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Abstract
The effective use of wind energy is an essential part of the sustainable development of
human society, in particular, at the recent unprecedented pressure in shaping a low carbon
energy environment. Accurate wind resource and power forecasting play a key role in
improving the wind penetration. However, it has not been well adopted in the real‐world
applications due to the strong stochastic characteristics of wind energy. In recent years,
the application boost of deep learning methods provides new effective tools in wind
forecasting. This paper provides a comprehensive overview of the forecasting models
based on deep learning in the field of wind energy. Featured approaches include time‐
series‐based recurrent neural networks, restricted Boltzmann machines, convolutional
neural networks as well as auto‐encoder‐based approaches. In addition, future develop-
ment directions of deep‐learning‐based wind energy forecasting have also been discussed.
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1 | INTRODUCTION

Given the increasing growth of energy demands, it is critical to
incorporate renewable energy into the power supply. Demand
for renewable energy is expected to increase on account of
lower operating costs and preferential use of many power
systems [1]. As a kind of renewable energy with the charac-
teristics of green, clean, environmentally friendly and high
economic benefits, wind energy is very important for the
sustainable development of human society. Due to the supe-
riority of wind energy, it has developed by leaps and bounds in
the past 10 years and become one of the most cost‐competitive
energy sources in the world. In 2020, the global installed ca-
pacity of wind energy was 93 GW. China and the United States
are the world's largest onshore wind energy markets, which

together accounts for more than 60% of new installed capacity
in 2020 [2]. Up to 2020, China's cumulative installed capacity of
wind energy exceeded 216 million kilowatts, accounting for
around 40% of the world total amount. China has become one
of the leaders in the development of global wind power [3].
The cumulative installed capacity of new energy power gen-
eration in the State Grid Operating Area is 350 million kilo-
watts, of which the installed capacity of wind power generation
is 169 million kilowatts with a yearly increase of 16%. New
energy's annual power generation is 510.2 billion kWh, ac-
counting for 9.2% of the total power generation, of which
wind power generation is 315.2 billion kilowatt‐hour (kWh)
with a yearly increase of 11% [4]. American wind power
reached an important milestone in 2019, reaching an operating
capacity of 100 GW. Since 2008, the wind power generation
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capacity has quadrupled and it has become the largest source
of the renewable energy generation capacity in the United
States, which will account for 7.2% of US electricity by 2019
[5]. The top countries in the global wind power installed ca-
pacity, such as Germany, India, Italy, Spain, the United
Kingdom, France, Brazil, and Canada, are also vigorously
developing wind energy [6].

Despite the advantages of wind energy, the smooth inte-
gration of large‐scale wind power into the grid still faces many
challenges. Due to the randomness, volatility and intermittency
of wind, large‐scale wind power grid connection makes it very
difficult to balance power supply and demand, and also
brought a universal curtailment of wind power. One possible
solution to balance the challenge is to increase wind speed and
power prediction. Improving wind forecast accuracy can help
to optimize the overall planning and scheduling of the power
grid, find the optimal combination of wind turbines, and
ensure the safe and stable operation of the power system,
thereby further increase the economic benefits of wind.
Meanwhile, accurate wind forecasting is also one of the key
prerequisites for providing wind power absorption capabilities.

Wind energy forecasting has been an intractable problem
in the energy system, where numerous reviews have been
proposed broadly covering data processing, power and
resource forecasting. Jung et al. [7] reviewed the potential
technologies that can improve the performance of wind energy
forecasting models, and emphasized the promising knowledge
system in the forecasting. Tascikaraoglu et al. [8] outlined the
combined wind energy forecasting methods and focussed on
the various model combinations. Wang et al. [9] summarized
eight multi‐step wind speed forecasting strategies, where 48
hybrid models were compared based on these eight strategies.
Bokde et al. [10] compared the existing method with empirical
mode decomposition (EMD) and its improved versions in
terms of pre‐processing technologies. Liu et al. [11] provided a
detailed review and classification of data processing techniques
in wind energy forecasting, and an in‐depth study of each
mentioned data processing method including purpose, func-
tion, details and performance was also provided. Liu et al. [12]
reviewed eight kinds of intelligent predictors for shallow and
deep learning in the wind energy prediction field and auxiliary
methods that can improve the predictive ability of the pre-
dictive model that include integrated learning and optimization
algorithms. Vargas et al. [13] demonstrated a new literature
review method called systematic literature network analysis,
which was used to summarize the development of wind energy
analysis in the decision‐making process in the past 30 years.
The authors pointed out that the most commonly used
methods this year are Monte Carlo simulation and artificial
neural network methods. Wang et al. [14] reviewed applications
of artificial intelligent algorithms in wind energy forecasting.
Gonzalez et al. [15] summarized the commonly used perfor-
mance indicators for deterministic and probabilistic short‐term
wind power forecasting and explained the performance of
these indicators on different data sets, time resolutions and
certain specific model attributes. Yang et al. [16] provided a
comprehensive summary and comparison of more than one

hundred wind forecasting methods from three perspectives:
wind speed and power prediction, uncertainty prediction, and
slope time prediction.

Though numerous reviews have been proposed in terms of
wind forecasting, the emerging artificial intelligence technol-
ogy, in particular, deep learning methods, has boosted in recent
years and provides a number of new technologies in wind
forecasting. However, the previous reviews mainly focussed on
classification issues but did not discuss the development trends
in detail. This paper attempts to summarize the methods of
wind forecasting based on deep learning in the past 5 years,
providing a comprehensive survey for researchers in devel-
oping new effective wind forecasting tools.

The remainder of the paper is organized as follows: Sec-
tion 2 described some basic concepts in the wind energy
forecasting field. Section 3 presents wind forecasting models
based on deep learning. Section 4 discusses the possible future
research direction of wind energy forecasting. Section 5 con-
cludes this paper. Further, the prediction framework based on
deep learning is shown in Figure 1, which summarized the
categories of each technique.

