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A B S T R A C T   

The Averaged Strain Energy Density (ASED) criterion is validated for the failure prediction of 
notched Polylactide Acid specimens fabricated by Fused Deposition Modeling by means of 
experimental data and the results are compared to the Theory of Critical Distances. The common 
approach of estimating the ASED control volume radius based on the measured fracture toughness 
was shown to be suboptimal, arguably because of the difficulties of obtaining the fracture 
toughness with such complex materials. Therefore, a more robust approach is evaluated in 
analogy of the TCD and it is shown to successfully extend the range of applicability of the ASED 
criterion.   

1. Introduction 

Fused Deposition Modeling (FDM), also referred to as Fused Filament Fabrication (FFF), is one of the most mature technologies in 
additive manufacturing and has gained much popularity for low melting point polymers due to its low cost in use and maintenance [1]. 
The feeding material in form of a filament is fed through a heated nozzle and deposited onto a surface layer by layer. Commercial 
thermoplastics such as Acrylonitrile Butadiene Styrene (ABS), Polycarbonate (PC), Nylon, Polylactic Acid (PLA), and their combi-
nations are frequently used to produce FDM parts [2]. While allowing for highly complex geometries, this triggers three main strength 
reduction mechanisms with respect to the bulk material [3]: 

(i) Reduction of cross-section due to voids. This alone was shown to have a dramatic impact on the tensile strength in [4]. 
(ii) Void-induced stress concentrations. Based on this observation, a dual notch void model has been proposed by Xu and Leguillon 

[5] to explain the anisotropic tensile strength of 3D-printed polymers. 
(iii) Incomplete inter-diffusion of polymer chains. Independent of geometric aspects, this reduces the strength of the material itself 

at the filament boundary [1]. 
This set of three phenomena is controlled by a large number of process parameters, the strong effects and complex interplay of 

which exceed our current knowledge and is an active field of research. Cuan-Urquizo et al. [6] identified two main categories of 
parameters, namely manufacturing parameters, such as the nozzle temperature and printing speed as well as structural parameters, 
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such as infill density, printing angle, layer thickness, raster angle and stacking sequence. Especially the influence of the latter on the 
anisotropic effective mechanical properties on the macroscale and on the material internal structure [7–16] as well as on the arising 
fracture mechanisms and toughness [17–22] has been studied extensively. 

The raster angle is one of the most frequently studied parameters [11–18]. Assuming unidirectional loading, a simple way of filling 
in the shell’s contour in each layer is printing parallel filaments at an angle θ to the loading direction. As a consequence of all three 
strength reduction mechanisms mentioned above, inter-fiber failure occurs at much lower stress levels than intra-fiber failure, making 
θ = 0◦ the best choice for a high tensile strength [12,13], whereas θ = 45◦ was shown to maximize the fatigue life [12]. The intensity of 
this effect depends on the inter-filament fusion quality and therefore on other process parameters [17]. Because of this anisotropy, it is 
often recommended to print cross-ply structures where layer directions are perpendicular to each other when multiaxial loading is 
expected. While this eliminates the extremely weak scenario of θ = 90◦, significant anisotropy remains. The crack propagation 
microscopically follows a zigzag path, locally mixing the fracture modes and enlarging the crack surface [23]. 

The above-described set of complex phenomena makes it very challenging to find a macro-scale constitutive model for the ho-
mogenized material which does not need to be recalibrated experimentally after even slight changes in the process parameters. 
However, in light of its relevance for production, attempts have been made nevertheless to establish simple yet reliable Process- 
Structure-Property (PSP) relations for FDM components. In general, characterizing even simple materials like PLA for a compli-
cated manufacturing process such as FDM is a very wide and challenging field which still requires a long period of extensive research. 
On the other hand, the acute relevance of the topic urges us to take action and quickly find simple predictive procedures of such nature 
that they are immediately applicable but will also tie in naturally with all the research that is expected to come in the next years. 

