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Abstract

A common feature of morphogenesis is the formation of three-dimensional structures from

the folding of two-dimensional epithelial sheets, aided by cell shape changes at the cellular-

level. Changes in cell shape must be studied in the context of cell-polarised biomechanical

processes within the epithelial sheet. In epithelia with highly curved surfaces, finding single-

cell alignment along a biological axis can be difficult to automate in silico. We present ‘Ori-

gami’, a MATLAB-based image analysis pipeline to compute direction-variant cell shape

features along the epithelial apico-basal axis. Our automated method accurately computed

direction vectors denoting the apico-basal axis in regions with opposing curvature in syn-

thetic epithelia and fluorescence images of zebrafish embryos. As proof of concept, we iden-

tified different cell shape signatures in the developing zebrafish inner ear, where the

epithelium deforms in opposite orientations to form different structures. Origami is designed

to be user-friendly and is generally applicable to fluorescence images of curved epithelia.

Author summary

During embryonic development, two-dimensional epithelial sheets bend and fold into

complex three-dimensional structures–like paper in the origami art form. The genetic and

biomechanical processes driving epithelial folding can be polarised in the epithelium,

leading to asymmetric shape changes at the single cell level. Defects in such epithelial

shaping have been linked to many developmental anomalies and diseases. It is, therefore,

important not only to quantify shape change at the single cell level, but also to orientate

these asymmetrical changes along an epithelial axis of polarity when studying morphoge-

netic processes. Origami is a MATLAB-based software that has been developed to
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automatically extract such single-cell asymmetrical shape features along the epithelial

apico-basal axis from fluorescence microscopy images of folding epithelia. Origami pro-

vides a solution to computing directional vectors along the epithelial apico-basal axis fol-

lowed by extracting direction-variant shape features of each segmented cell. It is generally

applicable to epithelial structures regardless of complexity or direction of folding and is

robust to imaging conditions. As proof of concept, Origami successfully differentiated

between different cell shape signatures in highly curved structures at different develop-

mental timepoints in the zebrafish inner ear.

This is a PLOS Computational Biology Software paper.

Introduction

Complex morphologies across taxa and tissue types are generated through the deformation of

epithelial sheets [1–3]. In the embryo, many developing epithelia form highly curved surfaces.

Epithelial folding processes are driven by polarised mechanical forces and involve three-

dimensional changes in shape at the cellular level [4,5]. Fluorescence imaging techniques have

made it possible to follow such shape changes at cellular resolution, in vivo and in real-time

[6–8]. These imaging advances have consequently driven the development of tools to quantify

epithelial dynamics, especially cell shape changes.

Many image analysis tools measuring cell shape change have been limited to two-dimen-

sional [9–12] or quasi-3D fluorescence microscopy data [13]. Extending these measurements

to 3D has been aided by the development of membrane-based 3D segmentation methods such

as ACME [14], RACE [15], 3DMMS [16], CellProfiler 3.0 [17], and more recently, deep-learn-

ing-based methods [18–21]. Some image analysis tools, such as CellProfiler 3.0 [17], Morpho-

GraphX [22] and ShapeMetrics [23], provide pipelines to compute direction-invariant cell

shape features. However, finding the position of 3D-segmented cells along biologically relevant

axes to quantify directional shape features is still a challenging problem that has so far not seen

a generalised solution.

Solving the orientation of individual cells relative to the known overall polarity of the epi-

thelial sheet is critical, as cell-polarised biomechanical processes drive cell shape changes; con-

striction or expansion can occur along either the apical [24,25] or baso-lateral [26] cell surfaces

and can be detected by any skew in mass distribution within a cell along an apico-basal axis of

symmetry. Epithelial folding may be initiated or influenced by cell proliferation, cell death,

cytoskeletal remodelling, or changes in cell surface properties [27,28]. These mechanisms can

lead to changes in cell shape features, including cell height and width, volume, surface area

and sphericity.

Cell orientation or polarity can be defined along the plane of the epithelium (planar cell

polarity) or perpendicular to the epithelial plane, along the apico-basal axis of the cell. Existing

automated methods for assigning polarity to segmented cells often rely on additional biochem-

ical markers for polarity [29–31]. Including such additional markers in fluorescence imaging

experiments increases the time taken to generate each image, potentially leading to phototoxic-

ity, and the resulting larger volume of image data makes analysis computationally expensive.

