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Abstract

Susceptible–Infected–Recovered (SIR) models have long formed the basis for explor-

ing epidemiological dynamics in a range of contexts, including infectious disease

spread in human populations. Classic SIR models take a mean-field assumption, such

that a susceptible individual has an equal chance of catching the disease from any

infected individual in the population. In reality, spatial and social structure will drive

most instances of disease transmission. Here we explore the impacts of including

spatial structure in a simple SIR model. We combine an approximate mathematical

model (using a pair approximation) and stochastic simulations to consider the impact

of increasingly local interactions on the epidemic. Our key development is to allow

not just extremes of ‘local’ (neighbour-to-neighbour) or ‘global’ (random) transmis-

sion, but all points in between. We find that even medium degrees of local interactions

produce epidemics highly similar to those with entirely global interactions, and only

once interactions are predominantly local do epidemics become substantially lower

and later. We also show how intervention strategies to impose local interactions on a

population must be introduced early if significant impacts are to be seen.

Keywords Epidemic · SIR · Spatial structure · Pair approximation

1 Introduction

The classic Susceptible–Infected–Recovered (SIR) model has long been used to model

the spread of infectious disease in human, animal and plant populations (Kermack and

McKendrick 1927; Anderson and May 1979). More recently, in its SEIR form (with

an additional ‘exposed’ compartment) it has formed a central pillar of much of the

modelling of the Covid-19 pandemic (Ferguson et al. 2020; Kucharski et al. 2020; Firth

et al. 2020). In its standard form, the SIR model has a mean-field assumption, such

that individuals in the population have purely random, ‘global’ interactions (Boots and
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Sasaki 2000) and there is no spatial structure. In reality, individuals in a population are

more likely to contract disease from infected individuals who are closer to them, both

physically and socially. Incorporating this spatial structure into mathematical models

is extremely challenging. In some cases, large datasets of known contact networks have

been used to replicate epidemics to excellent effect (Ferguson et al. 2020; Firth et al.

2020). While such models have a high degree of realism and thus predictive power,

they cannot be readily modelled by a simple set of equations and require significant

computational exploration to capture possible outcomes and feedbacks.

One common approach to incorporating a degree of regular spatial structure, and

particularly ‘local’ near-neighbour interactions, into infectious disease models is to use

a lattice-based probabilistic cellular automata (Sato et al. 1994; Rand et al. 1995). These

stochastic individual-based models have also been combined with an analytic pair-

approximation method (Matsuda et al. 1992; Sato et al. 1994), where the full spatial

dynamics are approximated by a set of ordinary differential equations based on the

classic SIR model. Such models have been applied to infectious disease systems both

with (Keeling et al. 1997; Webb et al. 2007a, b; Best et al. 2012) and without (Keeling

1999; Sharkey 2008) demography. These studies have found that local interactions

reduce the value of R0, slowing or even preventing an epidemic that would occur

when interactions are global (Keeling 1999). These approaches largely insist on a

strict degree of spatial structure, where infection and/or host reproduction can only

be through near-neighbour interactions. While this is useful for comparison with the

mean-field case, interactions are unlikely to be entirely ‘local’ or ‘global’ in reality,

and we may be missing important features of systems where the interaction structure

lies between these two extremes.

The ability to move between local, near-neighbour interactions and global, mean-

field interactions has been considered in a few spatial models of infectious disease,

primarily in evolutionary (Boots and Sasaki 1999, 2000; Kamo et al. 2007; Best

et al. 2011; Débarre et al. 2012) and ecological (Ellner 2001; Webb et al. 2007a)

contexts. This ‘multiscale’ method is commonly achieved by allowing a proportion

of transmission and/or reproduction to occur locally and the rest globally. We might

interpret this, for example in a human population, as an individual mostly interacting

within their household or community (local interactions), but also travelling some

distance for work, holidays or visiting friends or family (global interactions). These

studies have shown that there is increased potential for ecological cycles and disease-

driven extinction as interactions become predominantly local (Webb et al. 2007a).

They have also shown that evolutionary selection is generally towards lower levels

of infection in both host and parasite as interactions become more local (Boots and

Sasaki 1999; Best et al. 2011), but not necessarily monotonically (Kamo et al. 2007).