Similar to other AM technologies, FDM is widely used for fabrication of geometrically complex components in presence of various 
types of geometrical discontinuities which are known as notches. Notches generally act as local stress raisers and are therefore often the 
reason for failure. While avoided wherever possible, sometimes they cannot be removed and must be handled. For this aim, many 
engineering rules of thumb and guidelines exist [24], as well as some analytical solutions based on linear-elastic material behavior 
[25–27]. In fact, notches pose many problems when treating them numerically: The high stresses not only require fine meshes but also 
often exceed the range of applicability of the constitutive model as the material behavior not only becomes nonlinear and plastic, but 
also unknown unless expensive experiments are performed to characterize the material itself. Furthermore, as the geometric length 
scale decreases, the stress field becomes more and more sensitive to manufacturing imperfections. On these length scales, the inter-
action between grains can play a role: As pointed out by Neuber for fatigued metallic materials, highly stressed grains are supported by 
their neighbors [28,29], implying that the stress averaged over a structural support length is a better failure criterion than the notch 
root stress itself, providing the major motivation for local criteria1. Notches in FDM-printed PLA in particular pose additional diffi-
culties. The slicer program used for creating the G-code for printing may not be able to exactly follow the prescribed contour, creating 
voids and small notches under the outer shell of the specimens. 

While engineering guidelines and rules of thumb exist for certain geometries [24], these approximations usually do not generalize 
well. It is thus desirable to have a simple and robust way to locally predict failure of notched and cracked components of arbitrary 
shape using a simple linear-elastic finite element simulation. Two well-known methods for achieving this are the Theory of Critical 
Distances (TCD) [30] and the Averaged Strain Energy Density (ASED) criterion [31]. In this context, Ahmed and Susmel [32–34] 
studied the quasi-static failure of FDM-printed notched PLA components, with a focus on validating the applicability of the Theory of 
Critical Distances (TCD). The capability of TCD in providing an engineering prediction of failure in these components was demon-
strated in the mentioned research studies. 

Despite long-term extensive usage for classical materials, the limits of using the ASED criterion as a failure prediction tool in the 
domain of additive manufacturing are still largely unknown [35]. To make use of its many potential benefits and applications such as 
rapid prototyping, complex topology optimization and massive weight reduction in disciplines ranging from medical to aeronautical 
engineering, additive manufacturing needs to be understood more deeply. The impact of the process parameters on the material in-
ternal structure and therefore the macroscopic material properties is strong, manifold, and largely exceeds our current knowledge, 
creating a need for simple, robust, and reliable engineering methods to evaluate different designs regarding the load they can bear. 

In this article, after a brief introduction to both theories, the ASED criterion is applied to the experimental data reported in [33] to 
validate its applicability to notched FDM PLA specimens. Based on the preliminary results for V-notched specimens under bending in 
[36], this work constitutes an in-depth analysis of the entire data set, the corresponding predictions, and the calibration procedure. 

2. Experimental data 

The studied material in this research is Polylactide Acid (PLA). Due to its excellent properties and low cost, PLA is one of the most 
common materials for additive manufacturing by Fused Deposition Modeling (FDM) [43]. It is a biodegradable, thermoplastic, high- 
strength and high-modulus polymer which has proven potential to replace many conventional polymers for industrial applications and 
is due to its biocompatibility - a promising candidate for various applications in medicine [37]. It is the most extensively researched 
and utilized biodegradable aliphatic polyester in the world [37] and currently covers 13.9% of the global bioplastic production ca-
pabilities [38]. Due to its chemical composition, its stress–strain curve is highly temperature-dependent within a relatively small 
temperature range [39] and can be changed significantly by additives [40–42]. At ambient temperature, neat PLA is brittle and can be 

1 Although the motivation is presented here for metallic materials, the TCD is also applicable to non-metallic materials, arguably because other 
sources of heterogeneity yield similar effects. 
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approximated very well by a linear-elastic constitutive model [39]. 
Ahmed and Susmel [33] conducted static failure tests for a variety of smooth and notched FDM-printed PLA components under 

tension and 3-point-bending. Each layer is first surrounded by a so-called shell and then filled in by printing in a cross-ply structure 
such that all infill filaments are either parallel or orthogonal to each other. This strategy has a free process parameter, the printing 
angle θp, which is displayed in Fig. 1 and was investigated in their experiments. For all cases of θp ∈ {0◦,30◦,45◦}, Young’s modulus E 
and ultimate tensile strength σUTS were obtained from plain dog-bone specimens as well as the fracture toughness KIc obtained from 
Double Edge Notch Tension (DENT) and Compact Tension (CT) specimens (see Table 1). Finally, the fracture loads were obtained for 
the notched specimens shown in Fig. 2. Different notch root radii ρ and notch opening angles 2α were tested under tension and 3-point 
bending and the results are listed in Table 2. 