Moreover, producing the required animals carrying multiple transgenes for live imaging can

be challenging and costly. Some image analysis methods compute direction vectors for
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individual cells by drawing normal vectors to polynomial functions, often ellipsoids, used to

estimate the surface of the specimen—for example, entire embryos [15] or blastoderms [32]

undergoing morphogenesis. These methods are specific to the geometry of the specimen and

are unsuitable for analysing complex folded topologies at advanced morphologic developmen-

tal stages. A third method uses known features of cell shape to assign cell orientation, for

example by applying principal component analysis (PCA) to compute the apico-basal axis in

columnar cells in EDGE4D [33] and the anterior-posterior axis in zebrafish lateral line primor-

dia using landmark-based geometric morphometrics [31], or orienting cells along their long

axis in the zebrafish optic cup as in LongAxis [34]. These strategies will be applicable only if a

dominant cell shape feature, for example cell height/width ratio, is known and remains

unchanged over space and time.

We introduce a new automated and easy-to-use tool, Origami, for extracting direction-vari-

ant shape features along the apico-basal axis by reconstructing the epithelial surface using a tri-

angular mesh (Fig 1). Origami applies to a wide range of geometries of specimens undergoing

morphogenesis and automatically extracts direction vectors for individual cells aligned to the

apico-basal axis of the epithelial sheet without requiring additional labels for polarity. Direc-

tion-variant shape features are calculated by computing the geometric moments for the vol-

ume enclosed by the polygon representation of each segmented cell [35]. We showcase the

versatility of our method using data from an assortment of structures at a range of develop-

mental stages within the otic vesicle (developing inner ear) of zebrafish embryos.

Design and implementation

The Origami pipeline is preceded by a membrane-based segmentation step. For this, we

employed the open-source ACME segmentation software [14]. The segmented data are sub-

jected to two main operations within Origami; epithelial polarity direction vector assignment

(Fig 1B) and extraction of shape features (Fig 1C).

Assigning polarity direction to individual cells

To compute directionally variant cell shape features, such as skewness (asymmetry in cell

mass), and longitudinal and transversal spread, the positioning of segmented cells must be

found in 3D space along a biologically relevant axis—we chose the known apico-basal axis of

the cell. The folding epithelium was reconstructed in silico as a thin ‘crust’—an open surface

mesh that triangulates the centroids of the segmented cells in 3D space using the Crust algo-

rithm [36,37] (Fig 1B). The Crust method computes a surface mesh from unorganised points

—cell centroids in our case, using the Voronoi diagram of the cell centroids.

Following this, our automated method corrects imperfections in the estimated surface

mesh that can cause errors in the resulting direction vectors. The mesh is refined by removing

duplications (in vertices or triangular faces computed) and any self-intersecting triangular

faces. Non-manifold edges, that is, those edges shared by more than two triangular faces, are

re-meshed as a manifold mesh using the ball-pivoting algorithm [38,39].

The triangular faces of the refined mesh are ordered, and so by applying the right-hand rule

when generating normal vectors to the surface mesh, these vectors all point to the same side of

the mesh representation of the epithelial surface (Fig 1B). At this point, there are still two pos-

sible opposing orientations for each computed vector—facing the apical or the basal face of the

epithelium, with a difference only in sign. In the developing zebrafish otic vesicle, the apical

surface of the epithelium faces the fluid-filled lumen of the vesicle [2,8,40]. We used this prior

knowledge to inform the orientation of the vectors by setting the value of a binary orientation-

determining parameter to ‘in’ so that they point to a convergent point which falls on the side
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Fig 1. Origami Image Analysis Pipeline. a. Airyscan confocal fluorescence micrograph (maximum intensity projection (MIP) of 35 z-slices) of the
developing zebrafish otic vesicle at 51.5 hours post fertilisation. Red box—anterior projection; yellow box—endolymphatic sac; cyan box—posterior
projection. The ROIs are expanded alongside—top rowMIPs, and bottom row single slices. Scale bars: 20 μm. Blue arrows mark the direction of
apicobasal polarity (pointing towards the apical side). b. Polarity assignment on segmented data; ROI surrounding the anterior projection was
segmented (here overlaid on the MIP) using ACME, centroids were generated for each segmented cell and a triangular surface mesh was produced
from these centroids. Normal vectors (blue arrows) to this surface mesh represent the apico-basal axis. c. Cell shape features were computed
concerning the assigned apico-basal axis; here, three example cells are highlighted, alongside a 3D rendering showing their position in the anterior
projection and the corresponding shape metrics in a table.

https://doi.org/10.1371/journal.pcbi.1009063.g001
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of the curved surface mesh that corresponds to the apical (lumenal) side of the epithelium at

each cell. When a structure folds multiple times in opposing orientations, such as in the syn-

thetic data generated for this study, ‘in’ sets the polarity direction vectors to point towards a

global convergent point, in our case determined by the curvature of the whole synthetic

epithelium.

