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Abstract

Networkmeta-analysis (NMA) simultaneously estimates multiple relative treat-

ment effects based on evidence that forms a network of treatment comparisons.

Heterogeneity in treatment definitions, such as dose, can lead to a viola-

tion of the consistency assumption that underpins NMA. Model-based NMA

(MBNMA) methods have been proposed that allow functional dose-response

relationships to be estimated within an NMA, which avoids lumping dif-

ferent doses together and thereby reduces the likelihood of inconsistency.

Dose-responseMBNMA relies on appropriate specification of the dose-response

relationship as well as consistency of relative effects. In this article we

describe methods to check for inconsistency in dose-response MBNMA mod-

els. Global and local (node-splitting) tests for inconsistency are described

that account for studies with ≥3 arms that are typical in dose-finding trials.

We show that consistency needs to be assessed with respect to the choice

of dose-response function. We illustrate the methods using a network com-

paring biologics for moderate-to-severe psoriasis. By comparing results from

an Emax and an exponential dose-response function we show that failure

to correctly characterise the dose-response can introduce apparent inconsis-

tency. The number of comparisons for which node-splitting is possible is

also shown to be dependent on the complexity of the selected dose-response

function. We highlight that the nature of dose-finding studies, which typ-

ically compare multiple doses of the same agent, provide limited scope to

assess inconsistency, but these study designs help guard against inconsis-

tency in the first place. We demonstrate the importance of assessing consis-

tency to obtain robust relative effects to inform drug-development and policy

decisions.
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1 INTRODUCTION

Network meta-analysis (NMA) is a well-established methodology for the combination of results from randomized

controlled trials (RCTs) where the evidence forms a connected network of treatment comparisons.1,2 The popularity of

NMA in healthcare has been driven by its ability to simultaneously compare the relative efficacy of multiple treatment

options, which is essential to inform health care policy and for the development of clinical guidelines. NMA relies on the

consistency assumption, which can be thought of as agreement between the direct and indirect evidence for a particular

comparison between two treatments (defined as a contrast).3 If there is an imbalance in treatment effectmodifiers (patient

characteristics or other study-level factors that change the relative treatment effects) between the included studies, then

this can lead to heterogeneity if these differences are between studies informing the same contrast, or/and inconsistency

if there are differences between studies informing different contrasts.2 Differences in treatment characteristics is one

factor that may induce inconsistency and/or heterogeneity. Key characteristics of pharmacological treatments that may

vary between studies could be drug formulation, route/frequency of administration and administered dose. It is therefore

important to account for these differences in NMA to help avoid inconsistency and heterogeneity.

There are two main approaches to account for dose in NMA. The simplest is to define each agent and dose

combination as a distinct treatment in the NMA. However, this may lead to sparse or disconnected evidence net-

works which yield imprecise estimates, or no estimates at all for some comparisons.4 An alternative is to model the

dose-response relationship with a parametric function. A general model-based NMA (MBNMA) framework has been

proposed to fit parametric dose-response functions to combine evidence on multiple agents at multiple doses whilst

respecting the randomization in the RCTs.4 Compared with a standard NMA where each dose and agent combina-

tion is considered a distinct treatment, dose-response MBNMA models bring the potential to connect disconnected

networks and increase precision of estimates for treatments of interest.5 Dose-response MBNMA is particularly use-

ful in the context of drug-development to inform decisions as to which dose of an agent to take forwards for further

development, where it is crucial to understand not just the dose-response for the compound being developed, but

also that of the key competitor drug(s). Whilst accounting for dose helps to reduce inconsistency and heterogene-

ity that may arise from differences in treatment characteristics, they may not be completely eliminated, and methods

are needed to check for it within the dose-response MBNMA framework. A thorough assessment of the consis-

tency assumption is therefore important to increase confidence that the resulting treatment effect estimates provide

a firm basis for decision-making, whether for reimbursement decisions, clinical guidelines, or for quantitative drug

development.

Standard methods to check for inconsistency in NMA include a simple z-test to compare direct and indirect estimates

from a single “loop” of evidence (the Bucher method6), an extension to multiple independent loops of evidence (repeated

Bucher method7), fitting models that relax the consistency assumption globally (unrelated mean effects model3,8) or

locally for each comparison (node-splitting9), and cross-validation.10 Assessing consistency in dose-response MBNMA

is complicated because consistency depends on the functional form assumed for the dose-response relationship, and

so is inextricably linked to model fit of the dose-response relationship. Furthermore, dose-response MBNMA typically

includes many RCTs with three or more arms, which are problematic for standard methods of assessing consistency

in NMA.

The aim of this article is to present methods for assessment of evidence consistency in a dose-response MBNMA

framework. We begin by introducing a network of evidence comparing different biologics at different doses for the treat-

ment of psoriasis, as an example with which to motivate and illustrate the methods.11 We then give some background

on the dose-response MBNMA modeling framework before describing how methods to assess consistency in NMA can

be extended to dose-response MBNMA. We apply the methods to the psoriasis dataset, and end with a discussion and

recommendations for practice.

2 MOTIVATING EXAMPLE: BIOLOGICS FOR PSORIASIS

We motivate the methods with a network of trials comparing the efficacy of biologics for the treatment of moderate to

severe psoriasis.11 The original dataset, which is available within the MBNMAdose R package,12 included nine different

agents (biologics) given at various doses, and placebo. Two agents (Adalimumab andGuselkumab) were only investigated

at a single dose. As inclusion of these agents would limit the complexity of different dose-response functions that could be
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F IGURE 1 Network diagram showing the comparisons made by the RCTs included in the moderate-to-severe psoriasis dataset at (A)

agent-level (dose and agent combination) and (B) treatment-level. Where direct trial evidence exists between a pair of agents/treatments they

are joined by a line. Each agent/treatment is represented by a node, coloured by agent with agent and dose indicated alongside each node.

Width of lines is proportional to the number of studies that make a given agent/treatment comparison. Size of nodes is proportional to the

number of participants randomised to a given agent/treatment. Interventions are coded according the first two letters of the agent and dose

(mg/week). So Br 70 is Brodalumab at 70mg/week, and so forth. See Tables S1 and S2 for the full dataset and list of comparisons made in the

studies [Colour figure can be viewed at wileyonlinelibrary.com]

fitted, these agentswere excluded for the purposes of illustrating consistency checking on amultiparameter dose-response

function. The final dataset therefore included seven agents and placebo, investigated in 22 RCTs (Figure S1 and Table S1).

Only five of these did not include a placebo arm.