3. Introduction to two robust failure criteria for notched and cracked components 

3.1. The theory of critical distances (TCD) 

Instead of using the difficult-to-obtain stress in the notch root for failure prediction, the Theory of Critical Distances (TCD) [30,44] 
relies on an effective stress σeff, which can be the maximum principal stress σI (i) in the notch bisector line at a distance of L/2 from the 
notch root (Point Method), (ii) averaged over a path of length 2L in the notch bisector line (Line Method), or (iii) averaged over a 
semicircular area of radius L close to the notch root (Area Method), as shown in Fig. 3. Failure occurs when σeff ≥ σ0, where σ0 denotes 
the so-called inherent material strength, which can be identified as the ultimate tensile strength σUTS for brittle materials. All three 
variants require a characteristic material-dependent length scale L, which is thought of as being directly related to the microstructural 
features of the material and can generally be obtained as shown in Fig. 4: Since the point method should ideally yield the same σeff for 
sharp and blunt notches at the moment of failure, the intersection of their stress-distance curves in the ligament must (by definition of 
L) be at × = L/2. As for the blunt notch, Susmel suggested using infinitely blunt notches for brittle fracture which means the blunt 
stress-distance curve is constant and equal to σ0 = σUTS [44]. For purely brittle materials, however, L can also be obtained more easily 
from KIc via linear-elastic fracture mechanics: 

L =
1

π

(

KIc

σUTS

)2

(1) 

The TCD has been used successfully for static fracture [45] and high cycle fatigue [44]. Recently, it has also been validated for 3D- 
printed PLA components [33,34]. 

Using this procedure, Ahmed and Susmel [33] compared the previously introduced true experimental fracture stress σf results to 
predictions from the TCD. While the Line Method was not applicable for geometric reasons, the Point and Area Method showed 
relatively little scatter. Interestingly, in [33], the characteristic length scale L was not obtained from the measured fracture toughness 
via Eq. (1), but rather from the procedure depicted in Fig. 4: The point of intersection of the stress-distance curve of the smallest U- 
notched specimen under tension in Fig. 2 with σUTS was averaged over all θp to estimate L ≈ 4.6 mm. According to Eq. (1), this 
corresponds to KIc ≈ 5 MPam1/2 instead of KIc ≈ 3 .. 4.5 MPam1/2 as measured. According to [33], the measured fracture toughness was 

Fig. 1. Schematic illustration of the printing angle θp in [33]. xp and yp represent the reference manufacturing axis and constant raster angles equal 
to ± 45◦with respect to yp were considered for fabricating specimens with different print angle of θp. 
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influenced not only by the thickness but also by the geometry of the specimens. In order to capture the shell impact on the effective 
quantities, the specimens were not pre-cracked as recommended by the ASTM and it was noted that the crack initiated slightly away 
from the notch tip [33]. Furthermore, due to the complex mesoscale structure of the specimens, it was observed that for θp ∕= 45◦ the 
crack propagates on a zigzag path along the filament directions and mixed modes appear locally. As mentioned earlier, the effective 
fracture toughness of locally heterogeneous materials can show surprisingly complex behavior. Therefore, Ahmed and Susmel [33] did 
not use KIc to determine L. Note that using the measured KIc would have resulted in a far more conservative estimate. 

3.2. The averaged strain energy density (ASED) criterion 

The Averaged Strain Energy Density (ASED) criterion predicts failure based on the average of the Strain Energy Density (SED) ψ 

over a well-defined control volume Ω [31,46]. Further details on ψ are given in Appendix A. The average strain energy density W can 
thus be written as 

W =

∫

ψdΩ
∫

dΩ
(2) 

and failure does not occur as long as 
W < Wc (3)  

where the critical strain energy density Wc is given by 

Table 1 
Material properties of FDM PLA [33]. The Poisson’s ratio ν was not reported and assumed as ν ≈ 0.36 [37].  