Under-segmentation can cause missing regions or unwanted holes in the triangular mesh,

introducing errors when ordering the triangular faces. Our pipeline attempts to repair these

holes by detecting and then remeshing them where possible. Holes, when detected, are flagged

as a warning to users about potential errors in the output. Normal vectors to the reconstructed

surface represent the apico-basal axis of the epithelium and are generated for each segmented

cell at their centroid position (Fig 1B and 1C).

Computing shape features using 3D geometric moments

The shape of an object can be characterised using central geometric moments [41]. Geometric

moments are widely used in object recognition and classification problems [42,43] since they

(i) are simple to compute, (ii) organise features in orders of increasing detail, and (iii) can be

extended to n dimensions. Each moment, G
ðVÞ
ijk , is defined by the integral over the object (in

our case, each segmented cell), of the Cartesian coordinates monomial xiyjzk, where i, j, k� 0,

with the origin of coordinates at the centroid.

In our analysis pipeline, 3D geometric moments were computed using the algorithm intro-

duced in [35]. The defining continuous integrals are exactly computed within the triangular

surface mesh generated for each individual segmented cell, split into a sum:

G
ðVÞ
ijk ¼

X

c2Facets

signðVolcÞ

Z

Tc

xiyjzk dx dy dz; ð1Þ

where each tetrahedron Tc is defined by a triangle in the surface mesh and the origin (cell cen-

troid). The determinant gives the oriented volume of this tetrahedron,

Vol ¼
1
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Considering its sign, the determinant allows the algorithm to be applied to shapes of any

complexity and topology. The integral in each Tc is given by a closed formula involving only

the Cartesian coordinates of the triangular vertices.

The geometric moments of low orders have simple, intuitive interpretations. The zeroth

order moment G
ðVÞ
000

provides the volume of the object, here an individual cell. For central

moments, the first order moments are trivially null: G
ðVÞ
100

¼ G
ðVÞ
010

¼ G
ðVÞ
001

¼ 0. The second-

order moments correspond to the spread (covariance tensor) of the distribution. So, the pro-

jection of the mass of each cell along the corresponding polarity vector represents the ‘spread’

as variance in mass ‘longitudinally’ (along the apico-basal axis) and ‘transversally’ (along the

epithelial plane). This allowed us to identify if cells were more or less columnar (tall cells) or

squamous (flat cells) in shape. The third-order moments represent ‘skewness’, which is the

deviation from symmetry. In our pipeline, skewness was measured along the polarity direction

vector in the apico-basal direction, with positive skewness values indicating apical cell con-

striction and/or basal relaxation and negative values indicating basal cell constriction and/or

apical expansion. A value of zero indicated no skew. Additionally, the sphericity of each cell
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was computed as the ratio of the cell surface area to the surface area of a sphere with the same

volume as the cell [44], from 0 for a highly irregularly-shaped cell to 1 for a perfect sphere.

Results

Evaluation of computed cell polarity direction vector

To evaluate the computed direction vectors denoting cell polarity, we generated 3D synthetic

data representing curved, folding epithelia with varying degrees of curvature and height of

folded peak in two opposing orientations (S1 Text and Fig 2A). To reflect real-world in vivo

fluorescence imaging conditions, these synthetic data were corrupted with three incremental

levels of Gaussian and Poisson noise (S1 Text and Fig 2A). Using the synthetic data, two types

of error in computed polarity direction vectors were assessed: (1) an orientation flipping error,

measured as the percentage of polarity vectors with an opposing orientation (opposite sign) to

the polarity ground truth (S1 Text), and (2) direction accuracy, measured as the mean devia-

tion angle between the polarity vectors produced by Origami, correctly oriented, and the

polarity ground truth.