2 | OVERVIEW OF WIND ENERGY
FORECASTING

The wind is the movement of the atmosphere and a featured
form of solar energy. When there is an atmospheric pressure
difference, the air moves from the higher pressure area to the
lower pressure area. It is caused by three concurrent events: the
uneven heating of the Earth's atmosphere by the sun, irregu-
larities found on the Earth's surface, and the rotation of the
Earth. The wind flows across the wind turbine blades, and the
blades with a special structure produce an air pressure differ-
ence that produces lift and drag. When the lift is stronger than
the drag, the rotor shafts rotates to drive the generator to
generate electricity [17, 18]. Wind power P can be calculated as
follows:

P ¼
1
2

ρAv3 ð1Þ

where P represents the wind power, ρ denotes the density of
air, A is the swept area of the wind turbine, and v is the wind
speed.

Wind power exhibits a highly non‐linear cubic dependence
on wind speed, and accurate wind speed prediction can provide
higher power [19]. Besides, studies have shown that if the ac-
curacy of wind speed forecasting is increased by 10%, wind
power generation will increase by about 30% than expected [20].

2.1 | Wind time‐series forecasting
classifications and applications

Up to date, there is no uniform and strict standard for the
forecasting term limits. They are separated strongly according
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to the applications. Soman et al. [21] divided the forecast
period into four categories: very short‐term, short‐term,
medium‐term and long‐term, as shown in Figure 2.

The forecasting period is equal to the time resolution
multiplied by the predicted steps, usually referring to the
period of the test set rather than the training set, which is
calculated as follows:

Tp ¼ ti ∗ st ð2Þ

where Tp is the forecasting period, ti is the time unit of the
data, st is the time step.

The corresponding applications are as follows:

(1) Very short‐term: electricity market clearing, electricity
regulations, real‐time grid operations, wind turbine con-
trol, power quality research, load following and
distribution

(2) Short‐term: economic load dispatch planning, load incre-
ment/decrement decisions, load sharing, and operational
security in the electricity market

(3) Medium‐term: energy allocation, economic dispatch,
reserve requirement decisions, generator online/offline
decisions, coordination of wind farm and storage device,
planned maintenance on network lines, transmission
network planning, congestion management, day‐ahead
energy and reserve scheduling, wind farm maintenance
and troubleshooting

(4) Long‐term: wind energy resource assessment, wind farm
construction planning, optimal operating cost, annual
maintenance plan, operation and maintenance of conven-
tional generation, operation management, feasibility study
for wind farm, design of wind farm operation plan, energy
trading strategy, and coordinate optimal unit portfolio
[10, 21–26]

2.2 | Wind energy forecasting goals and
results

In order that more effective energy planning and decision‐
making, wind energy forecasting is indispensable. From the
perspective of the forecasting process, there are two types of
forecasting, namely direct forecasting and indirect forecasting,
respectively. Direct forecasting refers to direct forecasting
through historical wind speed or wind power data. Indirect
prediction first predicts the future wind speed and then con-
verts the predicted wind speed into wind power forecast ac-
cording to the power curve of the wind turbine [10]. Indirect
methods are more accurate and, therefore, more popular.

According to wind forecasting results, wind forecasting
models can also be divided into two categories, deterministic
forecasting and probabilistic forecasting [27, 28]. Deterministic
forecasting is also called point forecasting and the forecasting
result is a deterministic value. The result of probabilistic

F I GURE 1 Wind energy prediction framework based on deep learning. AE, auto‐encoder; CNN, convolutional neural network; DBM, deep Boltzmann
machines; DBN, deep belief network; ESN, echo state network; GRU, gated recurrent unit; LSTM, long short‐term memory; RBM, restricted Boltzmann
machine; RNN, recurrent neural network; SAE, stacked auto‐encoder; SDAE, stacked denoising auto‐encoders

F I GURE 2 Forecasting period classifications
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forecasting is usually an interval, and the probability distribu-
tion of interval values can be given. A single deterministic
method cannot reflect the uncertainty and randomness of wind
speed. Many applications in the field of wind energy need to
consider the uncertainty and randomness so that probabilistic
forecastings have attracted an increasing attention in recent
years [29].

2.3 | Wind energy forecasting models

From the most basic types, wind forecasting methods can be
divided into five categories: persistence method, physical
method, conventional statistical method, machine learning
method with shallow structure, machine learning method with
deep structure, that is, deep learning [25].

The persistence method is fairly straightforward. It is
assumed that wind speed or power at a certain future time will
be the same as it is when the forecast is made [24]. The
expression of this method is as follows:

Pðt þ kÞ ¼ PðtÞ ð3Þ

This model performs well in very short‐term forecasting,
but as the time scale increases, its accuracy gradually decreases.
Hence, it is usually used as a benchmark model to compare
with new models [30].

The physical method usually refers to the numerical
weather prediction (NWP) model. The NWP model establishes
a complex physical and mathematical model to simulate the
changing process of wind by comprehensively considering
meteorological and geographic factors such as temperature,
humidity, air pressure, and terrain [31]. NWP models are
usually used for weather forecasts in larger areas, and wind
speed predictions are only part of it. There are two types of
NWP models: global and regional models.

An overview of NWP global models and NWP regional
models, and all the commercial and operational wind power
forecasting systems and their main features are provided in Ref.
[26]. The physical method can reflect the essence of atmo-
spheric motion so that the accuracy is higher. However, this
method needs to process an extremely large amount of data and
carry out complex calculations. There are extremely high re-
quirements for computing power, which leads to significant
hinders for ordinary researchers [32]. Meanwhile, due to the
chaotic nature of the partial differential equations in the
mathematical model, it is impossible to obtain an accurate so-
lution, and the error will be multiplied with the increase of time.
In light of this, NWP models are not suitable for short forecast
times but more suitable for medium‐term or long‐term fore-
casting [8, 21]. In recent research works, the forecasting periods
are generally focussed on very short‐term or short‐term pre-
dictions [13], so the applications of NWP are less.