θp 
(degree) 

E 
(MPa) 

σUTS 
(MPa) 

KIc [DENT] 
(MPa.m0.5) 

KIc [CT] 
(MPa.m0.5) 

0 3235 ± 40 42.7 ± 1.0 3.7 ± 0.0 4.6 ± 0.1 
30 3314 ± 161 40.9 ± 3.3 3.4 ± 0.2 4.0 ± 0.2 
45 3372 ± 47 42.5 ± 0.4 3.0 ± 0.1 4.2 ± 0.0 
avg. 3307 ± 69 42.0 ± 1.5 3.4 ± 0.3 4.3 ± 0.3  

Fig. 2. Geometries of the test specimens tested under tension (upper half) and 3-point bending (lower half) in [33]. All specimens are 4 mm thick. 
(unit: mm). 
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Wc =
σ2

UTS

2E
(4)  

where σUTS denotes the ultimate tensile strength and E, the Young’s modulus. This choice of Wc makes the method consistent for 
infinitely blunt notches. 

Due to the linearity of both the constitutive equation and the averaging operation, it can easily be seen that for proportional loading 
W∝σ2

char (5)  

where σchar is a scalar-valued stress measure that characterizes the loading condition. Alternatively, a characteristic force Fchar can also 
be used for convenience, for example for three-point bending tests. With a known Wc and a reference load parameter Wref from a Finite 
Element (FE) simulation with arbitrary reference loading σref (e.g. σref = 1 MPa), Eqs. (3) and (5) can be used to predict the critical 
loading condition σcrit via 

Table 2 
Experimental failure loads of the notched FDM PLA specimens [33]. Herein, t stands for tensile loading, and b stands for bending.   

2α 

(degree) ◦
ρ 

(mm) 
θp 
(degree) 

Ffavg 

(N) 
Ffstd 

(N) 
t 0 0.5 0 3221 ± 11 
t 0 0.5 30 2833 ± 24 
t 0 0.5 45 2784 ± 74 
t 0 1 0 3331 ± 22 
t 0 1 30 3265 ± 8 
t 0 1 45 3187 ± 17 
t 0 3 0 3310 ± 18 
t 0 3 30 2930 ± 202 
t 0 3 45 3191 ± 35 
t 135 0.5 0 3319 ± 15 
t 135 0.5 30 3078 ± 27 
t 135 0.5 45 2944 ± 80 
t 135 1 0 2790 ± 209 
t 135 1 30 2635 ± 223 
t 135 1 45 2886 ± 57 
t 135 3 0 3236 ± 54 
t 135 3 30 3135 ± 63 
t 135 3 45 2898 ± 88 
b 30 0.05 0 1040 ± 28 
b 30 0.05 30 829 ± 26 
b 30 0.05 45 875 ± 12 
b 0 1 0 1067 ± 25 
b 0 1 30 827 ± 33 
b 0 1 45 890 ± 38 
b 0 3 0 1136 ± 7 
b 0 3 30 874 ± 1 
b 0 3 45 927 ± 5 
b 135 0.4 0 1000 ± 13 
b 135 0.4 30 754 ± 46 
b 135 0.4 45 649 ± 10 
b 135 1 0 927 ± 10 
b 135 1 30 693 ± 3 
b 135 1 45 642 ± 7 
b 135 3 0 899 ± 10 
b 135 3 30 722 ± 44 
b 135 3 45 744 ± 10  

Fig. 3. Overview over different approaches to the Theory of Critical Distances.  
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σcrit =

̅̅̅̅̅̅̅̅

Wc

Wref

√

σref (6) 

In this work, however, where σcrit and thus W are known, the accuracy of the ASED method in predicting σcrit is evaluated by 
plotting ̅̅̅̅̅̅̅̅̅̅̅̅̅̅W/Wc

√ , which should be as close as possible to 1. 
The control volume Ω has two different length parameters, r0 and R0, as depicted in Fig. 5. r0 contains purely geometric information 

since it only depends on the notch root radius ρ and the notch opening angle α 

r0 =
π − 2α

2π − 2α
ρ (7) 

and varies between r0 = ρ/2 for U-notches and r0 = 0 for notch opening angle of 2α = π. 
R0, on the other hand, contains only material information and can be obtained for static failure by fitting [46] or via the following 

function of the Poisson’s ratio ν, the fracture toughness KIc and the ultimate tensile strength σUTS: 

R0 = c

(

KIc

σUTS

)2

, where c =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1 + ν)(5 − 8ν)

