
This is a repository copy of Machine learning-based prediction of 1-year mortality for acute
coronary syndrome.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/180526/

Version: Published Version

Article:

Hadanny, A, Shouval, R, Wu, J orcid.org/0000-0001-6093-599X et al. (8 more authors) 
(2022) Machine learning-based prediction of 1-year mortality for acute coronary syndrome.
Journal of Cardiology, 79 (3). pp. 342-351. ISSN 0914-5087 

https://doi.org/10.1016/j.jjcc.2021.11.006

© 2021 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved. 
This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



  

 

1 

 

Machine learning-based prediction of 1-year mortality for acute coronary syndrome  

Amir Hadanny MD1,4, Roni Shouval MD, PhD2, Jianhua Wu PhD, Chris P Gale MD X,  Ron Unger PhD3, 

Doron Zahger MD4, Ilan Goldenberg MD6, Roy Beigel MD7, Shlomi Matetzky7,  Zaza 

Iakobishvili MD, PhD8  

Correspondence: Amir Hadanny, MD, Sagol Center, Shamir Medical Center, 70300, Israel. 

Phone (972) 89779395; Fax: (972) 39542238; E-mail: amir.had@gmail.com 

Acknowledgments 

Source of funding 

The authors had no funding source or grant for this study. 

Conflict of interests 

The authors had no conflict of interests 

 
1 Sagol Center for Hyperbaric medicine and Research, Assaf HaRofe Medical Center, Ramle, Israel; The Mina and Everard Goodman Faculty of 

Life Sciences, Bar-Ilan University, Ramat-Gan, Israel. Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel. This author takes 

responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation 

 

2 
Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY. The Mina and Everard Goodman 

Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel. Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.  This author 

takes responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation 

 
3 The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel. This author takes responsibility for all 

aspects of the reliability and freedom from bias of the data presented and their discussed interpretation 

 
4 Department of Cardiology, Soroka University Medical Center, Faculty of Health Sciences, Ben Gurion University of the Negev. This author 

takes responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation 

 

X Leeds Institute of Cardiovascualr and Metabolic Medicine, University of Leeds, Leeds UK 

X Leeds Institue for Data Analytics, University of Leeds, Leeds, UK 

X Department of Cadiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK 

 

mailto:amir.had@gmail.com


  

 

2 

 

Keywords: STEMI, machine learning, data mining, outcome, mortality  



  

 

3 

 

Abstract 

Background:   

Most previous studies have used Cox-regression for survival analysis in patients with acute 

coronary syndromes (ACS). However, such classic survival analysis carries several assumptions, 

of which the most notable one is the proportional hazards.  

Objective:  

The primary objective was to compare survival prediction performance for 1-year mortality 

following ACS for Cox-regression (CPH) with two machine learning-based models (random 

survival forest (RSF) and deep learning (DeepSurv)). The secondary objective was to externally 

validate the findings using a nationwide registry of ACS. 

Methods:  

This was a retrospective, supervised learning data mining study based on the Acute Coronary 

Syndrome Israeli Survey (ACSIS) registry and the Myocardial Ischemia National Audit Project 

(MINAP). The ACSIS data was divided to train/test in a 70/30 fashion. Models were then 

externally validated on the MINAP data. Harell’s C-index, inverse probability of censoring 

weighting (IPCW) and the Brier scores were used for model performance comparisons. 

Results:  

RSF performed best among the three models, Harell's c-index on training and testing sets 

reaching 0.953 and 0.924, followed by CPH Multivariate selected model (0.805, 0.849), CPH 

Univariate selected model (0.828, 0.806) and DeepSurv model (0.801, 0.804), and finally the 

traditional CPH model (0.826, 0.738). The CPH model performance on the validation set had 
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Harell's C-index of 0.713-0.818, 0.689-0.790 for IPCW and 0.094-0.100 for brier score. The RSF 

model had the highest performance on the validation data set with 0.811 for Harell's C-index, 

0.844 for IPCW and 0.093 for brier score.  

Conclusions:  

This study demonstrates that RSF survival predictions for ACS long-term mortality show 

improved model performance compared with the classic statistical method. This can benefit 

patients by stratifying risks and guiding treatment options to save more lives, as well as by 

avoiding ineffective/unnecessary treatments.  
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1. Introduction 

Cardiovascular diseases are the leading global cause of death, accounting for approximately 7.5 

million death annually1,2.  Acute coronary syndrome (ACS), defined as unstable angina (UA), 

non-ST segment elevation myocardial infarction (NSTEMI), and ST-segment elevation 

myocardial infarction (STEMI), causes most cardiovascular-related deaths, which represent 1.8 

million deaths per year1. 

Despite tremendous achievements in the management of ACS over recent years3,4 , the current 

reported rates of 1-year mortality following STEMI range of 7%-11.5%5,6  and 14.3-14.8% for 

UA and NSTEMI4,7,8 Various prognostic models for long-term mortality prediction following 

ACS have been developed over the last two decades, mostly through regression-based models. 

When it comes to the survival prediction, binary/dichotomous outcome (dead/alive) cannot 

sufficiently characterize the outcome but should incorporate ‘time to event’ as well9.  

Most previous studies have used Cox-regression for survival analysis in patients after ACS8,10. 

However, such classic survival analysis carries several assumptions and limitations. The most 

notable is the proportional hazards – meaning the hazard ratio for an individual with a certain 

risk factor to that for an individual without the risk factor is constant over time. Another 

assumption of the cox-regression model is that the outcome (in our case, mortality) is a linear 

combination of covariates that may be too simplistic for proper prognosis prediction. 