The conventional statistics method uses the collected wind
speed time‐series data to deliver predictions. After many years

of development, there have been many statistical models for
wind speed forecasting. Poggi et al. [33] started to utilize auto‐
regressive (AR) to simulate wind speed time series, and Nielsen
et al. [34] used quantile regression (QR) to make predictions
independently. In order to improve the forecasting perfor-
mance, many auto‐regressive moving average models have
been developed [35–38]. In addition, numerous AR‐based
models have also been developed for wind speed prediction,
such as vector auto‐regressive [39], auto‐regressive with
exogenous input (ARX) [40], auto‐regressive conditional het-
eroskedasticity [41, 42], auto‐regressive integrated moving
average (ARIMA) [43–46], seasonal ARIMA [47], fractional
ARIMA [48], and ARFIMA [49]. In order to improve the ac-
curacy of prediction and the robustness of the model, re-
searchers have also developed many hybrid models based on
the ARIMA model, such as WT‐ARIMA [50], RWT‐ARIMA
[43], and VMD‐ARIMA [51]. However, these models only
analyse the superficial relationship between the variables in the
time series, and it is difficult to deal with the complicated and
non‐linear relationship.

For obtaining more satisfactory prediction results,
numerous non‐linear statistic models have been proposed [52].
Zhang et al. [53] combined AR and Gaussian process regres-
sion (GPR) to improve prediction accuracy. In Karakucs et al.
[54], polynomial auto‐regressive is proposed, which is a non‐
linear model with linear parameters. Due to the non‐linear
term of the Hammerstein model, the Hammerstein auto‐
regressive model is superior to the ARIMAs [55]. Some
enhanced models such as smooth transition auto‐regressive,
self‐exciting threshold auto‐regressive [56] and Markov
switching auto‐regressive [57] have also been proposed.
Furthermore, the researchers also used some unusual models,
for example, non‐linear auto‐regressive with exogenous input
[58], generalized auto‐regressive conditional heteroskedasticity
(GARCH) [59], multiple‐kernel relevance vector regression
[60], threshold seasonal auto‐regressive conditional hetero-
scedasticity [61], Bayesian‐based adaptive robust multi‐kernel
regression [62]. However, with the increasing complexity of
time‐series data, it is not easy to meet the requirements of
prediction accuracy because traditional statistic models have
little ability to extract the features of data.

The shallow machine learning methods include neural
networks with a couple of layers. Marugan et al. [63] sum-
marize most of the shallow neural network models.
Compared with the persistence method and the traditional
statistical method, the shallow machine learning method has
higher prediction accuracy and better effect in practice.
Nevertheless, these models can only learn the shallow fea-
tures in the wind time‐series data and need extensive feature
engineering [64].

Deep learning is a machine learning method for deep
network architecture. The characteristics of input data are
learnt through a computational model composed of multiple
non‐linear processing layers. Compared with shallow machine
learning models and traditional statistical models, deep learning
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methods can extract more abstract and hidden features in data,
so as to obtain better accuracy in prediction tasks. The effec-
tiveness and accuracy of prediction models based on deep
learning have been widely recognized.

3 | DEEP‐LEARNING‐BASED WIND
FORECASTING

There are usually three steps in wind speed prediction: wind
energy data processing, predictor prediction and model
performance evaluation. The deep neural network (DNN) is

generally used as a feature extractor and a predictor. At
present, many DNNs have been applied to wind forecasting.
The basic prediction structures based on deep learning
mainly include recurrent neural network (RNN), convolu-
tional neural network (CNN), restricted Boltzmann machine
(RBM) and so on. Additionally, there are some other deep
networks such as generative adversarial network, extreme
learning machine (ELM), stacked auto‐encoder (SAE),
stacked denoising auto‐encoders (SDAE) etc. Table 1 pro-
vides the summary of models with long short‐term memory
(LSTM) predictor, and Table 2 shows the summary of other
forecasting models.

TABLE 1 Summary of models with LSTM predictor

Ref. Input data Time interval Model Prediction performance

Yang et al. [68] Wind speed 1‐h Peephole LSTM MAPE 0.0421

Yu et al. [69] Wind power 10‐min LSTM‐EFG MSE 5.531

Zhang et al. [70] Wind speed 15‐min SWLSTM‐GPR RMSE 0.174

Araya et al. [72] Wind speed 1‐h LSTM‐Ms MAE 1.081

Pei et al. [73] Wind speed 15‐min EWT‐NCULSTM MAE 0.10 MAPE 5.45 RMSE 0.15

Zhang et al. [74] Wind speed 1‐h NLSTM RMSE 0.45 MAPE 8.16

Qu et al. [76] Wind power 5‐min PCA‐LSTM NMAE 0.5672 NRMSE 1.0732

Xu et al. [77] Wind power 10‐min Adaptive LSTM MAPE 2.7

Huang et al. [78] Wind speed 1‐h EEMD‐LSTM‐GPR‐vc MAPE 14.28 RMSE 0.83 MAE 0.71

Liu et al. [79] Wind speed 1‐h EWT‐LSTM‐Elman MAPE 3.24 MAE 0.28 RMSE 0.37

Li et al. [80] Wind speed 10‐min mm‐LSTM MAE 1.8682 RMSE2.8484

Liu et al. [81] Wind power 15‐min DWT‐LSTM MAE 5.49 MAPE 1.75 RMSE 8.64

Liu et al. [82] Wind speed 10‐min SDAE‐LSTM MAPE 7.1323 MAE 0.3066 RMSE 0.3880

Wu et al. [83] Wind speed 10‐min DBSCAN‐SDAE‐LSTM NMAE 0.0798

Li et al. [85] Wind speed 10‐min EWT‐LSTM‐RELM ‐IEWT MAPE 0.3202 MAE 0.0359 RMSE 0.0465

