and nano-SiO2
 particles on properties of PVA/xylan composite films. *International Journal of Biological Macromolecules, 132*, 978-986.
- Lo'Ay, A. A., & Dawood, H. D. (2017). Minimize browning incidence of banana by postharvest active
 chitosan/PVA Combines with oxalic acid treatment during shelf-life. *Scientia Horticulturae*,
 226(226), 208-215.
- Mehdizadeh, T., Tajik, H., Langroodi, A. M., Molaei, R., & Mahmoudian, A. (2020). Chitosan-starch
 film containing pomegranate peel extract and Thymus kotschyanus essential oil can prolong
 the shelf life of beef. *Meat Science*, *163*(May), 108073.108071-108073.108011.
- Mostafavi, F. S., & Zaeim, D. (2020). Agar-based edible films for food packaging applications A
 review. *International Journal of Biological Macromolecules*, 159, 1165-1176.
- Nafchi, A. M., Nassiri, R., Sheibani, S., Ariffin, F., & Karim, A. A. (2013). Preparation and
 characterization of bionanocomposite films filled with nanorod-rich zinc oxide. *Carbohydrate Polymers*, 96(1), 233-239.
- Nariyuki, I., & Kozo, H. (1963). Chromatographic separation and characterization of the component
 anthocyanins in radish root. *Botanical Magazine Tokyo*, 76(895), 6-13.
- Norcino, L., Mendes, J. F., Natarelli, C., Manrich, A., & Mattoso, L. (2020). Pectin films loaded with
 copaiba oil nanoemulsions for potential use as bio-based active packaging. *Food*

Patel, A. K. (2015). Chitosan: Emergence as potent candidate for green adhesive market. *Biochemical Engineering Journal*, 102, 74-81.

Hydrocolloids, 106, 105862.

- Ramanavicius, S., & Ramanavicius, A. (2020). Insights in the Application of Stoichiometric and
 Non-Stoichiometric Titanium Oxides for the Design of Sensors for the Determination of
 Gases and VOCs (TiO2x and TinO2n1 vs. TiO2). Sensors, 20(23), 6833.
- Ramanavicius, S., Tereshchenko, A., Karpicz, R., Ratautaite, V., Bubniene, U., Maneikis, A., Jagminas,
 A., & Ramanavicius, A. (2020). TiO2-x/TiO2-Structure Based 'Self-Heated' Sensor for the
 Determination of Some Reducing Gases. *Sensors*, 20(1), 74.
- Rocha, M., Aleman, A., Romani, V. P., Elvira Lopez-Caballero, M., Carmen Gomez-Guillen, M.,
 Montero, P., & Prentice, C. (2018). Effects of agar films incorporated with fish protein
 hydrolysate or clove essential oil on flounder (Paralichthys orbignyanus) fillets shelf-life. *Food Hydrocolloids*, 81(AUG.), 351-363.
- Salarbashi, D., Mortazavi, S. A., Noghabi, M. S., Fazly Bazzaz, B. S., Sedaghat, N., Ramezani, M., &
 Shahabi-Ghahfarrokhi, I. (2016). Development of new active packaging film made from a
 soluble soybean polysaccharide incorporating ZnO nanoparticles. *Carbohydrate Polymers*,
 140, 220-227.
- Sani, I. K., Geshlaghi, S. P., Pirsa, S., & Asdagh, A. (2021). Composite film based on potato
 starch/apple peel pectin/ZrO2 nanoparticles/ microencapsulated Zataria multiflora essential oil;
 investigation of physicochemical properties and use in quail meat packaging. *Food Hydrocolloids, 117*, 106719.
- Shankar, S., Khodaei, D., & Lacroix, M. (2021). Effect of chitosan/essential oils/silver nanoparticles
 composite films packaging and gamma irradiation on shelf life of strawberries. *Food Hydrocolloids*.
- Shankar, S., & Rhim, J.-W. (2017). Preparation and characterization of agar/lignin/silver nanoparticles
 composite films with ultraviolet light barrier and antibacterial properties. *Food Hydrocolloids*,
 71, 76-84.
- Soradech, S., Nunthanid, J., Limmatvapirat, S., & Luangtana-Anan, M. (2016). Utilization of shellac
 and gelatin composite film for coating to extend the shelf life of banana. *Food Control*,
 S0956713516306089.
- Tian, X., Gao, C., Yang, Y., Shen, X., Huang, M., Liu, S., & Tang, X. (2018). Retention and release
 properties of cinnamon essential oil in antimicrobial films based on chitosan and gum arabic.
 Food Hydrocolloids, 84, 84-92.
- Turek, C., & Stintzing, F. C. (2013). Stability of Essential Oils: A Review. *Comprehensive Reviews in Food Science and Food Safety, 12*(1), 40-53.
- Vaezi, K., Asadpour, G., & Sharifi, H. (2019). Effect of ZnO nanoparticles on the mechanical, barrier
 and optical properties of thermoplastic cationic starch/montmorillonite biodegradable films.
 International Journal of Biological Macromolecules, 124, 519-529.
- Vejdan, A., Ojagh, S. M., Adeli, A., & Abdollahi, M. (2016). Effect of TiO2 nanoparticles on the
 physico-mechanical and ultraviolet light barrier properties of fish gelatin/agar bilayer film.
 LWT Food Science and Technology, 71, 88-95.
- Wang, H., Hu, D., Ma, Q., & Wang, L. (2016). Physical and antioxidant properties of flexible soy
 protein isolate films by incorporating chestnut (Castanea mollissima) bur extracts. *LWT Food Science and Technology*, *71*, 33-39.

- Yang, Z., Zhai, X., Zou, X., Shi, J., & Xiao, J. (2020). Bilayer pH-sensitive colorimetric films with
 light-blocking ability and electrochemical writing property: Application in monitoring crucian
 spoilage in smart packaging. *Food Chemistry*, *336*, 127634.
- Yang, Z., Zou, X., Li, Z., Huang, X., & Tahir, H. E. (2019). Improved Postharvest Quality of Cold
 Stored Blueberry by Edible Coating Based on Composite Gum Arabic/Roselle Extract. *Food and Bioprocess Technology*, *12*(1).
- Zhai, X., Li, Z., Zhang, J., Shi, J., & Povey, M. (2018). Natural Biomaterial-Based Edible and
 pH-Sensitive Films Combined with Electrochemical Writing for Intelligent Food Packaging.
 Journal of Agricultural and Food Chemistry, 66(48).
- Zhou, W., He, Y., Liu, F., Liao, L., & Li, J. (2020). Carboxymethyl chitosan-pullulan edible films
 enriched with galangal essential oil: Characterization and application in mango preservation.
 Carbohydrate Polymers, 256(3), 117579.