Figure 1A,B show the network of evidence at the agent-level and treatment-level (agent and dose combination) respec-

tively. If we were to ignore dose (agent-level network Figure 1A) then we would be likely to introduce heterogeneity and

inconsistency, whereas if we were to consider each treatment (dose-agent combination) as having separate relative effects

(agent-by-dose network Figure 1B), then the network becomes very sparse giving imprecise estimates, and only allows

comparisons to be made between the specific dose-agent combinations that are connected in the network. Dose-response

MBNMA achieves more precision by accounting for dose, however we still need to check for inconsistency.

The outcome of interest is the proportion of patients who achieved≥75% improvement in psoriasis area and sensitivity

index (PASI) at 12weeks follow-up. The dose for each drug is given in total mg/week to account for different dosing

regimens. Two studies reported the dose in mg/kg, so the total dose was calculated by multiplying this by the mean body

weight of participants in each arm.13,14 An additional arm in one of these studies that was not included in the original

review was also added to our dataset.14

3 METHODS

3.1 Dose response model based network meta-analysis (MBNMA)

Mawdsley et al proposed the following framework for dose-response MBNMA.4 Let ti,k be the treatment given in arm k

of study i. Each treatment t is defined according to its dose xt and agent at, where the agent takes values {A,B,C, …}.

Placebo is defined as any agent at zero dose, xt = 0, and it is assumed this is equivalent across agents and denoted as

at = P when xt = 0. However, the inclusion of placebo in the network is not a requirement for the analysis, and these
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methods can be used in the absence of studies investigating placebo. For ease of notation we will denote xi,k = xti,k to

indicate the dose of the treatment on arm k of study i. Similarly, we denote ai,k = ati,k . When x and a have two indices

they refer to a specific arm and study, and when they have one index this refers to a specific treatment. Each study reports

a summary measure for each arm, which, following Dias et al. is modeled using a generalized linear model, where the

likelihood is a function of parameter 𝜃i,k and theMBNMAmodel is given for an appropriate “linking” function g
(
𝜃i,k

)
.2,15

For example, the summary measure may be the number of events ri,k out of ni,k randomized individuals, which has a

Binomial likelihood with probability of response parameter, 𝜃i,k, modeled on the logit-scale, so that g
(
𝜃i,k

)
= log

(
𝜃i,k

1−𝜃i,k

)
.

Other link functions can be used for other likelihoods/outcome measures.2,15

The modeled outcome on arm 1 (the study reference treatment) of each study, 𝜇i, is treated as a nuisance parameter,

with treatment effects 𝛿i,k estimated relative to this:

g
(
𝜃i,k

)
=

{
𝜇i

𝜇i + 𝛿i,k

k = 1

k ≥ 2
.

The general random effects model is:

𝛿i,k ∼ N
(
d(xi,1,ai,1),(xi,k ,ai,k), 𝜎

2
)
, (1)

where for any pair of treatments c and k, d(xc,ac),(xk ,ak) is themean relative effect for treatment k (agent ak dose xk) compared

with treatment c (agent ac dose xc), and 𝜎2 is the between studies variance in relative effects, assumed to be constant

across treatment comparisons. Methods have been proposed to estimate separate between studies variances for different

treatment comparisons, but these requiremore studies than are typically available in a NMA.16 The common effect model

is obtained by setting 𝜎 = 0.

Trials with more than two arms (multiarm trials) are very common in early phase trials that explore dose-response,

but they add complications because they provide estimates of multiple relative effects (compared with arm 1) which will

be correlated. Equation (1) needs adjusting as follows, to account for correlations in effects for a trial with K arms:

⎛
⎜⎜⎜⎜⎜⎝

𝛿i,2

𝛿i,3

⋮

𝛿i,K

⎞
⎟⎟⎟⎟⎟⎠

∼ N(K−1)

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

d(xi,1,ai,1),(xi,2,ai,2)

d(xi,1,ai,1),(xi,3,ai,3)

⋮

d(xi,1,ai,1),(xi,K ,ai,K)

⎞
⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎝

𝜎2 𝜎2∕2 · · · 𝜎2∕2

𝜎2∕2 𝜎2 𝜎2∕2

⋮ ⋱ ⋮

𝜎2∕2 𝜎2∕2 · · · 𝜎2

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

. (2)

We define a dose-response curve E0 + f (x, 𝛽a) for each agent a, governed by agent-specific parameters, 𝛽a, where E0
corresponds to a placebo effect (Figure 2). Examples of dose-response relationships, E0 + f (x, 𝛽a), include linear, expo-

nential, or Emax models. The choice of an appropriate functional form of dose-response relationship will typically be

guided by visual inspection of the data, together with model fit and pharmacological considerations (see model cri-

tique and selection). The Emax model is perhaps the most common model used to describe dose-response relationships,

and has been shown to be applicable to the majority of compounds and outcome measures.17,18 The hyperbolic form

is given by:

f
(
x,Emax,a,ED50,a

)
=

Emax,a x

ED50,a + x
, (3)

where Emax,a can be interpreted as the maximum efficacy on the corresponding link scale of agent a relative to placebo,

and ED50,a the dose at which half of the Emax,a response has been accrued for agent a. On the logit scale, Emax,a would

be the log-odds ratio for agent a relative to placebo. A simpler model with only a single dose-response parameter that

is commonly used in pharmacometrics is the exponential model, f (x, 𝜆a) = 𝜆a (1 − e−x), where 𝜆a is the rate on the

corresponding link scale of agent a relative to placebo.17

In a Bayesian analysis, priors are given to the parameters of the dose-response function (eg, for the Emax model these

are: Emax,a and ED50,a, noting that ED50,a must be positive), the study-specific baseline parameters 𝜇i and the between

study SD 𝜎.
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F IGURE 2 Schematic illustration of dose–response functions for agents A and B, illustrating that the comparison of agent A dose x2
with agent B dose x3 adheres to the consistency model (Equation (5)) and thus is informed both by direct and indirect evidence. Using these

dose–response functions a comparison between any doses of these is possible by extrapolation/interpolation. 𝜃 represents the response

[Colour figure can be viewed at wileyonlinelibrary.com]

3.1.1 Consistency equations

At the treatment level we assume consistency of relative effects so that all comparisons can be written in terms of

comparisons with the reference treatment 1 (x1, a1):

d(xc,ac),(xk ,ak) = d(x1,a1),(xk ,ak) − d(x1,a1),(xc,ac) for treatments (xc, ac) , (xk, ak) . (4)

Equations (1) and (4) define the standardNMAmodel where each agent and dose combination are treated as a distinct

treatment (eg, Figure 1B).

Dose-response MBNMA constrains this model by fitting a functional relationship for the dose-response. For a given

dose-response function, f (x, 𝛽a), the consistency Equations (4) become (noting that the E0 terms cancel):

d(xc,ac),(xk ,ak) = f
(
xk, 𝛽ak

)
− f

(
xc, 𝛽ac

)
(5)

for treatments (xc, ac) and (xk, ak). Note that consistencywill therefore depend on the appropriateness of the dose-response

function and may hold for one dose-response function but not another.