4π
, for plane strain

5 − 3ν

4π
, for plane stress

(8) 

The derivation is given in [47] but briefly repeated here for the sake of completeness: For an unnotched specimen, failure in mode I 
should obviously occur when W = ψ(x) = σ2

UTS/2E ∀x ∈ Ω irrespective of R0 because in the absence of any notches ψ is constant in x. 
On the other hand, for a sharp crack, where fracture is expected to occur at KI = KIc, the stress field near the crack tip can be taken from 
any textbook [48] and ψ can be averaged over Ω to yield W = (c/2ER0)K2

Ic with c from Eq. (8). Then, since Lazzarin and Zambardi [31] 
required W to be independent of α, the expressions for the smooth and cracked specimens can be set equal, which leads to Eq. (8). Note 
that using the analytical solution for the singular stress field at the crack tip implicitly requires a large separation of scales between the 
linear-elastic homogenized component and the actual inhomogeneous material internal structure. Furthermore, measuring effective 
KIc for 3D-printed components can be tricky [33] and generally, the effective toughness of locally heterogeneous media can show a 
surprisingly complex behavior, as discussed by Hossain et al. [49]. Therefore, it is not clear a priori whether Eq. (8) can be used for 3D- 
printed components. 

Some advantageous properties of the ASED criterion are summarized below to understand its attractivity and popularity: 

Fig. 4. TCD length scale calibration from linear-elastic stress-distance curve under failure load.  

Fig. 5. Control volumes for different notch geometries, ranging from sharp V-notches (I) and blunt V- and U-notches (II) to cracks (III).  
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(i) Universality: The ASED criterion has been used successfully to assess static and fatigue failure of various materials, including 
steels, ceramics, polymers, rocks and graphite [46,50,51] and many different orders of magnitude of the non-dimensional notch 
root radius [46,52].  

(ii) Simplicity: The ASED criterion does not require providing complex constitutive models with difficult-to-obtain material 
properties. The concept is easy to understand and can be applied with little effort.  

(iii) Very coarse meshes can be used [53]  
(iv) Mixed-mode loading can be taken into account [50,52]  
(v) T-stresses [54,55], out-of-plane modes and other three-dimensional effects can automatically be included in the predictions 

[46]  
(vi) Many other advantages are discussed in [46]. 

4. Numerical simulations 

To obtain the strain energy density field, the tensile and bending tests of the notched specimens were simulated using Finite El-
ements (FE). ABAQUS was used for both meshing and solving with quadratic elements and a linear elastic isotropic material model 
with the material properties reported in Table 1. Quarter- and half-models were used to exploit the symmetry of the tensile and 
bending tests, respectively. Although the ASED criterion tolerates large elements, the mesh was chosen to be very fine with seed 
distances proportional to the notch root radius. Fig. 6 exemplarily visualizes the mesh together with a solution for ψ on the domain 
over which it is averaged. 

As the specimens considered here are all essentially two-dimensional objects, it is desirable to use two-dimensional elements for the 
computations. This poses the question of whether to choose the plane stress or plane strain assumption. Unfortunately, the charac-
teristic length scales of the control volume R0 and the notch root radius ρ are in the same order of magnitude as the specimen thickness 
t = 4 mm, which technically makes both assumptions untenable. As can be seen in Fig. 7, the plane stress assumption is more accurate 
for ρ > 1 mm tested whereas the plane strain assumption is more accurate for ρ < 1 mm. The data covers radii ρ = 0.05 mm to 
ρ = 3.0 mm. Nevertheless, two-dimensional elements were used to demonstrate the robustness of the presented methods. Since small 
notches exhibit a larger stress concentration and are thus more critical to failure, the plane strain assumption is used throughout these 
analyses. 

5. Low accuracy of standard calibration procedure 

When applying the ASED criterion to the reported data, the standard length scale calibration approach is using Eq. (8) to compute 
R0 from the reported material properties. This poses the question which KIc values to use: As mentioned in Section 2, the fracture 
toughness strongly depends on the method which was used to obtain it. Obviously, so do the R0 values computed from them, as can be 
seen in Table 3, and so does the ASED accuracy as can be seen in the results shown in Fig. 8. While the conservativity of the predictions 
is pleasant, the order of magnitude of both the scatter and the mean error is very large, especially using the KIc from the DENT 
specimens. 