Additionally, Cox-based models may suffer from poor performance and high variance when 

including multiple variables11. Thus, to account for non-linear associations, violation of the 

proportional hazard assumption, and to reduce bias associated with feature selection, non-

parsimonious non-parametric machine learning (ML) algorithms are suggested12. 
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Random survival forest (RSF) model is an extension of the random forest model for survival 

analysis. By automatically assessing the complex effects and interactions among all variables 

from an unbiased view, it has demonstrated improved performance over the traditional cox 

proportional hazards regression (CPH) model in some cases13.   

In previous studies, artificial neural networks with various designs performed similarly to 

standard CPH 14,15. DeepSurv, by Katzman et al., is a deep learning-based survival prediction 

algorithm that uses a multi-layer feed-forward network, which can model high-level interaction 

terms beyond the linear Cox model 16. Kwon et al. recently showed this deep learning-based 

model predicted in-hospital and 12-months mortality with high performance compared to the 

global registry of acute coronary event (GRACE) and thrombolysis in myocardial infarction 

(TIMI)17.  

The aim of the study was to compare predictive performance of two ML algorithms designed for 

time-to-event outcomes – RSF and DeepSurv to the 1-year mortality after ACS prediction by 

traditional CPH.  

2. Methods 

2.1 Study population 

This was a retrospective, supervised learning (i.e., an ML task of inferring a function from 

labeled training data), data mining study based on the Acute Coronary Syndrome Israeli Survey 

(ACSIS) registry and the Myocardial Ischemia National Audit Project (MINAP).  

ACSIS is a mostly biennial prospective observational national survey of all patients with acute 

coronary syndrome (ACS) hospitalized in Israel.18,19 In 2000, 2002, 2004, 2006, 2008, 2010, 

2013, 2016 during a two-month period, data are prospectively collected from all ACS admissions 
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in each of the 25 cardiology wards operating in Israel.18-21 All patients are included (without 

exclusion) and followed for one month. The number of patients who refused to participate was 

substantially small (4-5 patients each cycle – which summed to 20 patients in 8 years). The 

ACSIS was approved by each medical center's institutional review board. Clinical data were 

recorded on pre-specified forms for all patients during the years 2000 to 2016. Case report form 

definitions were centrally determined. The attending physicians determined admission and 

discharge diagnoses based on clinical, electrocardiographic, and biochemical criteria. Patients’ 

management was at the discretion of the attending physicians.  

MINAP is a national registry of patients admitted to hospitals in England and Wales with acute 

coronary syndromes (ACS) 6. Data collection began in October 2000. MINAP accrues 

approximately 85,000 episodes of care per year for patients with ACS admitted to all acute 

National Health Service (NHS) hospitals in England and Wales. The dataset comprises over 120 

separate fields under the following groups: patient demographics, admission method, clinical 

features and investigations, medical history, drug treatment before admission, detail of primary 

reperfusion treatment, drug treatment in hospital, clinical complications, interventional 

treatments, hospital outcome, discharge diagnosis and discharge (secondary prevention) 

treatment.  

The current analysis included all ACS (STEMI, nSTEMI, UAP) patients admitted between 2006 

and 2016. Statistical guidance articles have previously stated that bias is likely in analyses with 

more than 10% missingness and that if more than 40% of data are missing in important variables 

then results should not be considered22. Thus, variables with more than 15% missing values were 

not included. In addition to mortality and time, 69 variables that were available on both ACSIS 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3505836/#b6
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and MINAP databases (i.e., demographics, prior medical history, prior chronic drugs, clinical 

presentation, basic laboratory data with admission) were evaluated (Supplementary Table-S1).  

The 1-year mortality time frame in ACSIS and MINAP was defined as one year from admission 

day. In addition to the mortality variable, all included patients had a known time to event (within 

365 days). Patients alive at 1-year had a time value set to 365. 

All patients gave written informed consent for inclusion in the registries. The study follows the 

TRIPOD (Transparent Reporting of a Multivariable prediction model for Individual Prognosis or 

Diagnosis) recommendations for the reporting of studies prediction scores23. 

2.2 Study Objectives  

The primary objective was to compare RSF and DeepSurv and CPH models' prediction of 1-year 

mortality on the ACSIS data. The secondary objective was to perform external validation of the 

findings using the MINAP data. 

2.3 Data processing 

During the data preprocessing, all outliers in numeric data were converted into a null value. The 

ACSIS data was divided to train/test in a 70/30 fashion. Missing values on both datasets were 

replaced using the mean and mode values for numeric and nominal variables, respectively. 

Model hyperparameters were tuned on the training dataset. The models were trained on the 

ACSIS training dataset and tested on the ACSIS test dataset. Next, the models were externally 

validated on the MINAP data. 

2.4 Models 

2.4.1 CPH 



  

 

9 

 

Cox proportional hazards models are survival models that assume all patients share a common 

baseline hazard function multiplied by a factor based on the values of various predictor variables 

for an individual. The CPH model was built with the training set. Statistically significant 

variables in univariate analyses were taken into multivariable analysis. CPH model was trained 

and evaluated using the ‘Survival’ R package. 

2.4.2 RSF 

Random survival forest is an alternative method for survival analysis. It is a machine-learning 

technique that builds a ‘forest’ of decision trees, each of which calculates patient outcomes by 

splitting them into groups with similar characteristics. These thousands of decision trees each 

have random imperfections, meaning that while individual trees are then relatively poor 

predictors, the averaged result from the forest is more accurate and less prone to overfitting than 

an individual ‘perfect’ decision tree. 

At each node in a decision tree, starting at its root, patients are split into two branches by looking 

at a single covariate. The algorithm selects a split point that maximizes the difference between 

the survival curves of patients in the two branches defined by that split. Split points are defined 

to maximize the homogeneity within each branch and the inhomogeneity between them. This 

process is repeated until the leaves of the tree are reached. These are nodes where either there are 

no further criteria remains by which the patients at that leaf can be distinguished, including the 

possibility of only a single patient remaining, or splitting may be stopped early with a minimum 

node size or maximum tree depth24.  