The MBNMA model (1) under the treatment level consistency assumptions for a given dose-response function is

therefore:

𝛿i,k ∼ N
(
f
(
xi,k, 𝛽ai,k

)
− f (xi,1, 𝛽ai,1), 𝜎

2
)
, (6)

where xi,k is the dose on arm k of study i. Equation (6) needs adjusting for multi arm trials, to account for correlations in

effects for a trial with K arms, as follows:
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⎛
⎜⎜⎜⎜⎜⎝

𝛿i,2

𝛿i,3

⋮

𝛿i,K

⎞
⎟⎟⎟⎟⎟⎠

∼ N(K−1)

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

f
(
xi,2, 𝛽ai,2

)
− f

(
xi,1, 𝛽ai,1

)

f
(
xi,3, 𝛽ai,3

)
− f

(
xi,1, 𝛽ai,1

)

⋮

f
(
xi,K , 𝛽ai,K

)
− f

(
xi,1, 𝛽ai,1

)

⎞
⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎝

𝜎2 𝜎2∕2 · · · 𝜎2∕2

𝜎2∕2 𝜎2 𝜎2∕2

⋮ ⋱ ⋮

𝜎2∕2 𝜎2∕2 · · · 𝜎2

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

, (7)

where the correlation between within study relative effects is 0.5 under the homogenous variance model.1 Setting 𝜎 = 0

in Equations (6) and (7) gives the common effect model.

For example, if study 1 is a 3-arm study comparing placebo and treatments 1 and 2 which are different doses of agent

A, (0,P)vs (x1,A) vs (x2,A), then study 1 estimates:

(
𝛿1,2

𝛿1,3

)
∼ N2

((
f (x1, 𝛽A)

f (x2, 𝛽A)

)
,

(
𝜎2 𝜎2∕2

𝜎2∕2 𝜎2

))
,

whereas if study 2 is a 3-arm study comparing treatment 1 a single dose of agent A with treatments 2 and 3 which are two

doses of agent B, (x1,A) vs (x2,B) vs (x3,B), then study 2 estimates

(
𝛿2,2

𝛿2,3

)
∼ N2

((
f (x2, 𝛽B) − f (x1, 𝛽A)

f (x3, 𝛽B) − f (x1, 𝛽A)

)
,

(
𝜎2 𝜎2∕2

𝜎2∕2 𝜎2

))
.

3.2 Model critique and selection

The appropriateness of different dose-response functions and the choice of common or random effect models can be

assessed statistically by comparingmodel fit statistics across competingmodels. In aBayesian analysis onewould compare

the posterior mean residual deviance, Dbar (a measure of fit), the effective number of parameters, pD (a measure of

complexity), and the deviance information criteria, DIC, (the sum of the measures of Dbar and pD), preferring smaller

values, where differences of at least 3 (or even 5) in Dbar and DIC are considered meaningful.19 In addition to this, the

contribution of each data-point to the posterior mean residual deviance can be plotted against dose as a form of residual

analysis to identify any missing structure in the dose-response relationship.4

3.3 Checking the consistency assumption in dose-response MBNMA

In this sectionwe describe how themethods for assessing evidence consistency in NMA can be extended to dose-response

MBNMA. Note that the consistency equations under a dose-response MBNMA model are given by Equation (5), which

depends on the dose-response function f (x, 𝛽a). If each agent and dose combination is treated as a distinct treatment in

a standard NMA, then the consistency equations are given by Equation (4) which does not depend on the dose-response

relationship. To fully explore the consistency assumption in dose-response MBNMA we need to consider the fit of the

dose-response model alongside assessment of consistency.

3.3.1 Bucher method to assess consistency in dose-response MBNMA

The simplest approach to assess inconsistency is the Bucher method6 which can be applied to a triangle of evidence.

Suppose we have a simple triangle of evidence comparing placebo, (0,P), agent A at dose x2, (x2,A), and agent B at dose

x3, (x3,B) (Figure 3). Because there is only a single dose of each agent, this is a standard NMA without a dose-response

model. Then the direct estimate dDir
(x2,A),(x3,B)

, based on head-to-head evidence comparing (x2,A) and (x3,B), is com-

pared with the estimate obtained indirectly from dDir
(0,P),(x2,A)

and dDir
(0,P),(x3,B)

via the consistency relation for standard NMA

Equation (4), dInd
(x2,A),(x3,B)

= dDir
(0,P),(x3,B)

− dDir
(0,P),(x2,A)

. A test for inconsistency is constructed by forming a z-score for the
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F IGURE 3 An illustrative network and dose–response relationships of agents A and B at various doses, and placebo (P) on which the

Bucher test for inconsistency could be used in dose–response MBNMA. Straight black lines connecting points represent comparisons within

each study for which direct evidence is available. The network contains at least one study comparing different doses of A and placebo (Study 1),

one study comparing different doses of B and placebo (Study 2), and one study comparing (x2,A) vs (x3,B) (Study 3). θ represents the response

[Colour figure can be viewed at wileyonlinelibrary.com]

difference between the direct and indirect estimates. The method requires that the studies that form the direct com-

parison are different to those that form the indirect comparison.2,3 The Bucher method can also be applied to larger

loops of evidence (eg, a quadrilateral with four treatments), and can also be extended to the case where there are mul-

tiple independent loops of evidence (where each loop is based on different sets of studies with the only exception being

a single common edge).2,3 This allows the construction of a global test for inconsistency across all the independent

loops.7

In the context of dose-response MBNMA, the Bucher method can also be applied in the situation where we have the

same loop of evidence as in Figure 3, but where the (x2,A) vs (0,P) estimate is based on a dose-response MBNMA for a

network of at least one study/studies comparing various doses of agent A and placebo (Study A), and similarly the (x3,B)

vs (0,P) estimate is derived from a dose-response MBNMA for a network of at least one study/studies comparing various

doses of agent B and placebo (Study B), and there is a separate study that directly compares (x2,A) vs (x3,B) (Study C), as

illustrated in Figure 3. Separate dose-responsemodels can be fitted for agents A and B to obtain estimates of d(0,P),(x2,A) and

d(0,P),(x3,B). Equation (5) then gives the indirect estimate for d
Ind

(x2,A),(x3,B)
= f (x3,B) − f (x2,A), which can then be compared

with the direct estimate using the Bucher method. As with NMA, this method can also be used for multiple independent

loops of evidence in this format (where each loop is based on different sets of studies with the only exception being a

single common edge).

For applications of the Bucher method with random effects models the between studies variance parameter should be

shared across comparisons.3,8 This can be achieved by fitting a MBNMA model to the indirect evidence simultaneously

with a pairwise meta-analysis for the direct evidence, with a shared parameter for the between studies SD. In practice this

requires fitting the node-splitting models described below.