Jaseena et al. [86] Wind speed 10‐min SAE‐LSTM MAE 0.3982 RMSE 0.5969

Moreno et al. [87] Wind speed 10‐min VMD‐SSA‐LSTM MSE 0.021 RMSE 0.145 MAPE 1.75

Ma et al. [88] Wind speed 15‐min CEEMDAN‐error‐VMD‐LSTM RMSE 0.111 MAPE 3.21 MAE 0.0831

Liang et al. [89] Wind speed 5‐min MSLSTM MSE 0.00297 RMSE 0.05448 MAE 0.04275

Liu et al. [90] Wind speed 1‐h VMD‐SSA‐LSTM‐ELM MAPE 3.04 MAE 0.42 RMSE 0.53

Wang et al. [91] Wind speed 1‐h VMD‐OFE‐LSTMN‐ECS MAE 0.37 RMSE 0.73 MAPE 27.15

Chen et al. [92] Wind speed 15‐min SSA‐CEEMDAN‐ConvLSTM MSE 0.006 MAE 0.052 MAPE 1.135

Lu et al. [93] Wind power 15‐min E‐D LSTM RMSE 2.6

Yin et al. [94] Wind power 1‐h EMD‐VMD‐CNN‐LSTM MAE 0.222 RMSE 0.296

Wang et al. [95] Wind power 15‐min LW‐CLSTM MSE 12.7 RMSE 3.5 MAE 1.36

Chen et al. [96] Wind speed 5‐min MFSTC‐CNN‐LSTM MAE 1.0384 RMSE 1.4003

Zhu et al. [97] Wind speed 10‐min PSTN RMSE‐A 0.531 MAPE‐A 3.674

Xiang et al. [98] Wind speed 15‐min WT‐bi‐LSTM MAE 0.074 MAPE 0.551 RMSE 0.157

Abbreviations: CEEMDAN, complete ensemble empirical mode decomposition with adaptive noise; CNN, convolutional neural network; DBSCAN, density‐based spatial clustering of
applications with noise; EEMD, ensemble empirical mode decomposition; EMD, empirical mode decomposition; GPR, Gaussian process regression; ELM, extreme learning machine;
IEWT, inverse empirical wavelet transform; LSTM, long short‐term memory; SAE, stacked auto‐encoder; SDAE, stacked denoising auto‐encoders; SSA, singular spectrum analysis;
VMD, variational mode decomposition.
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3.1 | RNN‐based models

RNN originated from a feed‐forward neural network. Unlike
conventional feed‐forward neural networks, it adopts a cyclic

connection structure that reuses the calculation result of the
previous iteration of the loop, gaining a memory function [65].
RNN has a great learning advantage for the non‐linear char-
acteristics of sequence data.

TABLE 2 Summary of other forecasting models

Ref. Input data Time interval Model Prediction performance

Peng et al. [104] Wind speed 1‐h WSTDGRU RMSE 0.3757

Liu et al. [105] Wind speed 15‐min SSA‐CNNGRU‐SVR MAPE 0.97 MAE 1.72 MAE 2.41

Liu et al. [106] Wind speed 1‐h STNN‐VB RMSE 0.226

Niu et al. [107] Wind power 1‐h AGRU NRMSE 6.26 MAPE 4.25 MAPE 14.94

Xian et al. [108] Wind speed 10‐min SD‐BiGRU MAE 0.1456 MAPE 4.78 RMSE 0.1871

Chitsazan et al. [109] Wind speed 10‐min NESN‐MP MAE 0.3 RMSE 0.43 MSE 0.19

Gouveia et al. [110] Wind power 1‐h WTESN NMAE 0.03

Hu et al. [111] Wind power 1‐month DeepESN MAE 1.71 RMSE 2.2567 MAPE 5.23

Khan et al. [112] Wind power 1‐h DBN‐wp MAE 0.0754 RMSE 0.1010 SDE 0.1007

Wang et al. [113] Wind power 10‐min kmeans‐DBN MAPE 1.1739

Wang et al. [114] Wind speed 5‐min WT‐DBN MAE 0.4947 RMSE 0.6671 MAPE 4.76

Yu et al. [115] Wind speed 10‐min DBNLP MAE 2.3355 RMSE 3.0609

Zhu et al. [116] Wind speed 5‐min PDCNN A‐MAPE 4.414 A‐RMSE 0.400

Mujeeb et al. [117] Wind power 1‐h EDCNN MAPE 2.43 NRMSE 0.096 MAE 2.24

Yildiz et al. [118] Wind power 1‐h RBCNN RMSE 0.0499 MAE 0.0376 SMAPE 0.2532

Shivam et al. [119] Wind speed 10‐min ResAUnet MAE 1.035 RMSE 1.342 MAPE 0.272

Yan et al. [120] Wind power 10‐min SDAE‐mm NRMSE 0.14

Chen et al. [121] Wind speed 1‐h SDAE‐ELM RMSE 0.21 MAE 0.28

Abbreviations: DBN, deep belief network; ELM, extreme learning machine; SDAE, stacked denoising auto‐encoders.

TABLE 3 Summary of present reviews

Ref. Key contribution

Bokde et al. [10] Hybrid EMD or EEMD models, the evolution of the EMD‐based method, novel techniques of
treating inherent mode functions, error measures EMD‐based research works

Liu et al. [11] Review and categorization of data processing techniques, a general evaluation with different
perspectives, research directions and challenges

Jung et al. [7] State‐of‐the‐art forecasting approaches, general forecasting accuracy, techniques to improve the
forecasting performance

Tascikaraoglu et al. [8] Combined forecasting approaches, up‐to‐date annotated bibliography

Wang et al. [9] Comparison of eight multi‐step forecasting strategies, two improvements on prediction

Liu et al. [12] Classification of some intelligent predictors, summarizes their merits and limitations, two
auxiliary methods: Ensemble learning and metaheuristic optimization algorithms

Vargas et al. [13] The evolution of wind energy analysis over the last 30 years, an innovative literature review
approach

Wang et al. [14] Applications of artificial intelligent algorithms in wind farms

Gonzalez et al. [15] The recently proposed forecasting model, performance evaluation methods