RSF Random survival forest extends random forest methodology for survival analysis.  It is an 

alternative method for survival analysis. Thus, each tree is grown by randomly selecting a subset 
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of variables at each node and then splitting the node using a survival criterion involving survival 

time and event status information25.  

Random survival forest hyperparameters were tuned using the training set. Random forest model 

was trained and evaluated using the RandomForestSRC R package26. 

2.4.3 DeepSurv 

DeepSurv is a multi-layer perceptron that predicts a patient’s risk of an event. As a deep neural 

network, it provides a non-linear method (in contrast to the linear CPH) to model high level 

interactions. The network's output is a single node, which estimates the risk function 

parameterized by the network's weights.  The network is built using a deep architecture (i.e., 

more than one hidden layer) with modern techniques (including weight decay regularization, 

batch normalization, scaled exponential Linear Units (SELU), gradient descent optimization 

algorithms, gradient clipping and learning rate scheduling)16. The network propagates the inputs 

through a number of hidden layers with weights. The hidden layers consist of fully connected 

non-linear activation functions followed by dropout. The final layer is a single node that 

performs a linear combination of the hidden features. The network's hyper-parameters were first 

tuned on the training set using a Random hyper-parameter optimization search. DeepSurv was 

implemented as an open-source Python module (https://github.com/jaredleekatzman/DeepSurv). 

Following training and prediction on the test set with Python, probabilities were then processed 

and analyzed in R. 

2.5 Performance  

2.5.1 Concordance (C-Index) 

https://github.com/jaredleekatzman/DeepSurv
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Harell's C-index is a method for estimating prediction error27. The c-index is used mainly as a 

metric for survival prediction and reflects a measure of how well a model predicts the ordering of 

patients’ death times. A c = 0.5 is the average of a random model, and c = 1 refers to a perfect 

match of death time ranking.  

2.5.2 Time-dependent AUC  

The receiver operating characteristic (ROC) curve displays the sensitivity (true positive rate) 

versus 1- specificity (false positive rate) for all possible cut-points that define a binary test by 

dichotomizing a quantitative marker. The area under the ROC curve (AUC) is often used to 

summarize and compare diagnostic accuracy of several markers. Uno et al. [9] and Hung and 

Chiang [10] proposed a nonparametric estimator of the time-dependent ROC curve using the 

inverse probability of censoring weighting (IPCW) approach. The rationale of the IPCW 

approach is to mainly use the observed cases and controls and weigh them by their probability of 

being observed. The IPCW method was applied using the TimeROC package in R. 

 

2.5.3 The Brier Score 

The Brier score (BS) for binary classification is a cost function (or loss function) that measures 

the accuracy of probabilistic predictions. The lower and closer to 0 the Brier score (0-1) is for a 

set of predictions, the better the predictions are calibrated. Brier score was applied using the 

‘pec’ package in R and lifelines in Python. 

 

2.6 Statistical analysis 
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Results were expressed as mean and SD for parametric variables and as frequencies/percentages 

for nonparametric variables. Baseline differences between the training set and testing set were 

assessed using the two-sided independent student t-test for continuous variables and Chi-square 

test, Fisher’s exact test for categorical variables. Survival curves were plotted using the Kaplan-

Meier method and compared using the log-rank test. To estimate the prognostic effect of the 

features, univariate and multiple CPH regression analyses were done as well.  

The analysis was performed using R programming language version 3.6.1 (R Core Team, 

Vienna, Austria, 2018). 

3.Results 

3.1 Patient characteristics 

Of the 15,212 patients in the ACSIS registry, 9270 fulfilled inclusion criteria for model 

development (5935 were treated prior to 2006 and 7 other had unknown ACS diagnosis) . The 

average age was 63.8 ±12.9 years, 78% were male and all-cause mortality at 1-year was 9.4%. 

The data were split into two mutually exclusive datasets, 70% into the training set and 30% into 

the testing set. The training set was utilized to generate the prediction model and the remaining 

30% was employed to estimate the model’s performance (Figure-1). 

 There were no statistically significant differences in the features between the training an test 

data sets (Table-1). A difference in survival outcome was absent between the two sets as well 

(log-rank p=0.76) (Figure-2).  

3.1 Models performance 

3.1.1 Cox proportional hazards model 
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The CPH model was built with the training set. Univariate Cox analysis was performed 

(Supplementary Figure-S1). Statistically significant variables in univariate analyses were taken 

into multivariate analysis (Supplementary Figure-S2). 

Prediction accuracy was measured using c-index on the testing set. Using all 69 features to train 

the model, the Harell's C-index was 0.738, time-dependent IPCW was 0.741, and Brier's score 

was 0.007. All features were evaluated as single predictors in univariate analysis. Using the 25 

significant univariate features increased model performance; Harell's C-index to 0.806, time-

dependent IPCW to 0.812, and Brier's score was 0.007. Using only the significant multivariate 

features increased performance further; Harell's C-index to 0.849, time-dependent IPCW to 

0.860, and Brier's score were 0.007. Application of Lasso or Elastic net models did not improve 

performance (not shown).  

3.1.2 RSF Model 

The RSF model parameters were trained using the grid search method for the following 

variables: number of trees (trees), number of variables randomly selected as candidates for 

splitting a node (mtry), forest average terminal node size (nodesize), number of random split 

points used to split a node (nsplit) and maximum depth to which a tree should be grown 

(nodedepth). Optimized parameters found: trees=1000, mtry = 9, nodesize=15, nsplit =10 , 

nodedepth =-1. The RSF out of bag (OOB) error rates are shown in Supplementary Figure-S4. 