Most recently, this multiscale method has been applied to a human epidemiology model

with equal births and deaths (Maltz and Fabricius 2016), showing that pronounced (but

damped) oscillations in infection may result after a sudden shift to local interactions.

However, this simple mechanism to investigate the impacts of varying the ‘degree’

of spatial structure (i.e. the relative proportion of local to global interactions) has yet

to be applied to human epidemic models over short timescales such that demography

does not impact the dynamics, as would be the case in the early stages of an emerging

infectious disease.
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Given it is known that local spatial structure can rapidly form during epidemics on

a network (Keeling 1999), we would expect local interactions to impact the dynamics

of short timescale epidemics, but the impact of introducing different degrees of local

interactions in such a model remains unexplored. In this study, our aim is to deter-

mine how gradually increasing the proportion of local interactions from 0 (completely

global) to 1 (completely local) changes the nature of the epidemic. This will allow us

to understand how significant movement restrictions, through increasingly local inter-

actions, might need to be to restrict an epidemic. We will also aim to understand the

amount of variation that can occur for fixed parameter sets due to the stochastic nature

of epidemics, and the extent to which a specific individual-based approximation may

be used as a reliable ‘average’ of the stochastic implementations (Sharkey 2008).

2 Model

2.1 Mean-Field Model

The underlying dynamics of the model are based on the classic Susceptible–Infected–

Recovered (SIR) epidemiological framework (Kermack and McKendrick 1927), with

no demographic processes (births/deaths). Demographic processes are neglected since

we are interested in epidemics on a short time-scale (< 12 months) during which

we would expect demographics to remain roughly constant. We first consider the

model under a mean-field assumption with no local interactions. All individuals in

the population are either susceptible (S), infected (I ) or recovered (R). The total

population size N = S + I + R is constant (assume N = 1 for consistency with what

follows), meaning we only need to track the dynamics of S and I densities, given by

the following ordinary differential equations,

dS

dt
= −βSI

dI

dt
= βSI − γ I .

Transmission is assumed to be density-dependent with coefficient β, while recovery

occurs at rate γ and immunity is assumed to be permanent.

2.2 Pair-ApproximationModel

To account for spatial structure and local transmission, we use a pair-approximation

(PA) model (Matsuda et al. 1992). Assume individuals live on a square lattice, where

each site is always occupied by one susceptible, infected or recovered individual. We

define the probability that a site is occupied by a susceptible individual as PS , an

infected individual as PI and a recovered individual as PR . The dynamics of these

’singlet’ densities mirror those of the mean-field model above, with the following

ordinary differential equations,
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dPS

dt
= −β

[

LqS/I + (1 − L)PS

]

PI (1)

dPI

dt
= β

[

LqS/I + (1 − L)PS

]

PI − γ PI (2)

with PR = 1 − PS − PI . Here we have introduced our key parameter, L , which

determines the proportion of transmission that occurs ‘locally’ between neighbour-

ing individuals, with the remainder of transmission (1 − L) occurring ‘globally’

between random individuals on the lattice. We thus have a simple binary separation

of ‘dispersal’ (both in terms of offspring and infection). This corresponds to individ-

uals’ interactions being predominantly local (with their near neighbours) or global

(randomly across the population). The conditional probability, called the ‘environs

density’, that an infected individual has a neighbour that is susceptible is denoted

qS/I = PSI /PI . Therefore there are two routes to transmission:

• global: (1 − L)β PS PI

• local: LβqS/I PI .

This system of equations is not closed, since to calculate the conditional probability,

qS/I , we need to know the ‘pair’ density, PSI , e.g. the probability that a randomly

chosen pair of neighbouring sites are a susceptible and an infected. By considering all

possible pair transitions, the dynamics of these pair densities can be expressed as an

additional set of ordinary differential equations,

dPSS

dt
= −2β(L(3/4)qI/SS + (1 − L)PI )PSS (3)

dPSI

dt
= −β(L((1/4) + (3/4)qI/SI ) + (1 − L)PI )PSI − γ PSI (4)

+ β(L(3/4)qI/SS + (1 − L)PI )PSS

dPS R

dt
= −β(L(3/4)qI/S R + (1 − L)PI )PS R + γ PSI (5)

dPI I

dt
= −2γ PI I + 2β(L((1/4) + (3/4)qI/SI + (1 − L)PI )PSI (6)

dPI R

dt
= −γ PI R + β(L(3/4)qI/S R + (1 − L)PI )PS R + γ PI I , (7)

and PR R = 1 − PSS − PI I − 2PSI − 2PS R − 2PI R . These equations are similar

to those of Matsuda et al. (1992); Webb et al. (2007b); Maltz and Fabricius (2016).