Yang et al. [16] Three novel technologies, four classifications of wind data, 37 evaluation criteria, 100 methods,
22 sub‐categories of forecasting approaches in three perspectives

Abbreviations: EEMD, ensemble empirical mode decomposition; EMD, empirical mode decomposition.
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3.1.1 | Models with long short‐term memory
predictor

LSTM network is designed to solve the vanishing gradient
problem that occurs when RNN learns sequences with long‐
term dependence [66]. Compared to the simple structure of
RNN, LSTM is far more complicated. Due to its versatility, its
principle will not be introduced in detail. It consists of input
gate it, forget gate ft, update gate gt and output gate ot. Figure 3
illustrates a single‐LSTM cell. The calculation formulas of
LSTM are as follows:

it ¼ σ Wi ht−1; xt½ � þ bið Þ ð4Þ

ft ¼ σ Wf ht−1; xt½ � þ bf
� �

ð5Þ

gt ¼ tanh Wg ht−1; xt½ � þ bg
� �

ð6Þ

ot ¼ σ Wo ht−1; xt½ � þ boð Þ ð7Þ

ct ¼ ct−1 ⊙ ft þ gt ⊙ it ð8Þ

ht ¼ tanh ctð Þ⊙ ot ð9Þ

whereWi,f,g,o is the weight matrices, bi,f,g,o is the bias vectors, ct
is the memory cell, and σ is the sigmoid activation function.

Wu et al. [67] adopted a CNN to extract features and then
used LSTM for short‐term prediction. However, there are
shortcomings such as long training time and insufficient pre-
diction accuracy. For optimizing the performance of LSTM,
researchers have also made many improvements on the basis
of it. Extending the LSTM cell through peephole connections
solves the problem that when the LSTM closes the output gate,
the gate cannot obtain any information from the output of the
storage unit, bringing better prediction effects [68]. Yu et al.
[69] proposed LSTM‐EFG, which enhances the effect of
forgetting the door and improves the activation function. The
shared weight long short‐term memory network model is
introduced to reduce the training time and the variables that
need to be optimized [70].

For further controlling the over‐fitting problem of LSTM,
Eze et al. [71] designed an oLSTM model based on the mixed
regularization of LSTM and dropout. The proposed model is
an energy‐based regression method that captures the

cooperative adaptation of input variables. This method can
effectively control the vanishing gradient problem of mapping
input and output wind data. An LSTM‐Ms model was designed
to use feed‐forward neural networks to construct rougher
time‐scale sequences than the original model and then used
LSTM to process these sequences [72]. Through LSTM‐Ms, it
is easier to learn the long‐term dependence of wind speed
sequences. Pei et al. [73] proposed an EWT‐NCULSTM.
Compared with the traditional LSTM, the proposed model
combines the input gate and the forget gate as an update gate
and improves the update method of the storage unit with
reference to the gated recurrent unit (GRU). The empirical
wavelet transform (EWT) strategy is employed to decompose
wind speed data to achieve the purpose of noise reduction.
After that, the new cell update long short‐term memory
network model is adopted to predict each sub‐sequence and
lastly sum up to get the final result. Many methods only
consider the correlation of meteorological factors but do not
consider their causality. Zhang et al. [74] employed a new
method, namely long short‐term memory network based on
neighbourhood gates (NLSTM), which dynamically adjusts the
network structure according to the specific equivalent tree
causality to handle the complex causality in wind speed pre-
diction, thereby improving the accuracy of prediction.

Excessive stacking of LSTM units may lead to a decrease in
training accuracy and efficiency. Lopez et al. [75] found a better
starting point for training by evaluating a number of instances
and using these output signals to perform a ridge regression to
obtain the output layer weights. Generally, the high‐frequency
wind speed sub‐series has short‐term dependence, whereas the
low‐frequency sub‐series has short‐term and long‐term
dependence. Liu et al. [12] proposed models with different
characteristics to predict sub‐sequence with different fre-
quencies are more likely to achieve the satisfying result. To
further improve the accuracy of predictions, researchers have
developed many hybrid models. The basic idea is to use various
signal processing and analysis methods to refine the input data,
and then use one or more predictors to make predictions.

Qu et al. [76] employed a principal components analysis
(PCA) to extract valid information from NWP and input it into
LSTM for prediction. It is proposed that Adaptive LSTM uses
the Pearson analysis to extract strong correlation factors and
input them into LSTM for prediction [77]. Huang et al. [78]
designed an EEMD‐GPR‐LSTM method, where ensemble
empirical mode decomposition (EEMD) is adopted to
decompose the original data of the wind speed. Afterwards, the
LSTM and GPR methods are used to predict the inherent
mode functions, respectively. Finally, determine the weight of
the two prediction results by the variance‐covariance method
and provide combined prediction results.

Liu et al. [79] designed a new hybrid model that mixes two
RNNs. The proposed EWT‐LSTM‐Elman model uses EWT
to get multiple sub‐signals and uses LSTM to predict low‐
frequency sub‐signals and ElmanNN to predict high‐
frequency sub‐signals. The experimental results are satisfac-
tory. Li et al. [80] adopted MM to process the wind speed
sequence into a stationary long‐term baseline and a non‐F I GURE 3 The structure of long short‐term memory
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stationary short‐term residue and then use LSTM to make
predictions. Liu et al. [81] introduced a DWT‐LSTM model for
short‐term wind power forecasting. The DWT is utilized to
handle the non‐stationary time series into multiple highly sta-
tionary components, then use LSTM to independently predict
each component and finally obtain the final prediction result by
linearly summing the prediction values of each component. Liu
et al. [82] proposed a deep architecture SDAE‐LSTM with
feature selection. In this model, a feature selection framework
based on mutual information was first developed to determine
the most suitable input for the prediction model. Then, the
authors used SDAE to capture the inherent features contained
in the original data and used LSTM to output the results.