Of the two aspects of surface geometry analysed, height of folded peak (in two opposing

directions) did not contribute significantly to orientation flipping errors (Linear Regression;

p = 0.86, R2 = -0.04). However, a larger radius of curvature of epithelium (a flatter epithelial

sheet) did correlate with orientation flipping errors—albeit with a small effect of 0.08%

increase for every 1 μm (5 pixels) increase in radius of curvature (Linear Regression; p = 0.042,

R2 = 0.12, effect), and a lower quality of segmentation output from ACME (Linear Regression

p< 0.001, R2 = 0.46; Fig 2B) computed as a Dice score. This meant a 0.2% reduction in Dice

score for every 1 μm (5 pixels) increase in the radius of curvature. This correlation may be

attributed to the reduced ability of ACME to segment flat, squamous cells in an epithelium ori-

ented mostly along the lateral (xy) plane in data with anisotropic voxel resolution (here mod-

elled using an anisotropic point spread function (PSF)). We found a correlation between noise

applied to the synthetic images and errors in both polarity orientation flipping (ANOVA: p�

0.001; Tukey’s contrasts showed 11.3% increase in errors at highest noise level compared with

the lowest noise level applied: p = 0.0039) and segmentation output (ANOVA: p< 0.01;

Tukey’s contrasts showed 16.3% reduction in Dice score at highest noise level from the lowest

noise level applied: p = 0.0045). Segmentation quality, in turn, influenced polarity orientation

flipping, with errors below 1.5% at Dice scores above 0.8, but increasing with further decrease

in Dice scores (Polynomial Regression; first-order: p< 0.001, Effect size = -28.78; second-

order: p< 0.01, Effect size = 16.26; Fig 2C). Comparisons of many available segmentation

algorithms when validating with fluorescent images from non-folded structures such as early-

stage nematode embryos [16] or plant roots [18] have been shown to give Dice scores above

80%, suggesting a good performance under real experimental conditions.

Quantitative direction accuracy was evaluated in the synthetic data, for which, in contrast

to data from real fluorescence images, a reliable ground truth could be generated from the

known underlying surface functions. Compared to the polarity ground truth data, an overall

offset of 10.6˚ ± 15.5˚ (mean ± std) was measured from our entire synthetic dataset. Just as for

the polarity orientation flipping error, height of folded peak did not influence polarity direc-

tion accuracy (Linear Regression; p = 0.39, R2 = -0.01), but there was a small effect of curvature

of the epithelium with an additional 0.06˚ offset for every 1 μm (5 pixels) increase in radius of

curvature of the epithelium (Linear Regression; p = 0.005, R2 = 0.24). At the highest level of

noise applied, errors in polarity orientation had a 6.6˚ greater offset than at the lowest noise

level applied (Tukey’s contrasts; p = 0.003). There was also a negative linear effect of
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Fig 2. Assessment of polarity assignment. a. Surface meshes of synthetic epithelia for validating the Origami analysis pipeline. Alongside, 3D
rendering of one of the synthetic epithelia (top) and a single 2D slice through it (bottom). Each image volume was corrupted with three levels of noise.
b. The relationship between surface geometry/noise and segmentation quality. Error bars represent the standard deviation. Tukey’s pairwise
comparisons with significant values depicted with asterisks: Dice score at radius of curvature of 200 μm (1000 pixels) compared to that at 106 μm (530
pixels)–p = 0.0004, Dice score at largest noise level compared to the lowest: p = 0.0045. c. Effect of segmentation quality on errors in orientation
flipping (left) and direction offset in the computed polarity vectors (error bars in grey represent standard deviation). Dashed lines represent quadratic
and linear fit to data respectively. d. Probability density of errors in polarity direction in real fluorescence data from zebrafish embryos. Each dot
represents the percentage error from a 3D segmented volume (n = 27; total of 949 segmented cells across all the images). The dashed line shows the
mean error in the dataset (<4%). e. Sensitivity of cell shape metrics to errors in polarity orientation. Data points in the graphs are depicted with the
same colour as the corresponding synthetic cell alongside. Tukey’s pairwise comparisons with significant values depicted with asterisks; Longitudinal
spread: 1–2 p = 0.039, 1–3 p< 0.0001, 2–3 p< 0.0001; Transversal Spread: 1–2 p< 0.0001, 1–3 p< 0.0001, 2–3 p< 0.0001; Skewness: 1–2 p< 0.0001,
1–3 p< 0.0001, 2–3 p< 0.0001.

https://doi.org/10.1371/journal.pcbi.1009063.g002
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segmentation quality with a 2.9˚ offset predicted for every 10% reduction in Dice score (Linear

Regression; p< 0.0001, R2 = 0.53; Fig 2C).