This includes further conditional probabilities, specifically qI/SS, qI/SI , qI/S R . As an

example, qI/SI is the probability that given we choose an SI pair of sites, there is a

further neighbour that is an I site. Again, this system of equations is not closed as we

have these conditional probabilities that depend on ‘triplets’ (e.g. qI/SI = PI S I /PSI ).

One can appreciate that this pattern will continue and that the equations will never

form a closed system. We thus apply a ‘pair approximation’ (Matsuda et al. 1992)
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where we assume that, for example, qI/SI = qI/S = PSI /PI , allowing us to close the

system. It can be noticed that once the approximation has been made, Eqs. (1–4) form

a closed system, and Eqs. (5–7) are to some extent redundant, but we keep them here

for completeness.

2.3 Basic Reproductive Ratio

The basic reproductive ratio, R0, is the well-known quantity that measures the average

number of secondary infections caused by an infected individual in an otherwise

disease-free population (Anderson and May 1981). Taking this heuristic definition of

R0, by considering the early dynamics of infected individuals (Eq. 2), for the mean-

field, global case where L = 0 (i.e. no local interactions), this is simply given by

R0 = β/γ . When interactions are fully local with L = 1, we have R0,l = βqS/I /γ . In

the limit where the population is indeed entirely disease-free, the conditional density

qS/I = PS = 1, and the two basic reproductive ratios will be equal. However, in

the early stages of an epidemic the conditional density qS/I (the probability that an

infected individual has a susceptible neighbour) rapidly shrinks as the contact network

is formed, since infected hosts will be forming local clusters, meaning it quickly

becomes that R0,l < R0. This reduction in susceptible contacts and resulting reduction

in reproductive ratio naturally leads to a slower epidemic (Matsuda et al. 1992; Keeling

1999). Given the definition of the reproductive ratio as the number of secondary

infections caused by an infected individual, given its balance of local and global

transmission, L , the total reproductive ratio will be,

R0,t = L R0,l + (1 − L)R0. (8)

It is clear, then, that the initial growth rate of an epidemic will be slower the greater

the degree of local interactions.

2.4 Stochastic Simulations

Alongside these mathematical models we additionally conduct stochastic individual-

based simulations using a probabilistic cellular automata. Similarly to the model

described above, a lattice of sites is established, now of fixed size (25x25), where

each site is again occupied by one individual and periodic boundaries are assumed

(such that the lattice is effectively a torus). A Gillespie algorithm (Gillespie 1977)

is implemented, where waiting times between events (either recovery (I → R) or

local or global transmission (S → I )) are drawn from an exponential distribution

with mean given by the sum of the total rates (e.g. γ I + βSI ). At each step, exactly

one of these events occurs, with probabilities proportional to their rates, and a suitable

host is chosen randomly from the lattice for it to occur to (e.g. recovery requires an

infected host to be selected). After an event occurs, the lattice is updated and a new

waiting time calculated for the next event. This approach is fully spatially explicit,

unlike the approximation present in the mathematical methods above. It also now has
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Fig. 1 Epidemic curves from pair approximations and the ‘most central’ 50% of 100 stochastic simulations

for different values of L . γ = 1/14. a R0 = 2, b R0 = 5, c R0 = 10. Red curves for L = 0.1 and blue

curves for L = 0.9. The solid line shows the PA dynamics and the shading the bounds of the central 50%

(C50) of runs of the stochastic model (Color figure online)

a discrete number of individuals (625) as opposed to the continuous probabilities in

the PA model. Code is available on https://github.com/abestshef/latticeSIR.