6. Higher accuracy of more robust calibration procedure 

The accuracy of the standard ASED approach where R0 is obtained from KIc was significantly lower than that of the TCD performed 
by Ahmed and Susmel. However, in their analyses, Ahmed and Susmel did not rely on KIc to obtain the material length scale L, but on 
the more robust approach described in Section 3.1, calibrating L from a part of the experimental data. In order to create comparable 
conditions, we present an analogous procedure for the ASED criterion. For this purpose, the specimen with the highest notch acuity (i. 
e. smallest ρ and α) is chosen from the set of considered geometries. For this particular geometry, ψ(x) is obtained from an FE 
computation with the boundary conditions from the failure experiment and averaged over the ASED control volume using different 
radii R0. Then, in analogy to the procedure shown in Fig. 4 for the TCD, the intersection point W(R0) =Wc constitutes a robust estimate 
of R0. This concept was previously used for cyclic loading in [56]. 

The R0 obtained this way are shown in Fig. 9. The resulting ASED accuracy is shown in Fig. 10. Following the common literature, 
these values were generated using the specimen with the highest acuity, which is the specimen under bending with ρ = 0.05 mm and 
2α = 30◦. Interestingly, when using a similar procedure to obtain L, Ahmed and Susmel used a different specimen for their analyses, 
namely the U-notched specimen under tension with ρ = 0.5 mm, although the stress concentration factor for this specimen is around 
three times lower. Using the same data to predict R0 for the ASED criterion would result in smaller R0 as shown in Figure B.1 and thus 
more conservative results. But while with the ASED criterion R0 can be estimated equally well for bending and tension tests, estimating 
L on the bending specimen is more tricky because as one moves along the notch bisector line, the stress decreases both due to the notch 
effect and the natural stress distribution of a bending beam. With the present data, ignoring this would lead to L = 2.9 mm instead of 
L = 4.6 mm as reported by Ahmed and Susmel [33], and thus much more conservative failure predictions. 

7. Discussion 

As can be seen in Fig. 9 and Table B.1, the predictions of the ASED criterion using the more robust length scale calibration method 
are satisfactory. The predictions based on average material properties and one single R0 and Wc for all data demonstrate the robustness 

P. Seibert et al.                                                                                                                                                                                                         



Engineering Fracture Mechanics 258 (2021) 108103

8

of the method. With a mean prediction error of +11% despite some strong outliers, the presented calibration method constitutes a 
significant improvement over the KIc-based calibration with DENT- and CT-specimens (+47% and +20%) respectively. A direct ac-
curacy comparison with the TCD predictions can be found in Fig. 11. All methods yield good results for engineering purposes given the 
simplicity of the criteria and the complexity of the problem. The mean error is 3% for the Point Method and 11% for both Area Method 
and ASED criterion. For both TCD and ASED criterion, most of the predictions are within the ± 20% scatter band. On the non- 
conservative side, this scatter band is not exceeded by the ASED criterion with the most critical error being −18%. This is also the 
case with the TCD Area Method (−14%), but not with the Point Method (−34%). However, on the conservative side, the ASED criterion 
has large outliers (+65%) compared to the TCD PM and AM (32% and 37% respectively). 

The biggest outliers in Fig. 9 stem from the V-notched specimens under bending where θp = 0◦, such that the loading occurs at an 
angle of ± 45◦ to the fiber directions as can be seen in Fig. 1. It is known that FDM-printed components where layer orientations 
alternate by 90◦ can change their governing fracture mechanism from brittle to ductile when loading changes from parallel to the 
layers to diagonal [57]. Diagonal loading leads to a significant amount of fiber reorientation and therefore energy absorption, because 
the damage initiates in the weak interface between fibers. This mechanism is indicated by both the stress–strain curve of the smooth 
specimens, and the photographs of the fracture surface given in [33] as shown exemplarily in Fig. 12. But while ductility can generally 
occur under diagonal loading, only the V-notches produce significant outliers, not the U-notches. This can be explained by the direct 
effect of α: Given a constant ρ, increasing α leads to a reduced stress concentration at the notch root. Therefore, the area of said fiber 
deformation phenomenon is larger and so is the total energy absorbance. Because the ASED criterion is a purely brittle criterion, it 
produces conservative results when energy is dissipated. These effects are naturally stronger for bending than for tension. The damage 
we attribute to fiber reorientation manifests itself in a reduced stiffness in the corresponding area. Therefore, under uniaxial tension, 
more force goes through the unaffected and stiff middle of the specimen, whereas the loading is naturally smaller in the compliant, 
damaged part. This stabilizing mechanism keeps the fiber reorientation phenomenon bound to a small area, provided that the load 
path can find another way. However, the situation is different for bending, because the stress is naturally maximal at the side. The 
loading on the damaged part stays large, leading to more damage, higher energy dissipation and more conservative ASED predictions. 