Prediction accuracy was measured on the testing set; The Harell's c-index and time-dependent 

IPCW of RSF reached 0.924 and 0.928, respectively, both highest among the models. Brier score 

was 0.006. 
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3.1.2 DeepSurv Model 

Following normalization of the continuous features, the DeepSurv model hyperparameters were 

tuned using the ADAM method of Stochastic optimization applied on the training set28. 

Optimized parameters found: L2_reg=7.5, dropout = 0.527, number of hidden layers = 48, 

learning rate = 0.018, lr_decay = 0.011, momentum = 0.873. Model development shown in 

Supplementary Figure-S3.  

Prediction accuracy was measured using c-index on the testing set. Using all 69 features to train 

the model, the Harell's C-index was 0.804, time-dependent IPCW was 0.813 and Brier's score 

was 0.10.   

3.1 Predictive performance 

The performance of survival models based on Random survival forest (RSF), DeepSurv,  and 

models based on CPH regression were compared on both training and the testing sets. RSF 

performed best among the three models, Harell's c-index on training and testing sets reaching 

0.953 and 0.924, followed by CPH Multivariate selected model (0.805/0.849), CPH Univariate 

selected model (0.828/0.806) and DeepSurv model (0.801/0.804), and finally CPH (0.826/0.738). 

RSF had the highest performance on each time point and overall IPCW compared to the other 

models (Table-2, Figure-3). 

DeepSurv had the highest (worst) Brier score (0.1) compared to similar scores for the other 

models (0.0006-0.0007) (Table-2). 

3.2 Variable importance 
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To determine the top 15 important variables for RSF prediction, we applied the permutation 

method (VIMP – "noising up" each variable in turn and its effect on prediction error). CPH 

features permutation importance was evaluated for comparison. There is a considerable 

agreement with permutation importance in 11 of the 15 selected variables by RSF and CPH 

(Figure-4). 

Validation 

The external validation cohort included 206,915 patients out of 720,932 who fulfilled the 

inclusion criteria (treated after 2006 and had less than 15% variables missingness), with a mean 

age of 68.4±13.9, 67.1%males.  There were significant differences between the ACSIS training 

set and the validation cohort in most of the features, including age, systolic blood pressure, 

diastolic blood pressure, BMI, glucose, creatinine, cholesterol, hemoglobin, chronic medical 

conditions, smoking status, chronic medications, and in-hospital and discharge treatments 

(Table-3). The validation cohort had significantly higher 1-year mortality rates (13.7% compared 

to 9.5%, p<0.001) (Table-3). 

The three CPH models' performance on the validation set had Harell's C-index of 0.713-0.818, 

0.689-0.790 for IPCW, and 0.094-0.100 for brier score. The model using 25 variables had the 

highest performance among the CPH models. The DeepSurv model performance on the 

validation data set had 0.801 Harell's C-index and 0.832 for IPCW. Lastly, the RSF model 

performance on the validation data set demonstrated 0.811 for Harell's C-index, 0.844 for IPCW, 

and 0.093 for brier score (Table-4, Figure-5).  
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4. Discussion 

We compared RSF, Cox, and DeepSurv models on data-driven approaches for 1-year survival 

prediction on national registry. We found random survival forest to significantly outperform all 

other models, including  the classic statistical method for survival analysis on both test set and 

external validation cohort. Compared to the Cox-regression models, the deep neural network 

underperformed on the test set, but had higher performance on the validation cohort.  

Most previous publications that evaluated ACS long-term mortality, used the binary 

classification approach (dead/alive at 1 year) without considering the time to event as in survival 

analysis. Sherazi et al. evaluated models for 1-year mortality post ACS classification29, showing 

deep network, gradient boosting and random forest outperform the GRACE risk score 

(developed using the regression method). Our survival models use the added information of the 

time to event, and cannot be compared to GRACE. Kwon et al. demonstrated deep network-

based classification outperforms the regression-based risk scores 17. Barrett et al. similarly 

developed several classification models for 1 year mortality following MI using deep network, 

random forest among others 30. Importantly, these were performed on relatively small cohorts 

and had no external validation31. A recent study using survival analysis, rather than classification 

on a large cohort from electronic health records, did not demonstrate an improved performance 

using RSF compared to the traditional Cox-regression approach. 32. To the best of our 

knowledge, no previous study applied deep network for survival prediction post-ACS. In our 

study, RSF outperformed both deep learning and Cox-regression models. Deep learning model 

performed better than traditional CPH, however worse than multivariate features selection CPH 

on the test set, but outperformed both on the validation cohort.  
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There are several advantages to using RSF over the CPH model. First, RSF does not require prior 

knowledge about the relationship (i.e., linear, non-linear) of a variable over time or to choose the 

best equation to transform non-linear covariates. The RSF automatically explores complex 

interactions between variables, which usually must be manually specified in regression-type 

approaches. As in our current cohort of patients post ACS, we cannot assume the data satisfies 

the linear proportional hazards condition. Second, the overall discrimination of an RSF model is 

at least comparable to standard methodologies if not above, RSF has shown its ability to 

outperform classic CPH regressions 13,33,34. However, RSF may miss predictors with low 

representation in the population, and this would go against personalized prediction. 

Previous studies applying neural networks failed to demonstrate improvements beyond the 

classic linear CPH model35. Recently Katzman et al. showed deep neural networks could 

outperform standard survival analysis 16,36. One of the advantages of a deep learning-based 

neural network is that it discerns relationships without prior feature selection. However, in our 

cohort, RSF outperformed DeepSurv.  