3 Results

3.1 Epidemic Curves

We begin with a visual examination of the epidemic curves predicted by the pair

approximation and stochastic simulations for different values of L (0.1 and 0.9) and

different mean-field basic reproductive ratios, R0 (2, 5 and 10). Recent work has

highlighted the problems of combining multiple stochastic individual-based models

into simple static statistics of means and variances (Juul et al. 2020). We follow the

methods of Juul et al. (2020) by finding the ‘most central’ 50% of 100 simulated curves

to present here (see appendix for details). This allows us to visualise the shape of the

‘most likely’ epidemic curves, and to appreciate the extent of variation in these time

courses. Below we provide further detail by examining three key descriptive statistics

of the epidemic.

Focussing on the effect of increasing the proportion of local interactions, from Fig. 1

it is clear visually that the higher value of L produces a lower and later peak of infection.

Restricting global interactions may therefore, in itself (without further reductions to

transmission probability), slow down and limit the spread of an epidemic. Increasing

R0 not only moves the epidemics earlier and higher, but also reduces the effect of

local interactions. Comparing the plots, we can see that control mechanisms that

both shift interactions from predominantly global to predominantly local and reduce

R0 (for example, through both movement restrictions and other non-pharmaceutical

interventions) are predicted to have a significant effect on reducing the peak of the

epidemic.

We can also compare the fit of the pair-approximation to the stochastic models.

As we might expect, when L is small the pair approximation appears to present a

reasonable ‘average’ of the stochastic model runs. As L becomes larger we find that,

while the pair approximation often sits within the most central runs, for larger R0

at least, it tends to predict that the epidemic peak is rather earlier and higher than

seen in most of the fully spatially explicit simulations. The discrepancy between the
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pair approximation and stochastic simulations is most pronounced at low values of

R0. In particular, in this case a number of the stochastic simulations produce ‘failed’

epidemics, as evidenced by the lower bound of the 50% central curves running close

to 0.

3.2 Descriptive Statistics

We now explore the behaviour as we vary local interactions across the full range of L

from 0 (fully global) to 1 (fully local). Three descriptive statistics were evaluated (per-

centage of the population infected by day 300, percentage of the population infected

at the peak and the day of the peak). These not only provide a useful summary of

the epidemic curve (‘How high was it? How long did it last?’) but are also potential

targets in setting public health policy (i.e. we may not wish the peak to pass a certain

threshold). The stochastic model was run 100 times and the results plotted using box-

plots, showing the median, inter-quartile range (IQR; 25–75%), maxima/minima (or

1.5×IQR if smaller) and outliers. We consider how similar results are to the L = 0 case

by noting where the IQRs do and do not overlap. We further conduct pairwise Z-tests

to compare the means of the simulation results, presenting the resulting p-values in the

appendix. We set significance thresholds of 5% and 1%, with a Bonferroni correction

for multiple tests (n=55 pairwise tests). We believe these statistics gives a much fuller

appreciation of the shape of the results, and particularly their variation, than simply

plotting the mean and standard deviation. It can be noted that where the boxplots are

relatively symmetric, the mean and median values will be quite close.

Two clear trends emerge from all of the results. Firstly, there is an accelerating

impact of local interactions, with little effect seen as L is first increased from 0, but

the impact growing as L moves towards 1. This is highlighted by the colours indicating

which cases have overlapping IQRs with the L = 0 case (the bounds of which are

shown using horizontal dashed lines). For all three measures there are overlapping

IQRs at least up to L = 0.4, and often higher, indicating that the output for these

cases is similar to the L = 0 case. As L reaches higher values there are then rapid

moves away from the L = 0 case towards smaller epidemics (with a more complex

impact on the day of the peak; see below). Pairwise Z -tests (see appendix) confirm

that L = 0.1 and L = 0.2 are never significantly different to the L = 0 mean for

peak infections (p >0.01/55), with significant differences for all L ≥ 0.6 for both

peak and total infected (p <0.01/55). In contrast, in only one measure (peak infected,

R0 = 2) is the L = 1 mean not significantly different from all other cases. Secondly,

the impact of local interactions is reduced for higher R0. For every statistic, the number

of overlapping IQRs increases for R0 = 10 compared to R0 = 2.