The application of the Bucher method is likely to be of limited use in assessing consistency in dose-responseMBNMA

because networks of evidence are typically complex withmany RCTswith three ormore arms, such that loops of evidence

are not independent.
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3.3.2 Global assessment of inconsistency at treatment-level

In NMA the consistency assumption can be relaxed by fitting an inconsistencymodel where there is a separate parameter

for each comparison based only on the direct evidence, whilst sharing the between-studies SD parameter across com-

parisons. This is known as the unrelated mean effects (UME) model.2,3 A global test for inconsistency can be obtained

by comparing model fit statistics for the inconsistency and consistency models, and inspecting the estimates of the

between-studies SD 𝜎. If 𝜎 is much smaller for the inconsistency model, then this indicates evidence of inconsistency

(even in absence of differences between model fit statistics).

This UME model can also be fitted in dose-response MBNMA by estimating separate relative effects d(xc,ac),(xk ,ak) for

each treatment contrast with a shared between studies SD (Equations (1) and (2)), but without making the additional

consistency assumption (Equation (5)).4

By comparing Equations (2) and (7) it can be seen that the UME model relaxes both the dose-response relationship

and the consistency assumption at the same time. This means that differences in model fit and heterogeneity estimates

could be explained by lack of fit of the functional dose-response function f (x, 𝛽a), inconsistency of the evidence sources,

or both. Furthermore, inconsistency could mask lack-of-fit of the dose-response relationship to the extent that we detect

neither lack-of-fit nor inconsistency (this phenomenon has been described in the network meta-regression literature20).

We therefore recommend that three different models are compared:

1. Model 1: The dose-response MBNMA consistency model (Equations (5, 7)), which assumes a dose-response relation-

ship and assumes consistency,

2. Model 2: The treatment-level NMA consistency model (Equations (1, 2, 4)) where each treatment (agent and dose

combination) is considered a separate treatment. Thismodel does not assume any dose-response relationship, but does

assume consistency,

3. Model 3: The UME model (Equation (2)) which relaxes both the dose-response relationship and the consistency

assumption.

Comparing model fit and 𝜎 estimates across these three models allows both the dose-response and consistency

assumptions to be checked (Figure 4). Note that the network may be disconnected at the treatment-level, meaning that

estimates for disconnected treatments may not be valid. When this occurs, model fit statistics for a treatment-level NMA

(Model 2) can still be compared to the dose-response MBNMA consistency model (Model 1), but only relative effects

between connected treatments are valid and can be interpreted. There may also be convergence issues in disconnected

networks, in which case treatment-level NMAs may have to be fitted separately to different subnetworks.

To further explore potential causes of lack of fit and inconsistency deviance-deviance plots can be useful.21 The con-

tribution of each data point to the residual deviance can be plotted for (i) the dose-response MBNMA consistency model

against the UME model (Model 1 vs Model 3); (ii) the dose-response MBNMA consistency model against the treatment

level NMA consistency (Model 1 vs Model 2) and; (iii) the treatment level NMA consistency model against the UME

model (Model 2 vs Model 3). These plots can identify which data-points are leading to lack of fit, inconsistency or both.

Note however, that this does not necessarily mean that those data points are “wrong”. Inconsistency is a property of loops

of evidence and identifying inconsistency in a loop does not tell us which piece(s) of evidence are causing the problem,

merely that the evidence within that loop does not agree.

3.3.3 Node-splitting methods for MBNMA

We may wish to explore whether there is inconsistency for specific pairwise contrasts. This could be because the global

test identified inconsistency and we wish to know which evidence is contributing to this. Alternatively, attention may

be focussed on particular contrasts where there is a priori doubt about the consistency assumption, for example due to

older studies or differences in study design/populations. In NMA, node-splitting is a method that can be applied to a

specific contrast, where the relative effect parameter for that contrast is “split” into two separate parameters estimated

by two different sets of evidence.9 The first is estimated by the direct head-to-head evidence, and the second is estimated

indirectly from the NMA model applied to the remaining evidence (ie, excluding the head-to-head evidence for that

contrast). The direct and indirect estimates for the contrast can then be compared by computing the difference between

them, and model fit can be compared for the “split” model with that from the consistency model.
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F IGURE 4 Flow chart representing the steps taken to perform a global assessment of inconsistency and to assess the fit of the

dose–response function [Colour figure can be viewed at wileyonlinelibrary.com]

Node-splitting for dose-response MBNMA is analogous to that for NMA, except the indirect estimate is derived using

the dose-response MBNMAmodel. For a specific treatment-level contrast, (xc, ac) vs (xk, ak) we can split the d(xc,ac),(xk ,ak)
parameter into two separate parameters, dDir

(xc,ac),(xk ,ak)
and dInd

(xc,ac),(xk ,ak)
which are estimated by two different sets of evi-

dence. dDir
(xc,ac),(xk ,ak)

is estimated from direct head-to-head evidence for (xc, ac) vs (xk, ak), by replacing d(xc,ac),(xk ,ak) with

dDir
(xc,ac),(xk ,ak)

in Equation (1), and giving this parameter a prior distribution rather than applying the consistency relations

(Equation (5)). dInd
(xc,ac),(xk ,ak)

is estimated by applying the consistency relations (Equation (5)) to the estimates obtained

from fitting a dose-response MBNMA model to the remaining evidence. The model is fitted to both sets of data simul-

taneously, allowing us to estimate a common between studies variance parameter, 𝜎2, which is shared for all treatment

contrasts, including both dDir
(xc,ac),(xk ,ak)

and dInd
(xc,ac),(xk ,ak)

. The direct and indirect estimates can then be compared by
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computing the difference between them, Diff = dDir
(xc,ac),(xk ,ak)

− dInd
(xc,ac),(xk ,ak)

and obtaining posterior summaries for Diff.

Model fit measures and heterogeneity can be compared for the “split” model with that from the consistency model. In

addition, a Bayesian p-value can be obtained as 2 ×min{Pr(Diff > 0), 1 − Pr(Diff > 0)}.22

To illustrate, suppose wewere interested in node-splitting for (x1,A) vs (x2,B). A 2-arm study, study 1, which compares

(x1,A) vs (x2,B) estimates:

𝛿1,2 ∼ N
(
dDir
(x1,A),(x2,B)

, 𝜎2
)
,

whereas a 3-arm study 2 comparing (0,P)vs (x3,A) vs (x4,A) contributes to the estimation of the dose-response curve for

agent A, estimating:

(
𝛿2,2

𝛿2,3

)
∼ N2

((
f (x3, 𝛽A)

f (x4, 𝛽A)

)
,

(
𝜎2 𝜎2∕2

𝜎2∕2 𝜎2

))

and a 3-arm study 3 comparing (0,P) vs (x5,B) vs (x6,B) contributes to the estimation of the dose-response curve for agent

B, estimating:

(
𝛿3,2

𝛿3,3

)
∼ N2

((
f (x5, 𝛽B)

f (x5, 𝛽B)

)
,

(
𝜎2 𝜎2∕2

𝜎2∕2 𝜎2

))
.