We further tested the effect of such errors in direction accuracy on the direction-variant

shape metrics computed by applying directional noise—with a mean equal to the measured

mean error above—to polarity vectors of three example cells showing extreme shape features

from the synthetic dataset and computed direction-variant shape metrics for each new dis-

placed polarity vector (n = 50; Fig 2E). The resulting computed shape metrics could still suc-

cessfully differentiate between the three cells, showing that direction accuracy errors

(excluding orientation flipping errors) should not adversely affect the shape metrics computed.

On the other hand, orientation flipping errors will affect shape metrics, but as shown above,

these errors are predicted to be small for a well-segmented image volume and can be easily

identified by visual inspection and corrected if needed using the Origami pipeline.

Additionally, orientation flipping errors were quantified from real light-sheet fluorescence

microscopy data from structures in the developing zebrafish otic vesicle (Figs 1 and 3). For

this, cells assigned the wrong orientation along the apico-basal axis—that is, facing the basal

surface instead of the apical surface, were identified by visual assessment in the Origami pipe-

line, showing errors in 3.65% of n = 949 cells analysed (Fig 2D).

Proof of principle: Insights into cell shape dynamics during epithelial
morphogenesis within the zebrafish inner ear

To further validate our method, we used Origami to characterise cell shape dynamics involved

in the formation of different structures in the otic vesicle of the zebrafish embryo (Figs 1 and

3). We analysed light-sheet fluorescence image data from the anterior epithelial projection

(AP) for the developing semicircular canal system, together with the endolymphatic sac (ES),

at three developmental time points: 42.5 hours post fertilisation (hpf) (time point 1), 44.5 hpf

(time point 2) and 50.5 hpf (time point 3), using three different fish for each time point. We

also analysed the posterior epithelial projection (PP), a similar structure to the AP, but which

develops later [40], at developmentally equivalent time points to that of the AP (46.5 hpf, 50.5

hpf and 60.5 hpf). The AP and PP are finger-like projections of the epithelium that move into

the lumen of the vesicle, with the apical side of the cell on the outside of the curved projection

surface [40]. By contrast, the ES forms as an invagination from dorsal otic epithelium, with the

constricted apical surfaces of the cells lining the narrow lumen of the resultant short duct

[8,45,46]. As the ES is formed through deformation of the epithelial sheet with opposite polar-

ity to that of the epithelial projections, we expect cells in the ES and the projections to show

significant differences in cell shape. Conversely, we do not expect significant differences in cell

shape between the AP and PP cells, which form equivalent structures in the developing ear.

For each structure, the following shape attributes were computed at the single-cell level: sur-

face area, sphericity, longitudinal spread, transversal spread and skewness. Since volume and

surface area show high collinearity within our data (Pearson correlation coefficient = 0.98,

95% confidence intervals = [0.977, 0.984]), cell volume was excluded from further analysis.

Although images included cells in the non-folding epithelium around the developing struc-

tures of interest, only cells from the folding epithelium were analysed. A multivariate analysis

({MANOVA.RM} package [47] in R [v 4.0.0]) of the dependence of cell shape attributes on the

epithelial structure from which they are derived at different time points showed a significant

difference between the three structures at the first two developmental times (Wald-type statis-

tic; p = 0.035 (resampled p = 0.001) at time point 1 and p< 0.001 (resampled p< 0.001) at

time point 2) but not at the final time point analysed (p = 0.706 (resampled p = 0.038)) for all

shape attributes. Post-hoc Tukey’s contrasts indicated that cells in the endolymphatic sac
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showed significantly different shape dynamics from those of cells in both projections (ES—AP

p = 0.006, PP—ES p = 0.012 at time point 1; ES—AP p = 0.0002, PP—ES p = 0.0002 at time point

2 but ES—AP p = 0.192, PP—ES p = 0.116 at time point 3). There was no significant difference in

the cell shape signature between cells in the anterior and posterior projections (Tukey’s contrasts;

PP—AP p = 0.997 at time point 1; PP—AP p = 0.999 at time point 2 and PP—AP p = 0.896 at

time point 3). These results indicate that the cell shape features included were more similar than

different for cells from the structures at the third time point analysed.