Focussing on the specific values, when R0 = 2 increasing the proportion of local

interactions from L = 0 to L = 0.5 reduces the median peak from 17 to 13%, but

increasing further to L = 1 reduces it to just 2% (Fig. 2a). Similarly, the median total

infected is reduced when changing L = 0 to L = 0.5 from 80 to 70%, but at L = 1 it

is reduced to only 6% infected (Fig. 2g). Similar patterns for the peak can be seen from

higher R0 values also, with R0 = 5 seeing median peaks of 49% for L = 0 reduced

first to 47% for L = 0.5 then to 20% for L = 1 (Fig. 2b), while for R0 = 10 the
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Fig. 2 Descriptive statistics of PA and stochastic simulations for (left) R0 = 2, (middle) R0 = 5 and

(right) R0 = 10. a–c Proportion infected at peak, d–f day of peak, g–i Proportion of population infected

by day 300. Results from 100 simulations are presented as boxplots highlighting the median (orange lines),

inter-quartile ranges (IQR; boxes), maxima/minima (or 1.5×IQR if smaller; whiskers) and outliers. Dashed

horizontal lines mark the bounds of the IQR for L = 0. Blue boxes have overlapping IQRs with L = 0

while yellow boxes do not. The solid line marks the PA (Color figure online)

median peak of 68% at L = 0 is reduced just to 67% for L = 0.5 but 52% for L = 1

(Fig. 2c). The patterns for total infected, however, are less pronounced at higher R0.

Figure 2d–f shows that the number of days until the peak increases with L , again

accelerating as L increases. There is an exception to this when R0 = 2 as L approaches

1. Here, the peak moves significantly earlier because the infection fails to spread

through the population meaning the peak of the epidemic is both very early and very

low, as confirmed in Fig. 2a. Obviously, the larger R0 is, the faster the disease will be

able to spread through the population and therefore the faster it will die out.

In general, the pair approximation appears to be a good ‘average’ of the results

from the stochastic mode since it is always within the maximum/minimum bounds

and regularly within the IQRs. The ‘fit’ appears to be least good as L approaches 1,

as would be expected. The pair approximation is less accurate for R0 = 2 than for

higher values of R0, and this is likely due to the large proportion of infections which

fail to become established in the stochastic model when the disease spreads slowly,

resulting in lower means and IQRs, as described in the online appendix. The pair

approximation is also unable to account for variation evident for some of the stochastic

simulations since it is deterministic. For example, for R0 = 2 and L = 0.8 the total
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Fig. 3 Central curves and PA with a R0 = 2 and b R0 = 5. Red curves, L = 0.1 throughout. Blue curves:

L = 0.1 until PI > 0.05, then L = 0.9 while PI > 0.05, dropping back to L = 0.1 thereafter (Color

figure online)

Table 1 The median peak and

total infected for different

threshold proportions of

infection when the proportion of

local interactions is moved from

L = 0.1 to L = 0.9 with R0 = 2

Threshold Median peak (%) Median total (%)

None 17 80

10% 13 73

5% 9 66

1% 4 36

proportion infected can be anything from almost 0% to more than 60%, whereas the

pair approximation, as a deterministic approximation, provides just a single value.

3.3 Using Local Interactions as a Control Mechanism

We now explore how enforcing movement restrictions, resulting in more localised

interactions, might impact the spread of an epidemic. We assume that initially a pop-

ulation has predominantly global interactions (L = 0.1). We then assume that when

a threshold of percentage infected (here, 5%) is reached, interactions immediately

switch to being predominantly local (L = 0.9) and remain so until the infected per-

centage returns below the threshold. Figure 3 shows that compared to the case where

interactions remain predominantly global throughout (red), if movement restrictions

are imposed (blue) the peak of the epidemic is reduced, but less substantially than if

interactions had always been predmoniantly local, particularly for the lower R0 (see

Fig. 1 and Table 1). Interestingly, in the PA model, we see a very slight second wave

emerging for lower R0 once restrictions are lifted since the herd-immunity thresh-

old has not been reached, suggesting further and/or longer restrictions may need to

be imposed. We further investigate by varying the threshold at which restrictions are

imposed and the value of L moved to under the restrictions (Fig. 4). It is clear a lower

threshold improves the ability to control the epidemic. However, while reducing the

threshold has an almost linear effect on the peak, a very low threshold is needed to

impact the total infected with higher threshold making only small changes (Fig. 4 and

Table 1).