These can be used together to obtain an indirect estimate:

dInd
(x1,A),(x2,B)

= f (x2, 𝛽B) − f (x1, 𝛽A) .

Node-splitting requires both direct and indirect evidence to exist for a particular treatment-level contrast. The R-packages

gemtc23 and MBNMAdose12 include functions for finding comparisons in the “treatment-level” network (ie, Figure 1B

for psoriasis example) where both direct and indirect evidence exist. However, in dose-response MBNMA there may

be additional treatment-level contrasts where indirect estimates can be obtained via the dose-response relationship.

This is because the dose-response model can allow indirect comparisons to be made via interpolation/extrapolation

(Figure 2).

Due to the nature of phase-II studies exploring dose-response, we expect to be able to obtain indirect esti-

mates for many of the treatment-level contrasts where we have direct evidence. However, the extent to which

indirect estimates will be available via the dose-response relationship will depend on the availability of remain-

ing dose-response information once direct evidence has been removed, and on the complexity of the dose-response

relationship fitted. Where indirect estimates are not available, then the model will simply predict a very uncertain

estimate or may fail to converge. The inconsistency.loops() function in MBNMAdose can be used to identify con-

trasts in which both direct and indirect estimates are available, and to indicate whether it arises from pathways

of head-to-head evidence (as for node-splitting in a treatment-level network) or only from the dose-response rela-

tionship. It also provides the number of doses of each agent in a comparison on which the indirect dose-response

relationship must be estimated, which can help identify the complexity of function that could be used to

estimate it.

Node-splitting is complicated by the existence of multiarm trials (trials with three or more arms). A K-arm trial pro-

vides (K-1) relative effects, but the choice of the “reference” arm 1, determines whether the trial contributes to the direct

estimate or not, and this choice is somewhat arbitrary. For example, suppose that we have a 4-arm study i comparing

Placebowith agent A at doses x1 and x2 and agent B at dose x3, andwewere interested in node-splitting for (x2,A) vs (x3,B).

If we take Placebo as the reference arm and define three relative effects for each active arm compared to Placebo, then

the study does not contribute to the direct estimate for dDir
(x2,A),(x3,B)

and instead informs the indirect estimate dInd
(x2,A),(x3,B)

.

However, if we take the (x2,A) as the reference arm, then the relative effect for (x3,B) relative to (x2,A) contributes to

dDir
(x2,A),(x3,B)

, whereas the relative effects for Placebo and (x1,A) relative to (x2,A) could contribute to the dose-response

model for the indirect estimate. Van Valkenhoef et al. set out a series of rules for how multiarm trials can be used in

node-splitting models for NMA.24 Following these rules and using Placebo as the reference arm, the relative effects for
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(x1,A) and (x3,B) relative to (x2,A) in the example above would be discarded since amultiarm trial cannot be inconsistent

with itself. However, in dose-response MBNMA there may be inconsistencies within a multiarm trial due to departures

from the assumed dose-response relationship. We therefore propose that the following approach be taken for inclusion

of multiarm trials in node-splitting for dose-response MBNMA.

1. If the multiarm trial contains the contrast (xc, ac) vs (xk, ak) that is being split, then reorder the arms with (xc, ac)

as the reference arm 1 and (xk, ak) is arm 2, so that the multiarm trial always contributes to dDir
(xc,ac),(xk ,ak)

if

possible.

2. Model all the relative effects from the multiarm trial as usual, but replace the relative effect for 𝛿i,2 with d
Dir

(xc,ac),(xk ,ak)

⎛⎜⎜⎜⎜⎜⎝

𝛿i,2

𝛿i,3

⋮

𝛿i,K

⎞⎟⎟⎟⎟⎟⎠

∼ N(K−1)

⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝

dDir
(xc,ac),(xk ,ak)

f
(
xi,3, 𝛽ai,3

)
− f

(
xi,1, 𝛽ai,1

)

⋮

f
(
xi,K , 𝛽ai,K

)
− f

(
xi,1, 𝛽ai,1

)

⎞⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎝

𝜎2 𝜎2∕2 · · · 𝜎2∕2

𝜎2∕2 𝜎2 𝜎2∕2

⋮ ⋱ ⋮

𝜎2∕2 𝜎2∕2 · · · 𝜎2

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

. (8)

The covariance structure reflects the fact that the multiarm trial cannot be inconsistent with itself, the trial contributes

to the direct estimate for the contrast that is split, and the remainder of the trial arms contribute to the estimation of the

dose-response MBNMAmodel which is used to form the indirect estimate.

3.4 Implementation

The models are implemented using the MBNMAdose package version 0.3.112 in R version 4.02, which uses Bayesian

Markov chain Monte Carlo (MCMC) simulation in JAGS.25 R code for all analyses can be found on GitHub (https://

github.com/hugaped/Dose-response-MBNMA-consistency). We illustrate a global assessment of consistency and meth-

ods for node-splitting at the treatment-level in the psoriasis dataset. We focus our analysis on two different dose-response

functions, to demonstrate the impacts of a good fitting (Emax) and a badly fitting (exponential) dose-response model.

We also include results for a simple linear dose-response model (very badly fitting), as readers will be most famil-

iar with this. For global testing of inconsistency using UME, we also fit an agent-level NMA that lumps different

doses of agents together assuming a common effect. Common and random treatment effect models were fitted and

compared.

Vague normal prior distributions (N(0, 1000)) were given to direct treatment parameters dDir
(xc,ac),(xk ,ak)

, nui-

sance parameters 𝜇i, and dose-response parameter 𝜆ai,k for exponential MBNMA models. For Emax MBNMA

models, a correlation was modeled between dose-response parameters by assigning them a multivariate normal

prior:

(
Emaxai,k

log
(
ED50ai,k

)
)

∼ MVN(0,Σ). (9)

For ED50ai,k parameters it was necessary to ensure that they only took positive values so prior distributions were specified

on the log-scale. Σ is the covariance matrix, and its inverse (the precision matrix) was assigned a minimally infor-

mative Wishart distribution as a prior, with 2◦ of freedom and a scale matrix Ω =

(
1 0
0 1

)
(Σ−1 ∼ Wishart(Ω, 2)). The

between-study SD, 𝜎, was given a uniform prior distribution (U(0, 5)). Sensitivity of the results to the choice of prior

distributions are reported in Supplementary Materials.