Pocock et al. demonstrated Cox based models for long-term mortality post-ACS developed on 

national registries have good discrimination (0.79-0.82), similar to the Cox models performance 

in the current study on both cohorts, and lower than RSF model in the test cohort37. Importantly, 

Pocock et al models were validated on an external cohort as in the current study.  ACS diagnosis, 

coronary vascularization, creatinine, previous cardiac disease, discharge Aldosterone and Killip 

grade were found important predictive features in both our and Pocock et al Cox models.  In 

contrast with their findings, Glucose, Hemoglobin, ejection fraction, male sex, BMI and quality 

of life were not found as highly important predictors in our study.  
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The current study has several limitations. First, the outcome is all-cause mortality without 

accounting for competing events and non-cardiac mortality. Second, other commonly accepted 

predictors of survival, such as ejection fraction, serum B-type natriuretic peptides, angiography 

findings, etc., were not routinely obtained in both registries.  

5. Conclusions 

This study demonstrates that RSF survival predictions for ACS long-term mortality show higher 

performance patients compared to the classic statistical method. This can benefit patients by 

stratifying risks and guiding treatment options by providing patient individual risk-tailored 

treatements (e.g., prolonged DAPT, more aggressive LDL-C lowering, and complete 

revascularization). ineffective/unnecessary treatments.  
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Table-1: Entire data, train and test patients' characteristics. 

 

  Total   Train Imputed   Test Imputed   Sig. 

N 9270  6489   2781  
   

        
 

   

Age (years) 63.8±12.9  63.8±12.9 0.01%  63.8±12.9 0.00%  0.864 

        
 

   

Males 7233 (78)% 
 

5075 

(78.2)% 
0.00% 

 

2158 

(77.6)% 
0.00% 

 
0.515 

        
 

   

Heart Rate (bmp) 80.0±19.3  80.0±19.4 2.40%  80.1 ±19.1 2.10%  0.872 

        
 

   

SBP (mmHg) 141.7±27.9  141.7±27.9 2.00%  141.7±27.8 2.30%  0.925 

            

DBP (mmHg) 80.9±16.2  80.9±16.2 2.20%  80.9±16.3 2.40%  0.858 

        
 

   

BMI 27.8±4.4  27.8±4.4 9.50%  27.8±4.5 9.60%  0.849 

        
 

   

Total Cholesterol (mg/dL) 176.7±42.0  176.4±42.1 15.70%  177.4±41.8 15.40%  0.288 

        
 

   

Glucose (mmol/L) 151.7±79.3  150.8±76.9 1.60%  153.7±84.6 1.80%  0.102 

        
 

   

Hemoglobin (g/dL) 13.7±1.8  13.7±1.8 1.40%  13.7±1.8 7.20%  0.888 

        
 

   

Creatinine (mg/dL) 1.19±0.89  1.19±0.93 3.70%  1.18±0.80 4.20%  0.578 

        
 

   

Past MI 
2963 (32%)  

2090 

(32.2%) 
0.30% 

 

837 

(31.4%) 
0.30% 

 
0.44 
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Past Angina Pectoris 
3202 

(34.5%) 
 2227 

(34.3%) 
0.70%  975 

(35.1%) 
0.50%  0.492 

            

Past CABG 912 (9.8%)  652 

(10.0%) 
0.10%  260 (9.3%) 0.10%  0.301 

            

Chronic heart failure 744 (8.0%)  523 (8.1%) 0.20%  221 (7.9%) 0.10%  0.854 

        
 

   

Past Revascularization 
3005 

(32.4%)  

2093 

(32.3%) 
0.30% 

 

912 

(32.8%) 
0.30% 

 
0.611 

    
  

 
 

    

        
 

   

Past Stroke 748 (8.1%)  515 (7.9%) 0.30%  233 (8.4%) 0.10%  0.474 

        
 

   

Family history of MI 
2437 

(26.3%)  

1721 

(26.5%) 
10.10% 

 

716 

(25.7%) 
10.20% 

 
0.437 

    
  

 
 

    

        
 

   

Chronic renal failure 
1131 

(12.2%)  

780 

(12.0%) 
0.30% 

 

351 

(12.6%) 
0.20% 

 
0.418 

        
 

   

PVD 743 (8.0%)  511 (7.9%) 0.20%  232 (8.3%) 0.10%  0.447 

        
 

   

Hyperlipidemia 
6750 

(72.8%)  

4751 

(73.2%) 
0.50%  1999 

(71.9% 
0.50%  0.185 

            

Diabetes Mellitus 
3484 

(37.6%)  

2420 

(37.3%) 
0.30% 

 

1064 

(38.6%) 
0.30% 

 
0.379 
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Hypertension 
5865 

(63.3%)  

4127 

(63.6%) 
0.30% 

 

1738 

(62.5%) 
0.30% 

 
0.312 

    
  

 
 

    

        
 

   

Killip score at admission    1.80%   1.70%  0.443 

  
I  5655 

(87.1%)   

2420 

(87.0%) 
 

   

  II  495 (7.6%)   196 (7.0%)  
   

  III  245 (3.8%)   119 (4.3%)  
   

  IV  94 (1.4%)   46 (1.7%)     

     
  

 
    

Chronic beta blockers 
3431 

(37.0%)  

2389 

(36.8%) 
3.10% 

 

1042 

(37.5%) 
3.30% 

 
0.551 

    
  

 
 

    

        
 

   

Chronic calcium blockers 
1857 

(20.0%) 
 1288 

(19.8%) 
3.80%  569 

(20.5%) 
3.80%  0.5 

        
 

   

            

Chronic nitrates 711 (7.7%)  510 (7.9%) 4.10%  201 (7.2%) 4.40%  0.295 

        
 

   

            

Chronic Aspirin 
4513 

(48.7%)  

3162 

(48.7%) 
1.70% 

 

1351 

(48.6%) 
1.50% 

 
0.895 

    
  

 
 

    

            

Chronic Anticoagulation 384 (4.1%)  279 (4.3%) 3.10%  105 (3.8%) 3.30%  0.246 

            

Chronic Statins 

5143 

(55.5%)  