This relative lack of impact of later interventions is because of the speed with which

the lattice becomes correlated in the early stages of an epidemic. The correlation
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Fig. 4 Impact of changing the threshold at which interactions switch from L = 0.1 to L = 0.9 with R0 = 2.

Boxplots show results from stochastic simulations and solid line the PA (Color figure online)

between S and I sites on the lattice–effectively how likely it is to find S sites next to

I sites is given by,

CSI = PSI

PS PI

= qS/I

PS

. (9)

At the start of an epidemic with predominantly global interactions, the lattice is uncor-

related since infection spreads randomly across the lattice. As such, an infected host is

likely to remain surrounded by susceptible individuals and therefore CSI = 1. If some

interactions are local, then during the early stages the correlation rapidly approaches a

quasi-equilibrium as the contact network forms and local patches of infection develop

(Keeling 1999). We show in the appendix that this can be approximated as,

ĈSI = 3L − 2 +
√

−7L2 + 4L + 4

4L
. (10)

Figure 5 shows that increasing L leads to much stronger early-time S-I correlation, as

local clusters of infection form due to spatially localised contact networks, meaning

that I individuals are much more likely to be located near other I individuals. If an epi-

demic begins in a population with predominantly local interactions, the lattice quickly

becomes correlated with these local clusters of infection, qS/I falls and the infection

slows itself down due to a lack of locally available susceptible individuals. In contrast,

if an epidemic has established with predominantly global interactions, the network is

already highly uncorrelated before the movement restrictions are imposed and there

is already infection spread widely across the lattice, meaning most I individuals have

many S neighbours. The late implementation of local interactions therefore cannot

cause as high correlation of the lattice, and a large number of local epidemics can still

occur.

4 Discussion

In this study, we have used a pair approximation alongside stochastic simulations to

investigate the impact of local interactions on an epidemic. The novelty of our model is

to explore how epidemics over short timescales can be restricted by different degrees

of local interactions, not just at the extremes of purely global or purely local infections.

Our results show that epidemics where interactions are predominantly local will result

in fewer infections than those where interactions are predominantly global. Moving
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Fig. 5 Correlation coefficient, CSI , from pair approximation for different values of L . Left: Predicted quasi-

equilibrium, ĈSI from Eq. (10). Right: Early-time correlation dynamics CSI from full pair-approximation

model. The grey horizontal lines mark the predicted quasi-equilibrium from Eq. (10) (Color figure online)

from fully global to fully local interactions could reduce the median total infected

from 80% to just 6% in one case. This is in line with previous studies that looked

only at the extreme cases (Keeling 1999). Importantly, however, we have investigated

the transition between these extremes, finding that the trends as we move from purely

global to purely local interactions are not linear. Instead, our results consistently show

initially flat responses in different infection statistics as L is increased, with rapid

changes as L approaches 1 (Fig. 2). This suggests that the course of an epidemic in a

population with relatively high proportions of local interactions (even 50:50) will be

roughly the same as an epidemic in a population with purely global interactions. Even

at relatively low proportions of global interactions, enough long-range infections can

occur in the early stages of an epidemic to seed large numbers of local epidemics,

allowing the infection to spread throughout the population. For example, if R0 = 2

and L = 0.5, on average an infected individual passes the disease to one local and

one global contact, allowing the disease to become established across the lattice and

to then form a series of outbreaks. It is only as L becomes close to 1 and almost

all interactions are local that the likelihood that an infected individual transmits the

disease globally is small enough to have a significant impact. Interestingly, in the

similar model by Maltz and Fabricius (2016) that includes simple demographics (and

thus yields an endemic equilibrium), the infected equilibrium is initially fairly static

as interactions become more local before rapidly falling as local interactions become

more dominant, suggesting this non-linear trend is robust in simple epidemic models.