Fig 3. Comparison of shape dynamics in developing structures of the zebrafish inner ear. Rows represent each time point analysed. Data in blue represent cells from
AP, green represent cells from PP and magenta represent ES. a. Linear discriminate analysis (LDA) biplots illustrate multivariate clustering of data—data from AP and PP
show considerable overlap indicating similar shape signatures while data from ES show less overlap with the former. b. Schematic illustrations of cell shape signatures at
the time points analysed showing cells in the ES having skew in the opposite direction to those in the projections and having less rounded shapes. Arrows indicate apico-
basal polarity. c. Plots showing differences in skewness and sphericity between the structures at the time points analysed. Yellow dots with error lines represent mean and
standard deviation for the data. p values for paired comparisons depicted are from Table 1.

https://doi.org/10.1371/journal.pcbi.1009063.g003
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Of the attributes analysed, skewness (Kruskal-Wallis test; p = 0.008 at time 1, p = 0.004 at

time 2 and p< 0.0001 at time 3), sphericity (Kruskal-Wallis test; p< 0.001 at time 1,

p = 0.00012 at time 2 and p< 0.001 at time 3) and surface area (Kruskal-Wallis test; p< 0.001

at time 1, p< 0.0001 at time 2 and p = 0.018 at time 3) described significant differences in cell

shape across all the three time points analysed; cells in the endolymphatic sac were character-

ised by positive skewness values, smaller sphericity values and larger surface areas as compared

with cells in both projections, which show negative values of skewness (Table 1 and Fig 3).

The differences in surface area are likely to be attributed to differences in sphericity between

the cells in the three structures, but not in dimensions, as the transversal and longitudinal

spread showed no significant differences.

Availability and future directions

Origami is free to download from: https://github.com/cistib/origami. It is implemented within

MATLAB (compatibility with version 2018b onwards) and includes additional tools for visual-

ising cell shape metrics from complex folding epithelia at the single-cell level. Instructions for

installation and use are included with the software.

Our software can accept pre-segmented data, making it compatible with segmentation algo-

rithms of the user’s choice, potentially allowing for data acquired using other 3D imaging tech-

niques such as tomography to be analysed. Segmented data must represent cell shape

accurately, and so the choice of imaging technique that can faithfully detect 3D cell shape

alongside membrane or cytoplasm-based segmentation is critical.

We used a priori knowledge of the otic epithelium organisation to inform the orientation of

the apico-basal axis of the epithelial sheet to face the lumen of the otic vesicle [2,8,40]. It is

essential to know the organisation of the apico-basal axis of cells within any new structure

studied to apply Origami—wherein, the orientation-determining parameter can then be set to

always be ‘in’ or ‘out’ depending on if the polarity direction vector is required to point towards

the inside or outside face of a curved structure. We also assumed that individual cells do not

violate this organisation, as this cannot be detected without additional polarity-specific labels.

In such a case, polarity vectors from our analysis can be complemented with information from

polarity-specific labelling to track such behaviour. Moreover, to compute shape features along

an alternative axis of polarity, the pipeline can accept pre-assigned polarity as a cell-specific

vector-list.

We expect Origami to be applied to studying a wide range of morphogenetic processes and

to contribute to our understanding of the biomechanical processes underpinning them.

Table 1. Paired comparisons usingWilcoxon rank sum exact test (p values–adjusted using ‘Holm’ correction).

AP—ES PP—ES AP—PP

Time point 1 2 3 1 2 3 1 2 3

Skewness 0.009 0.002 <0.001 0.036 0.036 <0.0001 0.42 0.286 0.047�

Sphericity 0.002 0.012 <0.001 0.005 <0.0001 0.007 0.149 0.228 0.07

Surface Area 0.001 <0.0001 0.032 0.001 <0.0001 0.013 0.887 0.85 0.912

Transversal Spread 0.057 0.062 1 0.357 0.062 1 0.357 0.897 1

Longitudinal Spread 1 0.88 0.054 1 0.81 0.102 1 0.46 0.582

�The differences in skewness between cells in the AP and PP at the 3rd time point tended towards significance. This might be attributed to differences in the lengths of

projections, with cells at the leading end of the projection showing more extreme skewness values while cells along the lateral sides showing less skewed shape.

https://doi.org/10.1371/journal.pcbi.1009063.t001
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S1 Software Code. Zip file containing MATLAB scripts and instructions for installing and

running Origami software. Requires MATLAB (v 2018b onwards).

(7Z)

S1 Text. Text file detailing methodology used for collection of fluorescence microscopy

data, generation of synthetic membranes and parameters used for membrane segmenta-

tion.
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