Models were run for 50 000 burn-in iterations and monitored for 50 000 iterations on 4 chains. Trace plots, autocorre-

lation and Brooks–Gelman–Rubin plots were used to assess convergence.26 Unless otherwise stated, results are presented

as posterior medians and 95% credible intervals (95% CrI).

All models were compared using DIC, with a difference of three points or greater being considered as meaningful.

DIC was calculated using the Kullback–Leibler divergence for estimation of pD.27
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TABLE 1 Model fit statistics for all models performed on the psoriasis network

Model

Treatment

effect

model

Posterior mean

residual

deviancea pDb DICc

Between-study

SD (95% CrI)

Selected

(based on DIC)

NMA treatment-level Common 79.4 37.7 470.4 - Yes

NMA treatment-level Random 70.4 43.9 473.2 0.08 (0.003, 0.24) No

NMA agent-level Common 288.8 30 672.2 - No

NMA agent-level Random 68.2 59.2 486 0.49 (0.37, 0.66) Yes

MBNMA linear Common 1318.3 30 1702.3 - No

MBNMA linear Random 70.7 68.7 497.9 1.41 (1.12, 1.82) Yes

MBNMA exponential Common 285.4 30.8 669.3 - No

MBNMA exponential Random 68.4 57.5 484.4 0.49 (0.37, 0.65) Yes

MBNMA Emax Common 75.6 35.4 469.7 - Yes

MBNMA Emaxd Random 71.5 41.5 471.7 - No

UME treatment-level Common 80.2 43.2 476.7 - -

UME treatment-level Random 70.9 47.2 476.7 0.10 (0.002, 0.26) -

a
Compared to 70 data points.

b
pD: The effective number of parameters calculated using the Kullback–Leibler divergence.27

c
DIC: Deviance information criterion = pD+ residual deviance (Dbar).

d
Model did not fully converge for all parameters.

4 RESULTS

Model fit statistics for all models are reported in Table 1. Heterogeneity was found to be very low when fitting a

treatment-level NMA, leading to the selection of a common effect model based on DIC. MCMC chains struggled to con-

verge for between-study SD in the random effect Emax MBNMA, however model fit statistics did converge and indicated

that the common effects model gave a lower DIC andmodel fit was adequate (posterior mean residual deviance 75.6 com-

pared with 70 data points). Lumping doses at the agent-level or using an exponential or linear dose-response resulted in

high heterogeneity and the selection of random treatment effect models in all three instances.

Among selected models, DIC was higher in those with higher heterogeneity due to the additional number of effective

parameters. Both the MBNMA Emax and treatment-level NMAmodels had similar DIC which was lower than for other

models fitted. The slightly lower residual deviance in the treatment-level NMAmodel was offset by the fewer parameters

required in the Emax MBNMA model. This suggested that the Emax dose-response relationship gave an adequate fit to

the data. Predicted probabilities of response for common effects treatment-level NMA, random effects agent-level NMA,

random effects exponential MBNMA, random effects linear MBNMA, and common effects Emax MBNMA are shown at

different doses for each agent in Figure 5.

Points below the line of equality in the deviance-deviance plots for the common effect treatment-level NMA model

against each of the other fitted common effect models indicate lack of fit for the dose-response model assumed. For the

Emax MBNMA the deviance-deviance plot showed generally good fit, though there was some lack of fit for studies 15

and 16 that compared different doses of Ustekinumab (Figure 6A). However, they showed poor fit for the exponential

MBNMA and the agent-level NMAmodels, suggesting that these do not explain the dose-response relationship. However,

the random effects versions of these models fitted well because the lack of fit is captured as heterogeneity in these mod-

els (Figure S2). Deviance-deviance plots are shown separately for common and random effects linear MBNMA models

(Figure S3). These showed very similar trend to the exponential MBNMAmodels.

4.1 Global assessment of inconsistency

For global assessment of inconsistency, the posterior mean residual deviances were similar for all selectedmodels and the

treatment-level UMEmodel that relaxed the consistency assumption (Table 1). However, whilst there was no evidence of
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F IGURE 5 Predicted responses for different agents in the network based on results from a common effects treatment-level NMA

(thick vertical lines and points), a random effects agent-level NMA (solid horizontal line with red 95% CrI), a common effects Emax MBNMA

(dotted curve with blue 95% CrI), a random effects Exponential MBNMA (short dashed curve with green 95% CrI) and a random effects

Linear MBNMA (long dashed curve with purple 95% CrI). Predictions were calculated from relative effects applied to a probability of placebo

response of 0.05. Predicted responses are shown as posterior medians and 95% CrIs [Colour figure can be viewed at wileyonlinelibrary.com]

inconsistency for the treatment-level NMA and the Emax MBNMA models based on DIC, for the exponential MBNMA

and agent-level NMA the DIC were considerably higher than for the UME model, suggestive of inconsistency in these

models driven by the high levels of heterogeneity.

Deviance-deviance plots are shown for each model compared to the treatment-level UME (Figure 6B). Whilst the

treatment-level NMA model showed no evidence of substantially poorer fit for any data points, most data points in all

other models showed considerably higher contributions to the posterior mean deviance compared to the treatment-level

UME than when compared to the treatment-level NMA, which may be suggestive of inconsistency (Figure 6A), but may

also be due to incorrect specification of the dose-response relationship.

There were two data points in particular in the Emax MBNMA which appeared to have a substantially higher contri-

bution to the posterior mean deviance than in the treatment-level UME. These points correspond to studies comparing

placebo with different doses of Ustekinumab (study numbers 15 and 16), which were also identified in Figure 6A as

having a poorer fit for the dose-response relationship than other data points.

For the exponential MBNMA and agent-level NMA there were a large number of data points for which deviance

contributions were higher when common treatment effects models were compared to a common effects UME model

(Figure 6B).However, these differenceswere no longer discerniblewhen random treatment effectsmodelswere compared

(Figure S1), since they were masked by high heterogeneity which resulted in lower posterior mean deviances. This could

be identified by examining the reduction in between-study SD and DIC for the random effects UME model compared to

the random effects exponential MBNMA and treatment-level NMA models (Table 1). For common and random effects
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F IGURE 6 Deviance-deviance plots showing the contribution to the posterior mean deviance for each data point from different

common treatment effect models compared to treatment-level NMA (A) and UME (B) models. Comparisons in (B) are to UME models. For

better visibility points which contribute up to 15 to the posterior mean deviance are plotted, meaning that 10 data points that contribute >15

to the posterior mean deviance have been excluded from MBNMA exponential and NMA agent-level plots. Red stars represent data points

described in the text corresponding to arm 1 in studies 15 and 16 that compare different doses of Ustekinumab. The red diagonal line represents

the line of equality, at which deviance is equal in both consistency and UME models [Colour figure can be viewed at wileyonlinelibrary.com]
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Linear MBNMA models, the trend was similar to that observed for common and random effects exponential MBNMA

models, but with more extreme differences in deviance contributions from UME models arising from poorer fit of the

dose-response function (Figure S3).