Our results have important implications for attempting to limit an epidemic through

restricting movement. In particular, such restrictions must be considerable, with almost

all global interactions removed if significant effects are to be seen. It is important to

note that in our model restricting movement does not lead to lowered per-individual

contacts, as might be assumed under simple non-pharmaceutical interventions (for

example, social distancing, hand hygiene, wearing masks). We found that restrictions

that both make interactions more local and infectious contacts less frequent (through

lowered R0) can substantially reduce the impact of an epidemic. Moreover, we found

that if the population starts from a position of having predominantly global interactions,

movement restrictions must be imposed very early on in the course of an epidemic

or they will have minimal effect (Fig. 4). This is due to the fact that, if a disease has

already begun to spread randomly through a population with global contacts, when

restrictions are put in place there will already be large numbers of local outbreaks
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forming across the lattice. If an infection has a particularly high R0, and therefore rapid

growth, it may be that infection is already too widespread for movement restrictions

to have any effect by the time measures are implemented. In this study, we assumed a

simple switch such that interactions returned to the default after the infected proportion

fell back below the threshold. More realistic approaches might be to gradually ease

restrictions or enact further restrictions in cases where a ‘2nd wave’ emerges. In the

similar study by Maltz and Fabricius (2016), they found a simple switch to a different

proportion of local interactions led to pronounced (damped) oscillations and significant

periodic outbreaks as the system was effectively moved such that it was no longer at its

steady state. Further investigation in to the use of movement restrictions as a control

mechanism is needed to explore the best strategies.

Combining mathematical analysis, using the pair approximation (Matsuda et al.

1992; Sato et al. 1994), and stochastic simulations has allowed us to explore the

dynamics of our model in more depth. Interestingly we found that the deterministic

results from the pair approximation model provide a good ‘average’ of the dynamics

from fully spatial stochastic simulations. The weakest ‘fits’ were for our lowest values

of R0, where a proportion of simulations lead to failed epidemics, whereas the ana-

lytical model always assumes an outbreak occurs. Given the problems in accurately

depicting averages of stochastic simulations (Juul et al. 2020), such analytic approx-

imations may provide a useful guide. However, we did find cases where significant

variation was present in the stochastic simulations, with the total infected varying

from almost 0 to 60% for certain parameter sets, and the pair approximation is not

able to capture such variation. The use of the pair approximation did, however, allow

us to approximate the correlation of S and I sites and therefore determine why late

interventions did not succeed in restricting the epidemic.

We have deliberately focussed on the simplest possible epidemic model in this study,

with the only two mechanisms being transmission and recovery. This has allowed us to

draw clear conclusions and insight in to the behaviour of the model, but it clearly cannot

and should not be used as an accurate predictive model for a particular epidemic. In

an earlier study, Maltz and Fabricius (2016) considered the same model with simple

demographics, finding that the infected equilibrium reduces with more local contacts,

while (Webb et al. 2007a) examined the impact of varying local interactions on a fully

ecological model, noting the potential for disease-induced extinctions and endemic

cycles of disease. Clearly, however, there are many further elements that could be

considered to make the model appropriate for specific infections or systems. A standard

extension for many disease models is to add an exposed compartment, separating out

those that are infected from those that are also infectious (see Keeling and Rohani

2008). It may also be instructive to consider the dynamics if immunity to infection

wanes over time, since the non-spatial model would then yield an endemic equilibrium,

unlike our model. If we wish to consider a disease persisting over the long-term,

we should not only add demographics but also consider seasonal-forcing (Aron and

Schartz 1984; Schwartz 1985; Altizer et al. 2006). Finally, more realistic spatial and

social networks would be needed for any conclusions around movement/interaction

restrictions in specific circumstances to be considered, such as in recent models of

Covid-19 in the UK (Ferguson et al. 2020; Kucharski et al. 2020; Firth et al. 2020).

An interesting question is the extent to which our simple binary distinction between
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local and global interactions, using the parameter L , can be related to such contact

networks: for example, is the emergent network for a particular value of L equivalent

to networks of certain degree distributions? This would allow our relatively simple

model structure to be applied to real contact matrix data, and will be a useful avenue for

further research. This would be particularly important for understanding whether the

movement restrictions our study suggests could be useful in tackling an epidemic are

in fact achievable. As it is, our model suggests that significant movement restrictions

may be a useful strategy in tackling an epidemic.
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