Wu et al. [83] proposed a DBSCAN‐SDAE‐LSTM model,
which first selected representative training samples from NWP
data by density‐based spatial clustering of applications with
noise (DBSCAN), used SDAE together with batch normali-
zation for deep feature extraction and finally utilized LSTM for
prediction. Liu et al. [84] utilized wavelet packet decomposition
(WPD) to process the original data into two levels of high and
low frequencies, 1D‐CNN is adopted to predict high‐
frequency sub‐sequences, and low‐frequency sub‐sequences
is predicted by CNNLSTM, forming a WPD‐LSTMCNN‐
CNN hybrid architecture. Li et al. [85] developed a com-
bined EWT‐LSTM‐RELM‐IEWT model. Unlike other
models, the hybrid model used regularized extreme learning
machine to model the error sequence of each sub‐signals and
adopted an inverse empirical wavelet transform (IEWT) to
construct the final prediction sequence and filter outliers.
Jaseena et al. [86] proposed an SAE‐LSTM model, which made
use of SAE to recognize the deep features of the input series
and then employed StackedLSTM to make predictions. Mor-
eno et al. [87] proposed a four‐step forecasting framework: (1)
AM‐FM demodulation; (2) VMD‐SSA (singular spectrum
analysis) decomposition; (3) Ensemble forecasting and recon-
struction; (4) Model accuracy verification.

The literature considered preliminary prediction errors and
proposed CEEMDAM‐error‐VMD‐LSTM that used a multi‐
step decomposition prediction strategy. First of all, the orig-
inal data is processed into sub‐sequences and residual
sequences by complete ensemble empirical mode decomposi-
tion with adaptive noise (CEEMDAN) algorithm and then
each sequence is predicted using LSTM. The error sequence is
obtained by subtracting the original sequence prediction result
and the original observation value. Variational mode decom-
position (VMD) is employed to process the error signal into a
series of sub‐sequence and then use LSTM to predict each sub‐
sequence. Finally, the predicted error sequence is employed to
correct the prediction result of the original sequence to obtain
a better prediction result [88].

Single time‐series data may have an impact on the pre-
diction accuracy. Liang et al. [89] developed MSLSTM that can
use multiple historical meteorological variables including wind
speed, wind direction, temperature, humidity, pressure, dew
point and solar radiation to make predictions. For the sake of
improving the robustness of multi‐step prediction, Liu et al.
[90] advised a hybrid model of VMD‐SSA‐LSTM‐ELM. VMD

is applied to process raw data into several sub‐signals. SSA is
employed to further extract the trend information of all sub‐
signals; LSTM is adopted to complete the prediction of the
low‐frequency sub‐signals; and finally, ELM is utilized to
complete the prediction of the high‐frequency sub‐signals.

Although many methods decompose the data, it does not
eliminate the role of irrelevant information in the input wind
data. Therefore, for eliminating the interference of unnecessary
components in the input signal and improve the prediction
accuracy, Wang et al. [91] developed an EMD‐OFE‐LSTMN‐
ECS method. First of all, VMD is applied to process the non‐
stationary wind speed signal, and Kullback–Leibler divergence
and energy measure (EM) are both adopted to capture key
features. Then, sample entropy reorganization key features are
applied to input LSTMN for prediction. At the same time, an
error correction strategy based on GARCH is also employed to
correct the prediction error without ignoring its inherent
correlation and heteroscedasticity. Chen et al. [92] adopted
SSA, CEEMDAN and invert‐EMD to reduce noise and
decompose the original data and then used the master‐slave
forecast model composed of ConvLSTM and BPNN to
make predictions. The test results showed that the prediction
accuracy is competitive. Lu et al. [93] proposed an E‐D LSTM
model to lower specification risk. This model uses the LSTM‐
based (encoder‐decoder) E‐D model to build an automatic
encoder to map wind power time series to a fixed‐length form.
Then, enter multiple LSTMs together with weather forecast
information to make predictions. Su et al. [99] took wind
frequency components and wind turbine status into consider-
ation and proposes a WPD‐EEMD‐LSTM model for very
short‐term wind power prediction. Yin et al. [94] developed
EMD‐VMD‐CNN‐LSTM architecture that effectively utilized
the relationship between wind speed, wind energy and wind
direction. The method adopted EMD‐VMD to process the
original data to generate sub‐sequences with coupling rela-
tionship, utilized CNN‐LSTM as a cascade prediction model
and finally superimposed all sub‐sequence prediction values to
output the results.

Some studies have not taken multidimensional meteoro-
logical characteristics into account. Li et al. [100] used multi-
layer perceptron (MLP) to extract meteorological features
highly related to actual wind speed in multi‐dimensional
meteorological historical data divided into dry and rainy sea-
sons, then applied CNN to extract features of historical data
and finally input the extracted features into LSTM for pre-
diction. In order to further utilize the information of multi-
variate data, Wang et al. [95] developed the LW‐CLSTM
model. Firstly, wind power data, historical measurement data
and turbine status data are fused, cleaned, reduced in dimen-
sion and standardized to extract the time‐period characteristics
of the output power. Then, the proposed method used the
time sliding window algorithm to construct a data set and input
it into a network composed of CNN and LSTM for prediction.

The general wind energy prediction model does not
consider the spatiotemporal correlation between data di-
mensions. Dou et al. [101] proposed a multidimensional spatio‐
temporal data input modelling method based on gridded NWP
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and then used a network with CNN and LSTM structure for
prediction. Although some models consider spatiotemporal
correlation, they ignored the influence of meteorological fac-
tors with spatiotemporal properties on wind speed. Chen et al.
[96] developed a multifactor spatio‐temporal correlation‐
CNN‐LSTM combination model. CNN is adopted to learn
the spatial feature relationship between meteorological ele-
ments at each site and LSTM is employed to learn the temporal
feature relationship between historical time points. Zhu et al.
[97] introduced a deep architecture termed predictive spatio‐
temporal network. Firstly, the spatial features of the wind
speed matrices are extracted by CNN. Then, the LSTM cap-
tures the temporal dependence between the spatial features.
Finally, input the two together into LSTM for prediction.