Given that there is poor dose-response fit for thesemodels, it is difficult to further confirm if there is also inconsistency

in thesemodels. Node-splitting can be used to provide a local test to further explore the potential inconsistency identified.

4.2 Node-splitting

In the psoriasis dataset there was direct evidence for 34 different comparisons. However, by parameterising comparisons

in each study as relative effects compared to the study reference arm (such that a 3-arm study is parameterised by two rela-

tive effects and a study reference treatment effect) this resulted in 20 different comparisons for which direct evidence was

available. Both direct and indirect evidence were available for 4 of these 20 comparisons, meaning that node-splitting was

possible for these in both MBNMA and NMA (Table S3 and Figure S4). For these comparisons, indirect estimates made

use of evidence from both the consistency relationship via a pathway of direct comparisons, and from the dose-response

relationship.

For all four comparisons both Emax MBNMA and treatment-level NMA models showed no evidence of inconsis-

tency between direct and indirect evidence (Figure 7). For three of the comparisons (comparisons 1, 2, and 4) direct

and indirect estimates from the Emax MBNMA were more similar than in the treatment-level NMA. However, inconsis-

tency was identified in the exponential and linear MBNMAs for the comparison of Ixekizumab 40mg/wk vs Ixekizumab

20mg/wk (comparison 1) (Figures 7 and S5). For the other three comparisons (comparisons 2-4) there was no evidence

of inconsistency in the exponential or linear MBNMAs.

A further nine comparisons (comparisons 5-13) made use of indirect evidence that was only available via the

dose-response relationship, providing additional potential for node-splitting in MBNMA that was not possible in the

treatment-level NMA (Table S3 and Figure S4). For estimating indirect evidence via the dose-response relationship, the

number of available doses is critical, as this will limit the complexity of the dose-response function that can be fitted.

The number of doses for each agent in the comparison are shown in Table S3. To fit an Emax dose-response function for

all agents, we would need at least three doses of each agent available in the indirect evidence. Given that evidence for

the direct effect is separated from evidence used to estimate the indirect effect, this reduces the information available to

estimate each of the effects. This means that fitting an Emax MBNMA to the indirect evidence is only possible for com-

parisons 1 to 4 (for which indirect evidence is also available via a pathway of direct comparisons, as discussed above)

and additionally for Ustekinumab 5.62mg/wk vs Ixekizumab 30mg/wk (comparison 5). For this comparison, an Emax

MBNMAs did not show any evidence of inconsistency (Figure 7).

However, if we fit an exponential or linear dose-response function, only two doses for each agent in the indirect

evidence are needed to estimate dose-response functions for all agents, which means that we can estimate indirect evi-

dence for all nine indirect dose-response comparisons. Out of the nine comparisons that could be analyzed using a single

parameter dose-response relationship, inconsistency was identified in two comparisons (comparisons 6-7) that could

be analyzed using an exponential MBNMA and one comparison (comparison 10) that could be analyzed using a linear

MBNMA (Figures 7 and S5). Notably, the comparisons in which inconsistency was identified for the different MBNMAs

were not the same. For other comparisons there was no evidence of inconsistency.

Overall, this suggested no inconsistency in treatment-level NMA or Emax MBNMA, but that fitting an exponential

or linear MBNMA could lead to inconsistency in existing node-splits in which indirect evidence was estimated by both

the consistency assumption and dose-response relationship, and that this could also lead to inconsistency in additional

comparisons for which indirect evidence was only informed by the dose-response relationship.

5 DISCUSSION

Ignoring the effects of different doses is a common cause of heterogeneity and inconsistency in NMA. Dose-response

MBNMAcan reduce heterogeneity and inconsistency bymodeling a dose-response relationship. However, it is still impor-

tant to critiquemodel fit and check consistency assumptions where possible.We have presented several methods to assess

model consistency both globally and for specific contrasts.

The methods were illustrated with a dataset of trials comparing different agents for the treatment of

moderate-to-severe psoriasis, which had features that are typical in dose-response MBNMA, comprising of (i) phase 2b
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F IGURE 7 Estimates of direct, indirect and overall evidence for each comparison from each model for which node-splitting was

possible. Bayesian p-values are given to the right of the plot, which show the agreement between direct and indirect estimates. Interventions

are coded according the first two letters of the agent and dose (mg/week)
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dose-ranging studies where studies have multiple doses of a single agent that are compared with Placebo in multiarm tri-

als, perhaps with a single (licensed) dose of a competitor also included in the study; (ii) phase 3 studies that compare two

active agents head to head, each at a single dose. Although in this dataset there were reasonable opportunities for assess-

ing consistency, networks comprised more exclusively of phase 2b dose-ranging studies may have more limited scope for

this. The very features of such studies (multiarm trials, comparisons with placebo) are important mechanisms that guard

against inconsistency, and so should not be viewed as a problem, but rather as part of the solution to avoid inconsistency

in the first place. Only 5 out of 23 studies in the network were 2-arm studies, and the other 18 were multi(≥3)-arm studies

comparing multiple doses of one or more agents.

Wedidnot find any evidence of inconsistency in the psoriasis datasetwhenmodelswere used that fitted the data appro-

priately (treatment-level NMA, Emax MBNMA), but the Emax MBNMA had the advantage that at several doses relative

effects were estimated more precisely. However, when an exponential or linear dose-response relationship was used this

led to a high level of heterogeneity and the identification of inconsistency within multiple comparisons in the network.

Tests for consistency are inextricably linked tomodel fit and therefore depend on the dose-response relationship assumed.

Thorough assessment of model fit for a range of alternative dose-response relationships is therefore recommended, and

we advise selection of the best fitting dose-response function prior to comparing common vs random treatment effect

models, as the impacts of an inappropriate dose-response function can be masked by fitting random effect models with

resulting high heterogeneity.

In the presence of high heterogeneity (such as in exponentialMBNMA, linearMBNMA, and agent-level NMAmodels)

a global assessment by comparison with treatment-level NMA and UME models may fail to clearly identify evidence of

inconsistency, since inconsistency can instead manifest as high heterogeneity.3,28 Node-splitting can be a useful tool for

highlighting the difference between these forms of heterogeneity by specifically testing for inconsistency on the set of

comparisons for which direct and indirect evidence contributions are available.