3580 

(55.2%) 5.50%  

1563 

(56.2%) 6.40%  0.359 
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Chronic hypoglycemic drugs 

2219 

(23.9%)  

1546 

(23.8%) 0.40%  

672 

(24.2%) 0.60%  0.698 

            

Chronic insulin 828 (8.9%)  575 (8.9%)   253 (9.1%)   0.715 

            

Chronic ACE-I/ARBB 
3789 

(40.9%)  

2659 

(41.0%) 
0.40% 

 

1130 

(40.6%) 
0.20% 

 0.757 

    
  

 
  

   

Chronic Smoking 
3554 

(38.3%)  

2505 

(38.6%) 
0.60% 

 

1049 

(37.7%) 
 

 0.423 

    
  

 
 1.00%    

        
 

   

Previous Smoking 
2055 

(22.2%) 
 1417 

(21.8%) 
0.60%  638 

(22.9%) 
1.00% 

 0.241 

            

            

        
 

   

Normal Sinus Rythem 
8102 

(87.4%)  

5658 

(87.2%) 
0.00% 

 

2444 

(87.9%) 
0.00% 

 
0.36 

        
 

   

Diagnosis    0%   0%  0.442 

  STEMI  2775 

(42.8%) 
  1164 

(41.9%) 
  

  

  nSTEMI  2743 

(42.3%) 
  1215 

(43.7%) 
 

   

  
UA 

 971 

(15.0%) 
  402 

(14.5%) 
 

  

            

      
      

Anterior MI 
2377 

(25.6%) 
 1654 

(25.5%) 
0% 

 

723 

(26.0%) 0%  0.607 
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Hospitalization           

Aspirin 

9003 

(97.1%)  

6303 

(97.1%) 0%  

2700 

(97.1%) 0%  0.903 

            

Theophylline inhibitors 
6908 

(74.5%)  

4812 

(74.2%) 
0.40% 

 

2096 

(75.4%) 
0.50% 

 0.22 

   
 

  
 

  
   

IIb/IIIa  
2284 

(24.6%)  

1609 

(24.8%) 
0.20% 

 

675 

(24.3%) 
0.30% 

 0.592 

   
 

  
 

  
   

Beta Blockers 
7599 

(82.0%)  

5333 

(82.2%) 
3.10% 

 

2266 

(81.5%) 
3.60% 

 0.419 

   
 

 
  

  
   

Insulin 
1528 

(16.%)  

1039 

(16.0%) 
13.90% 

 

489 

(17.6%) 
13.90% 

 0.062 

            

   
 

  
      

Ace Inhibitors / ARB  
7195 

(77.6%)  

5045 

(77.7%) 
0.30% 

 

2150 

(77.3%) 0.20%  0.644 

   
 

  
      

   
 

  
      

Heparin 
6190 

(66.8%)  

4317 

(66.5%) 
0.00% 

 

1873 

(67.3%) 0%  0.441 

   
 

  
      

LMWH 
4544 

(49.0%)  

3173 

(48.9%) 
0.00% 

 

1371 

(49.3%) 0%  0.724 

   
 

  
      

Anti-coagulation 435 (4.7%)  310 (4.8%) 1.00%  125 (4.5%) 1%  0.556 

   
 

  
      

Hypoglycemic drugs 
1532 

(16.5%)  

1056 

(16.3%) 
0.30% 

 

476 

(17.1%) 0.30%  0.317 
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Aldosterone 527 (5.7%)  370 (5.7%) 19.90%  157 (5.6%) 19.20%  0.914 

   
 

  
 

 
    

Angiography 
8227 

(88.7%)  

5764 

(88.8%) 
0% 

 

2463 

(88.6%) 
0% 

 0.715 

   
 

  
 

  
   

PCI 
6415 

(69.2%)  

4482 

(69.1%) 
0% 

 

1933 

(69.5%) 
0% 

 0.676 

   
 

  
 

  
   

Cardiac rehabilitation 
3887 

(41.9%)  

2732 

(42.1%) 
12.70% 

 

1155 

(41.5%) 
13.10% 

 0.61 

   
 

  
 

  
   

CABG 515 (5.6%)  350 (5.4%) 0%  165 (5.9%) 0%  0.299 

            

Followup Angiography 526 (5.7%)  370 (5.7%) 12.40%  156 (5.6%) 11.80%  0.971 

            

Followup PCI 450 (4.9%)  322 (5.0%) 12.90%  128 (4.6%) 12.30%  0.46 

            

Followup CABG 559 (6.0%)  382 (5.9%) 12.90%  177 (6.4%) 12.10%  0.376 

            

CPR/DCS 265 (2.9%)  177 (2.7%) 0%  88 (3.2%) 0%  0.248 

   
 

  
      

Discharge drugs  
 

  
      

Aspirin  
 

 1.80%   1.90%    

            

Theophylline inhibitors  
 

 2.10%  
 2.10%    

   
 

  
 

  
   

Insulin 
1031 

(11.1%)  

715 

(11.0%) 
15.20% 

 

316 

(11.4%) 
14.90% 

 0.629 

        
 

   

Ace-Inhibitors/ARB 

7000 

(75.5%)  

4894 

(75.4%) 0.90%  

2106 

(75.7%) 
0.80% 

 0.752 
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Statin 

8728 

(94.2%)  

6105 

(94.1%) 2.60%  

2623 

(94.3%) 
2.40% 

 0.657 

        
 

   

Hypoglycemic drugs 

1852 

(20.0%)  

1279 

(19.7%) 0.90%  

573 

(20.6%) 
0.80% 

 0.324 

        
 

   

Aldosterone 520 (5.6%)  358 (5.5%) 21.10%  162 (5.8%) 20.40%  0.555 

        
 

   

Beta Blockers 

7565 

(81.6%)  

5264 

(81.1%)   

2301 

(82.7%) 
 

 0.065 

        
 

   

            

1 Year Mortality 874 (9.4%)   616 (9.5%) 0%   258 (9.3%) 0%)   0.745 
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Table-2: Predictive performance of all models for 1-year mortality. 