Some researchers have also employed LSTM networks with
different structures. Xiang et al. [98] made full use of infor-
mation from both past and future directions and established an
auto‐regressive model based on a bidirectional long‐term
short‐term memory neural network model (WT‐bi‐LSTM)
with wavelet decomposition to predict wind speed on multiple
time scales.

3.1.2 | Models with GRU predictor

GRU is an updated version of RNN‐based methods and shares
a similar structure with LSTM methods. It abandons the
storage unit mechanism, replaces the forget gate and input gate
with an update gate zt, and replaces the output gates with a
reset gate rt [102]. Many research works have shown that
LSTM and GRU have similar experimental effects, whereas
GRU is computationally cheaper and efficient [103]. The single
GRU cell is illustrated as Figure 4, and the formulations of its
nodes are given as follows:

zt ¼ σ WZ ⋅ st−1; xt½ �ð Þ ð10Þ

rt ¼ σ Wr ⋅ st−1; xt½ �ð Þ ð11Þ

ŝt ¼ tanh W ⋅ rt ⊙ st−1; xt½ �ð Þ ð12Þ

st ¼ ð1 − ztÞ⊙ st−1 þ zt ⊙ ŝt ð13Þ

where W, WZ, Wr are the weight matrices and σ is the sigmoid
activation function.

GRU methods have been combined with a number of data
processing and prediction approaches. In Ref. [122], a bivariate
EMD‐GRU model is proposed and the copula function is
utilized to analyse the non‐linear relationship between wind
energy and meteorological factors and extracted the key factors
with the highest correlation with wind energy. The bivariate
data composed of the two are input into bivariate EMD,
decomposed to obtain sub‐sequence data and finally made
predictions using GRU.

To broaden the applications of the quasi‐EMD method
in actual prediction, wavelet soft threshold denoising is
applied to wind speed time‐series noise reduction, followed
by GRU for prediction [104]. Such a combination not only
improve the accuracy of the forecast but also reduce the
volatility of the results. Although GRU can capture the
dependence of the time range and is suitable for time‐series
data, it does not consider the spatial correlation. ConvGRU
was developed to combine the advantages of both to solve
the spatiotemporal prediction problem [123]. The proposed
SSA‐CNNGRU‐SVR combined a CNNGRU for trend
component prediction, a convolutional layer for capturing
deep features, and a GRU layer for obtaining long‐term
dependencies [105]. Liu et al. [106] introduced a spatio‐
temporal neural network model that integrated ConvGRU
and 3D CNN and used a new coding prediction structure to
generate spatio‐temporal results.

Advanced attention mechanisms and MIMO strategies are
used for feature selection. Niu et al. [107] proposed unrolled
architecture of sequence‐to‐sequence GRU with the attention
mechanism (AGRU). The attention mechanism evaluated the
importance of each input variable against the target wind
energy value and then generated a weighted representation
based on their correlation with the target variable. The
feature selection method based on a novel attention mecha-
nism identified the most important factors that affect the
wind power generation process under different environmental
conditions.

Some researchers have taken a different approach and
proposed a new method based on NWP. In the first
place, it extracted the standard deviation of the numerical
weather forecast wind speed error as weights and reorder
these weights according to the numerical weather forecast
wind speed time series to obtain the weighted time series.
Then, an error correction model based on a BiGRU is
proposed. The numerical weather forecast wind speed,
weighted time‐series trends and details are used as inputs
to correct the numerical weather forecast wind speed er-
ror. By using the corrected numerical weather forecast
wind speed, the wind energy curve model is employed to
predict short‐term wind energy [124]. Similar to LSTM,
GRU also has combined methods based on decomposition
and prediction ideas. In [108], SSA is used to process the
original data into main series and residual series, and the
VMD algorithm is adopted to process the residual signal,
associated with PSR for reconstructing the decomposed
sequence in the high‐dimensional phase space and input
BiGRU for prediction.F I GURE 4 The structure of a gated recurrent unit
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3.1.3 | Models with echo state network predictor

Echo state network (ESN) is another important cluster in the
deep learning areas. Unlike other RNNs, ESN use the reservoir
as a hidden layer, consisting of input layer x, reservoir u and
output layer y [125]. The reservoir maps input data from a
relatively low‐dimensional input space to a high‐dimensional
state space. It contains a great many sparsely connected neu-
rons with initial random weights. The initial random weights
remain unchanged during the training process. The training
process of ESN is to learn the connection weights from the
reservoir to the output layer. The update equation of the
network is expressed as follows:

uðt þ 1Þ ¼ f1 Winxðt þ 1Þ þWhuðtÞ
� �

ð14Þ

yðt þ 1Þ ¼ f2ðWout xðt þ 1ÞÞ ð15Þ

where f1, f2 are the activation functions, Win, Wh, Wout denote
the input weight matrix, reservoir weight matrix, and output
weight matrix, respectively.

Chitsazan et al. [109] developed NESN‐P (polynomial) and
NESN‐MP (multivariable polynomial) to improve the learning
ability and the computational efficiency of ESN. The authors
designed a reservoir containing a linear internal state and a
reading whose output is a non‐linear function of the internal
state. MP is a cubic multivariate polynomial to reduce the
number of internal states relative to the classic ESN.

In the field of time‐series forecasting, decomposition and
forecasting are more common ideas. WT is applied to eliminate
the irregular fluctuation of the sequence and thenutilized PCA to
reduce the redundant information of the input series. Moreover,
SC is utilized to select the appropriate sample set and input ESN
for prediction [126]. AWTESN model is proposed, which used
the WT‐based multi‐resolution analysis method to decompose
time series into different time scales [110].