In MBNMA node-splitting models, indirect estimates can sometimes be obtained via the dose-response relationship

even when a pathway of direct evidence is not available (comparisons 5-13) and indirect estimates are not possible for

standard NMA. The dose-response relationship can be used in the sameway to estimate effects in otherwise disconnected

networks.5 This does not specifically require the inclusion of placebo data, and the methods can be used in the absence

of this, although placebo arms typically provide a lot of information to the dose-response relationship, particularly for

parameters relating to the efficacy at lower doses (eg,ED50a). In networkswith limited evidence at lower doses the indirect

estimates via the dose-response relationship may be biased in some circumstances, which may impact the assessment of

inconsistency using node-splitting.5

Simpler dose-response functions provide more potential to obtain indirect estimates via the dose-response relation-

ship and therefore increase the availability of comparisons on which node-splitting is possible, yet if the true underlying

dose-response relationship requires a more complex function, fitting a simpler function may introduce bias. This likely

explains the inconsistency identified by node-splitting in several comparisons for exponential and linear MBNMA mod-

els. Ensuring that comparisons are only split if the indirect evidence contains sufficient information with which to

estimate the same dose-response function as used in the MBNMA consistency analysis limits this bias. In the pso-

riasis example for our selected Emax MBNMA we would therefore in practice only choose to split comparison 5

(Ustekinumab 5.62mg/wk vs Ixekizumab 30mg/wk) in addition to the comparisons for which indirect evidence is avail-

able via consistency relationships (comparisons 1-4), given the doses available in the dataset for both agents in this

comparison.

We have also noted that the effects of inconsistency and poor dose-response fit on deviance contributions for indi-

vidual data points can be aggregated, leading to substantially higher contributions to the posterior mean deviance

in a MBNMA model compared to the treatment-level UME. This does not appear to affect the total fit of the

model, suggesting that it is balanced by improved fit of other data points. However, it is important to be aware

of the causes of this when inspecting deviance-deviance plots and to identify to what degree the difference is

caused by inconsistency vs fit of the dose-response curves. Given that there was no evidence of inconsistency in

node-splitting for the Emax MBNMA, the issues identified in deviance-deviance plots for studies 15 and 16 that

included Ustekinumab was most likely due to poor dose-response fit rather than inconsistency, and it may be that the

dose-response relationship for this agent is different than for other biologics. However, given that the dose-response

function for Ustekinumab implied by the treatment-level NMA results would be nonmonotonic (Figure 5—the pos-

terior median for the relative effect of Ustekinumab 5.62mg/wk is lower than at both 3.75 and 7.5mg/wk), there

may be some argument to suggest that the results of the Emax MBNMA at these doses are more biologically

plausible.
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Whilst we describe methods for identifying inconsistency in dose-response MBNMA, we have not yet suggested steps

to take if it is found. Given the link between inconsistency and dose-response fit that we have shown here, our first sug-

gestionwould be to ensure that the fit of the dose-response function is reasonable. If this is not the source of inconsistency

then other causes can be investigated.3 Inconsistency can arise from the impact of effectmodifiers (variables that influence

the treatment effect) that differ between comparisons. Impacts of these effect modifiers may also differ within a compar-

ison, resulting in heterogeneity. One common source of heterogeneity/inconsistency is from “lumping” different doses

of agents together, and this is likely to be avoided by explicit modeling of the dose-response relationship using MBNMA.

However, other possible variables that could be effect modifiers and may differ between comparisons are age, severity

at baseline, and previous treatments.3 Ensuring strictly defined inclusion/exclusion criteria for a systematic review will

help limit heterogeneity/inconsistency, as well as early identification of potential effect modifiers prior to commencing

synthesis.

In this study, we have restricted attention to parametric functional forms for the dose-response relationship. Hierar-

chical models, where different doses are assumed exchangeable, have also been proposed,29,30 including a hierarchical

model that constrains amonotonic relationshipwith dose.30 Themethods described here can extend naturally to nonpara-

metric dose-response functions and some of these models are implemented in the R package MBNMAdose.12 However,

methods for assessing inconsistency in such models have not yet been fully explored.

Design-by-treatment interaction models have been proposed to assess inconsistency in the NMA literature, where the

effect from AB studies is distinguished from those from ABC studies, ACD studies, etc.31 However, these models do not

naturally extend to dose-response models, because dose defines both the study design and the explanatory variable for

the dose-response model. Furthermore, there are typically lots of different study designs in dose-response MBNMA (as

seen for the psoriasis example, Table S2), making the design-by-treatment interaction models infeasible to estimate in

this context.

Cross validation has been proposed to identify potential outliers,32,33 but can also be used to explore inconsistency

in NMA.10,21,34 The idea is to omit a subset of the data, fit the consistency model (Equations (7) and (8)) to the remain-

ing data, and then compare the predictions from the model with the observed omitted data. This allows the computation

of a cross-validation p-value, which represents the probability that the model predicts a value as, or more, extreme than

that observed. If all the evidence on a specific contrast is excluded, then cross-validation becomes a form of test for

inconsistency for that contrast.

Although the idea of cross-validation is very similar to node-splitting, the methods differ in how the comparisons are

made between the direct and indirect evidence. In node-splitting both direct and indirect estimates of treatment effects

are computed and then compared. In cross-validation only an indirect estimate is obtained which is then used to predict

the observed data accounting for both sampling error and predictive uncertainty. As a consequence, in node-splitting all

evidence can be used to estimate the between studies variance jointly, whereas in cross-validation the omitted data do

not contribute to the estimate of the between-studies variance. Because the cross-validation method uses the predictive

distribution from the random effects model, and the estimate of the between-studies variance is less certain (due to being

based on less data), cross-validation is less likely to detect inconsistency than node-splitting. Because there is often little

power to detect inconsistency in NMA, and we wish to be confident that we can identify it if it is present, we prefer the

node-splitting approach to cross-validation, although this may result in some false positive findings.

Sparsity of evidence may require additional modeling assumptions to be made, such as exchangeable agent effects

(within class) for the Emaxa and/or ED50a parameters, if pharmacologically plausible.4 Note that such hierarchical mod-

els may mask inconsistency which, as mentioned above, can alternatively manifest as heterogeneity. A simulation study

to fully explore the ability of the methods to detect inconsistency under a range of modeling assumptions would be useful

future work.

6 CONCLUSIONS

Testing for inconsistency is important when synthesizing direct and indirect evidence to obtain robust relative effects

to inform drug-development and policy decisions. We have proposed methods to assess consistency for dose-response

MBNMA models and highlight the importance of also considering the fit of the dose-response function as part of this

assessment. Poorly fitting dose-response functions are associated with higher heterogeneity and may introduce incon-

sistency. More complex dose-response functions can allow for better model fit but sufficient data at multiple doses of

different agents are required to fit them. This highlights the importance of including phase II dose-finding evidence in
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systematic reviews, rather than simply focusing on the licensed doses of different agents. Furthermore, inclusion of phase

II multiarm placebo-controlled studies protects against inconsistency because these study designs help guard against

inconsistency in the first place.
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