 

Model Harell's C-Index (Train) Harell's C-Index (Test) IPCW (Test) Brier (Test) 

RSF 0.953 0.924 0.928 0.006 

DeepSurv 0.801 0.804 0.813 0.007 

CPH 0.826 0.738 0.741 0.007 

CPH-Univariate selected 

features 0.828 0.806 0.812 0.007 

CPH-Multivariate selected 

features 0.805 0.849  0.860 0.1 
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Table-3: ACSIS training set and MINAP validation set, patients' characteristics. 

 

  

ACSIS 

(Train) 
Imputed 

  

MINAP 

(Validation) 
Imputed 

  
Sig. 

N 6,489   206,915  
   

      
 

   

Age (years) 63.8±12.9 0.01%  68.4±13.9 0.02%  <0.001 

      
 

   

Males 
5075 

(78.2)% 
0.00% 

 

138,829 

(67.1)% 
0.01% 

 
<0.001 

      
 

   

Heart Rate (bmp) 80.0±19.4 2.40%  80.4 ±21.6 4.32%  0.12 

      
 

   

SBP (mmHg) 141.7±27.9 2.00%  138.4±28.0 4.27%  <0.001 

          

DBP (mmHg) 80.9±16.2 2.20%  79.07±16.0 4.27%  <0.001 

      
 

   

BMI 27.8±4.4 9.50%  28.1±8.4 47.0%  <0.001 

      
 

   

Total Cholesterol (mg/dL) 176.4±42.1 15.70%  188.4±53.9 30.9%  <0.001 

      
 

   

Glucose (mmol/L) 150.8±76.9 1.60%  148.4±84.1 12.1%  0.026 

      
 

   

Hemoglobin (g/dL) 13.7±1.8 1.40%  13.4±2.0 8.1%  <0.001 

      
 

   

Creatinine (mg/dL) 1.19±0.93 3.70%  1.14±0.66 1.6%  <0.001 

      
 

   

Past MI 
2090 

(32.2%) 
0.30% 

 

43248 

(21.0%) 
0.25% 

 
<0.001 
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Past Angina Pectoris 
2227 

(34.3%) 
0.70%  51042 

(24.8%) 
0.39%  <0.001 

          

Past CABG 
652 

(10.0%) 
0.10%  12912 

(6.2%) 
0.1%  <0.001 

          

Chronic heart failure 523 (8.1%) 0.20%  9437 

(4.6%) 
0.3%  <0.001 

      
 

   

Past Revascularization 
2093 

(32.3%) 
0.30% 

 

19968 

(9.7%) 
0.21% 

 
<0.001 

    
 

 
    

      
 

   

Past Stroke 515 (7.9%) 0.30% 
 

16906 

(8.2%) 
0.22% 

 
0.48 

      
 

   

Family history of MI 
1721 

(26.5%) 
10.10% 

 

61211 

(33.0%) 
10.25% 

 
<0.001 

    
 

 
    

      
 

   

Chronic renal failure 
780 

(12.0%) 
0.30% 

 

11438 

(5.6%) 
0.41% 

 
<0.001 

      
 

   

PVD 511 (7.9%) 0.20% 
 

8609 ( 

4.2%) 
1.83% 

 
<0.001 

      
 

   

Hyperlipidemia 
4751 

(73.2%) 
0.50%  71611 

(35.1%) 
1.40%  <0.001 

          

Diabetes Mellitus 
2420 

(37.3%) 
0.30% 

 

41860 

(20.3%) 
0.15% 

 
<0.001 
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Hypertension 
4127 

(63.6%) 
0.30% 

 

103319 

(50.1%) 
0.30% 

 
<0.001 

    
 

 
    

      
 

   

Killip score at admission  1.80%   62.2%  <0.001 

  

5655 

(87.1%)   

62374 

(79.9%) 
 

   

  
495 (7.6%) 

  

10468 

(13.4%) 
 

   

  
245 (3.8%) 

  

4081 ( 

5.2%) 
 

   

  
94 (1.4%) 

  

1181 ( 

1.5%)     

   
  

 
    

Chronic beta blockers 
2389 

(36.8%) 
3.10% 

 

56960 

(27.8%) 
0.92% 

 
<0.001 

    
 

 
    

      
 

   

Chronic calcium blockers 
1288 

(19.8%) 
3.80%  32197 

(15.6%) 
0.17%  <0.001 

      
 

   

          

Chronic nitrates 510 (7.9%) 4.10%  49251 

(23.8%) 
0.16%  <0.001 

      
 

   

          

Chronic Aspirin 
3162 

(48.7%) 
1.70% 

 

49019 

(24.1%) 
1.84% 

 
<0.001 
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Chronic Anticoagulation 279 (4.3%) 3.10%  

10093 ( 

4.9%) 0.1%  0.034 

          

Chronic Statins 

3580 

(55.2%) 5.50%  

84971 

(41.4%) 0.88%  <0.001 

          

Chronic hypoglycemic drugs 

1546 

(23.8%) 0.40%  

24649 

(12.0%) 0.45%  <0.001 

          

Chronic insulin 575 (8.9%)   

41226 

(20.0%) 0.45%  <0.001 

          

Chronic ACE-I/ARBB 
2659 

(41.0%) 
0.40% 

 

74410 

(36.3%) 
1.04% 

 <0.001 

    
 

  
   

Chronic Smoking 
2505 

(38.6%) 
0.60% 

 

59093 

(29.1%) 
1.91% 

 <0.001 

    
 

  
   

      
 

   