Apart from these considerations, the scatter is assumed to be rooted in the complicated mesostructure and other subtleties of the 

Fig. 6. The quarter-model of a U-notched specimen under tension as an exemplary visualization of the numerical procedure. The mesh is shown 
together with the solution for the strain energy density (SED) on the volume over which it is averaged. Note the logarithmic scale. 

Fig. 7. The relative error of the plane stress and strain assumption in predicting the Mises stress in the notch root for U-notched specimens under 
tension with different notch root radii ρ. Note that the error of integral quantities such as W can be lower than that of extreme quantities such as the 
spatial stress maximum. 

Table 3 
ASED control volume sizes R0 computed from Eq. (8) for different printing angles using the KIc values reported in [33]. The average material’s R0 is 
not the average R0 but obtained from Eq. (8) using the average σUTS, KIc and ν.   

From DENT specimen From CT specimen 
θp (degree) KIc (MPa.m0.5) R0 (mm) KIc (MPa.m0.5) R0 (mm) 
0  3.7  1.73  4.6  2.67 
30  3.4  1.59  4.0  2.19 
45  3.0  1.14  4.2  2.24 
avg  3.4  1.50  4.3  2.40  

P. Seibert et al.                                                                                                                                                                                                         



Engineering Fracture Mechanics 258 (2021) 108103

9

manufacturing process. Fig. 13 shows the insufficiency of the slicer in following the prescribed specimen contour, creating voids and 
small notches under the shell and sometimes leading to crack initiation at a distance from the notch root. 

In light of the complicated zigzag crack path with local mixed-mode propagation, the abovementioned fiber reorientation and 
therefore a change from brittle to ductile fracture, and the voids and notches emerging from the manufacturing process on the one 
hand, in contrast to the simplicity of the ASED criterion on the other hand, a scatter of mostly ± 20% without a single non-conservative 
outlier beyond this limit is a success. 

Fig. 8. Relatively low accuracy of the ASED criterion applied to the data from [33] using the KIc values from Tables 1 and 3. Left: KIc from tensile 
test; Right: KIc from CT specimen. The thin lines denote the ±20% scatter band. The predictions are given numerically in Tables B.2 and B.3 in 
the appendix. 
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8. Conclusions 

The ASED criterion was validated for notched FDM-produced PLA specimens and a robust length scale calibration procedure was 
presented. When computing the ASED in a control volume based on the measured fracture toughness, the criterion yields highly 
conservative and high-scatter results. Most likely, this deficiency can be attributed to the difficulties in measuring the fracture 

Fig. 9. Accuracy of the ASED prediction for the specimen with the highest notch acuity of all specimens shown in Fig. 2 as a function of R0. 
Requiring ̅̅̅̅̅̅̅̅̅̅̅̅̅̅W/Wc

√

= 1 can serve as a way to estimate R0 from a single experiment. The critical radius for θp = 0, 30 , 45 and the average case is 
equal to 3.42, 2.46, 2.70 and 2.92 mm. 

Fig. 10. Accuracy of the ASED criterion applied to the data from [33] using the R0 from Fig. 9. The thin lines denote the ± 20% scatter band. The 
predictions are given numerically in Table B.1 in the appendix. 
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toughness of locally heterogeneous media and the limits of linear elastic fracture mechanics on the homogenized material, both 
reflecting the inherent multi-scale nature of additive manufacturing. However, the TCD material length scale estimates are not based 
on the fracture toughness, but rather calibrated from experiments on notched components. Using an analogous approach showed 
significantly smaller scatter and proved the applicability of the ASED criterion to the given data. Furthermore, the reasons for the 
largest deviations were found to be most likely rooted in plasticity effects due to fiber reorientation occurring at certain fiber ori-
entations when the stress concentration factor is low. Following this thought, the ASED criterion guarantees said errors to lie on the 
conservative side due to energy absorbance considerations. As the accuracy of the ASED criterion and the TCD is almost the same when 
using comparable methods for calibrating the length scale, one might question the utility of the ASED criterion. Therefore, it is worth 
noting that the main advantage of the ASED criterion is the high tolerance of extremely coarse meshes which is beneficial when dealing 

Fig. 11. Accuracy of the TCD Point Method, Area Method and ASED criterion for the same data. The TCD predictions are taken from [33].  

Fig. 12. Photographs from the fracture surfaces taken from [33]. The change from ductile to brittle fracture as the printing angle θp increases 
is remarkable. 
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with large and geometrically complex components. Further research is required to validate the presented calibration procedure for 
different materials and fabrication conditions. 

Funding sources 

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. 

CRediT authorship contribution statement 

P. Seibert: Formal analysis, Investigation, Data curation, Writing – original draft, Visualization, Validation. L. Susmel: Writing – 
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Appendix A 

A. Details on the strain energy density 
The Strain Energy Density (SED) generally measures the potential energy density which is stored at a point as a consequence of the 

local strain field in analogy to a one-dimensional spring. For isothermal elastic processes, the strain energy density is identical to the 
Helmholtz free energy density ψ [58] which is commonly used to define hyperelastic material models via σij = ∂ψ/∂εij [59]. Therefore, 
while a form ψ = f(σ) is certainly practical to work with, it harbors the danger of circular reasoning, because σ actually follows from the 
definition of ψ, and ψ must be defined only in terms of kinematic quantities such as the Euler-Almansi strain tensor E. The Saint Venant- 
Kirchhoff model for example, being a simple generalization of Hooke’s law, can be written as ψ = 1/2EijCijklEkl , where Cijkl denotes the 
elasticity tensor coordinates. In the special case of an isotropic linear material and small strains, where E → ε, the strain energy density 
is therefore: 

ψ =
1

2
εijCijklεkl =

1

2
σijεij (A1) 

In the space of the principal stresses σI..III, ψ takes the form 

ψ =
1

2E

[

σ2
I + σ2

II + σ2
III − 2ν(σIσII + σIIσIII + σIIIσI)

] (A2)  

where E denotes the Young’s modulus. Often ψ is split into the contributions from the deviatoric and hydrostatic parts of σ and ε. The 
deviators of σ and ε are sij = σij −1 /3σnnδij and eij = εij −1 /3εnnδij respectively. ψ can then be written as a sum of distortion strain energy 
udis = 1 /2sklekl and volume change strain energy uvol = 1 /2sklekl . Especially the former is often used in the very well-known Mises failure 
criterion udis = σ2

ν,Max/2E , where the material property σν,Max is the maximum bearable Mises stress σν . Simple algebraic trans-
formations lead to the following forms: 

Fig. 13. Depending on the geometry, the FDM slicer may not be able to exactly follow the prescribed contour, creating voids and small notches 
under the shell. 
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udis =
σ2

ν

2E
=

1

2
sklekl

= ...

=
1

4E

[

(σI − σII)
2 + (σII − σIII)

2 + (σIII − σI)
2
]

=
1

2E

[

σ2
I + σ2

II + σ2
III − (σIσII + σIIσIII + σIIIσI)

]

(A3) 

The penultimate form motivates the well-known interpretation of the Mises failure criterion as a failure surface in the form of a 
cylinder with radius σv around the hydrostatic axis σI = σII = σIII. A coefficient comparison between Eq. A(2) and the last form of Eq. A 
(3) yields another intuition for ψ: In the case of ν = 0.5 (incompressibility), ψ = udis and therefore any manifold ψ = const is the above 
cylinder2. In contrast, when ν = 0, then ψ = const describes a sphere in the principal stress space. For 0 < ν < 0.5, a transition between 
these extreme cases can be expected. Together with the role of the Helmholtz free energy, these considerations should serve as an 
intuitive understanding of the strain energy density. Finally, it should be mentioned that the standard Galerkin method by definition 
minimizes the error of the strain energy, which then is orthogonal to all functions in the ansatz space [60]. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.engfracmech.2021.108103. 
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