Previous Smoking 
1417 

(21.8%) 
0.60%  69324 

(34.2%) 
1.91% 

 <0.001 

          

          

      
 

   

Normal Sinus Rythem 
5658 

(87.2%) 
0.00% 

 

12992 

(39.3%) 
84.0% 

 
<0.001 

      
 

   

Diagnosis  0%   0%  <0.001 

 STEMI 
2775 

(42.8%) 
  81657 

(39.5%) 
  

  

 nSTEMI 
2743 

(42.3%) 
  120081 

(58.0%) 
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 UA 
971 

(15.0%) 
  5177 ( 

2.5%) 
 

  

          

    
      

Anterior MI 
1654 

(25.5%) 
0% 

 

42883 

(34.8%) 40.4%   >0.001 

    
      

Hospitalization         

Aspirin 

6303 

(97.1%) 0%  

147946 

(72.8%) 1.84%  <0.001 

          

Theophylline inhibitors 
4812 

(74.2%) 
0.40% 

 

190326 

(92.1%) 
0.09% 

 <0.001 

    
 

  
   

IIb/IIIa  
1609 

(24.8%) 
0.20% 

 

24824 

(12.0%) 
0.2% 

 <0.001 

    
 

  
   

Beta Blockers 
5333 

(82.2%) 
3.10% 

 

151617 

(76.8%) 
4.65% 

 <0.001 

   
  

  
   

Insulin 
1039 

(16.0%) 
13.90% 

 

21168 

(10.5%) 
2.70% 

 <0.001 

          

    
      

Ace Inhibitors / ARB  
5045 

(77.7%) 
0.30% 

 

127582 

(61.8%) 0.17%  <0.001 

    
      

    
      

Heparin 
4317 

(66.5%) 
0.00% 

 

54641 

(26.5%) 0.47%  <0.001 
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LMWH 
3173 

(48.9%) 
0.00% 

 

105729 

(51.2%) 0.24%  <0.001 

    
      

Anti-coagulation 310 (4.8%) 1.00% 
 

10093 

(4.9%) 0.1%  0.72 

    
      

Hypoglycemic drugs 
1056 

(16.3%) 
0.30% 

 

14938 

(7.4%) 2.7%  <0.001 

    
      

Aldosterone 370 (5.7%) 19.90% 
 

12452 

(6.3%) 3.93%  0.07 

    
 

 
    

Angiography 
5764 

(88.8%) 
0% 

 

74327 

(87.5%) 
58.9% 

 0.002 

    
 

  
   

PCI 
4482 

(69.1%) 
0% 

 

61460 

(72.4%) 
58.9% 

 <0.001 

    
 

  
   

Cardiac rehabilitation 
2732 

(42.1%) 
12.70% 

 

161912 

(81.6%) 
4.11% 

 <0.001 

    
 

  
   

CABG 350 (5.4%) 0% 
 

5197 ( 

2.7%) 
8.61% 

 <0.001 

          

Followup Angiography 370 (5.7%) 12.40%  

4658 ( 

2.3%) 1.46%  <0.001 

          

Followup PCI 322 (5.0%) 12.90%  

3132 

(1.7%) 8.61%  <0.001 

          

Followup CABG 382 (5.9%) 12.90%  

4208 

(2.2%) 8.61%  <0.001 
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CPR/DCS 177 (2.7%) 0%  

9468 

(28.7%) 84.04%  <0.001 

    
      

Discharge drugs   
      

Aspirin 6215 (95.8) 1.80% 
 

167413 

(81.4%) 0.58%  <0.001  

          

Theophylline inhibitors 4134 (63.7) 2.10% 
 

150813 

(75.1%) 
2.92% 

 <0.001 

    
 

  
   

Insulin 
715 

(11.0%) 
15.20% 

 

12804 

(6.4%) 
2.65% 

 <0.001 

      
 

   

Ace-Inhibitors/ARB 

4894 

(75.4%) 0.90%  

150647 

(73.5%) 
0.93% 

 0.001 

      
 

   

Statin 

6105 

(94.1%) 2.60%  

166859 

(81.2%) 
0.66% 

 <0.001 

      
 

   

Hypoglycemic drugs 

1279 

(19.7%) 0.90%  

19806 

(9.8%) 
2.65% 

 <0.001 

      
 

   

Aldosterone 358 (5.5%) 21.10%  

11934 

(6.0%) 
3.68% 

 0.122 

      
 

   

Beta Blockers 

5264 

(81.1%)   

148313 

(72.3%) 
0.81% 

 <0.001 

      
 

   

          

1 Year Mortality 616 (9.5%) 0%  

28311 

(13.7%) 0%   <0.001 



  

 

38 

 

Table-4: Predictive performance of all models for 1-year mortality in the validation cohort (MINAP 

 

Model IPCW Harell's 

C-

index 

Brier 

CPH 0.818 0.781 0.094 

CPH-Univariate selected features 0.826 0.790 0.095 

CPH-Multivariate selected features 0.713 0.689 0.103 

RSF 0.844 0.811 0.093 

Deep learning 0.832 0.801 - 
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Figures: 
 
Figure-1: Patients flowchart 
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Figure-2: Kaplan-Meier curves of training and testing datasets 
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Figure-3: Testing set performance -Time dependent AUC. 
 

 

RSF had the highest predictive performance on the test set compared to the other models on any time point (1-12 months post ACS).  
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CPH SelectUni – univariate selected features, CPH SelectMulti – multivariate selected features 

 

Figure-4: Features importance in RSF compared to CPH 
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Figure-5: Validation set performance -Time-dependent AUC. RSF had the highest predictive performance on the MINAP cohort 

compared to the other models at any time point (1-12 months post-ACS).  
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 CPH SelectUni – univariate selected 

features, CPH SelectMulti – multivariate selected features 

 