Most studies use a single model to make predictions,
whereas suffering poor stability and low prediction accuracy.
The literature adopted ESN to integrate the intermediate
results of four mixed models to output the final prediction
results [127]. On the one hand, the higher computational
costs may arise from using LSTM, which are overfitting due
to the hyperparameters and structures. On the other hand,
the simplicity of traditional ESN will lead to poor general-
ization ability. Lopez et al. [128] combined the two to
propose an LSTM + ESN model, using LSTM as the
neuron in the hidden layer of ESN. Deeper neural networks
may also improve prediction performance. Hu et al. [111]
developed a DeepESN with multiple reservoirs for wind
power forecasting.

3.2 | RBM‐based models

Restricted boltzmann machine (RBM) is a generative stochastic
neural network that learns the probability distribution of its

inputs. It consists of a visible layer and a hidden layer, and the
units in one layer are connected to all units in the other layer. It is
worth noting that there is no connection between nodes within
the RBM visible layer or hidden layer. The training process is to
learn the connection weight between the display layer and the
hidden layer. A deep belief network (DBN) and deep boltzmann
machines (DBM) can be formed by stacking RBM. The top two
layers of DBN are undirected graphs, and the remaining layers
form a top‐down directed connection. DBM and DBN have the
same structure but all connections are undirected [129].

It is a hard problem for general networks to extract
advanced features of original sequences. A PDBM is pro-
posed, which adds a predictive layer composed of several
inference values on top of the DBM. PDBM forecasts the
wind speed by high‐level features extracted from low‐level
features of input series [130]. Tao et al. [131] used DBN
for wind power forecasting and have achieved relatively
good results. Khan et al. [112] combined ARIMA and DBN
to make predictions, used ARIMA to predict the conven-
tional components after VMD decomposition, adopted
DBN to forecast the irregular components and finally
combined the techniques to generate the final prediction
result. Wang et al. [113] introduced the K‐means clustering
method to select NWP sample data that has an influence on
the prediction accuracy and enters the DBN for prediction.
A WT‐DBN‐QR model is proposed, using DBN to extract
deep invariant structures and hidden non‐linear features in
the sequence decomposed by WT [114].

As the training sample size increases, the computational
complexity becomes higher. Yu et al. [115] proposed the
DBNLP technique, which maps a one‐dimensional time series
to a high‐dimensional space, then selected training samples
with the same pattern as the predicted samples based on the
Euclid distance and finally extracted DBN for prediction.

3.3 | CNN‐based models

CNN is a kind of feed‐forward neural network that consists of
convolution layer, sampling layer and fully connected layer
[132]. CNN is often used for tasks such as hand gesture
classification, object detection and time‐series prediction [133].
CNN takes the convolution layer as the core. The operation of
a convolution kernel effectively learns the complex spatial
features and invariant structure in the data. Its calculation
expression is as follows:

yk ¼ f ωk ⊗ xþ bk
� �

ð16Þ

where f represents the activation function and w, b denote the
weight and deviation of the kth layer.

The CNN method act as the core forecaster in the wind
prediction. Wang et al. [134] employed WT to decompose the
input data into multiple frequencies and then utilized
DeepCNN to predict each frequency. Zhu et al. [116] pro-
posed a PDCNN, where CNN was applied to extract spatial
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features and MLP was applied to extract the spatial correlation
of spatial features. For improving the prediction performance
of CNN, researchers make improvements on the basis of the
traditional CNN. Mujeeb et al. [117] proposed efficient deep
convolution neural networks with one modified output layer,
which is called the enhanced regression output layer. Yildiz
et al. [118] designed an improved residual‐based deep CNN.
The proposed model has more competitive performance than
many current state‐of‐the‐art networks.

Simply increasing the depth of CNN does not necessarily
make the model have better learning ability. In the literature
[119], the residual dilated convolutional network based on U‐
net with nonlinear attention (ResAUnet) model composed of
dilated causal convolutional network as the basic unit is
proposed. The U‐net architecture was used to copy the low‐
level features to the corresponding high‐level features to
recover or enhance the temporal information. It also applied
a residual attention block to combine the feature mapping of
lower‐level residual blocks and higher‐level one, and then, the
data are fed into the residual block with the same dilation
value as the corresponding lower‐level residual block.

3.4 | AE‐based models

Auto‐encoder (AE) is a featured variant of neural networks for
unsupervised learning, composed of input layer, hidden layer
and output layer. It uses encoders and decoders to map input
to output to reconstruct data [135].

In [136], a two‐stage prediction model was constructed by
AE. In the pre‐training stage, the model network is
composed of three AEs, and in the fine‐tuning stage, another
layer is added at the end of the pre‐training network. Yan
et al. [120] established a multi‐to‐multi mapping network
combined with a stacked denoised auto‐encoder (SDAE) for
multi‐scale wind power forecasting. First, the input NWP
data based on SDAE is corrected, and a number of SDAEs
with diverse model parameters and input features are inte-
grated into ensemble SDAE for predicting. Chen et al. [121]
proposed an SDAE‐ELM model for multi‐period forecasting.
Variance analysis is applied to reduce the impact of time‐
series fluctuations and then SDAE is employed to process
low‐level non‐linear features and denoise. The ELM‐based
integrated learner is used to optimize the SDAE fine‐tuning
process.

To enhance the generalization performance of AE, the
sparsity is introduced as a regularization item in the paper
retraining process. The deep sparse AEs are used as base‐
regressors [137] to improve the predictability of wind speed
uncertainty and eliminate data noise. Khodayar et al. [138]
designed a DNN architecture with stacked auto‐encoder SAE
and SDAE for forecasting. At the same time, rough neurons
are also used to extend AE and DAE to form a robust DNN
with rough regression layers. Jahangir et al. [139] designed a
multi‐modal method, using SDAE to reduce the noise of the
input data and a rough neural network with a sinusoidal acti-
vation function for prediction.

4 | DISCUSSION AND FUTURE
DIRECTION

With the continuous development of wind energy forecasting,
many research works show that the prediction accuracy of the
hybrid models combining several techniques outperforms the
non‐hybrid model [7]. The recent research works mostly use
the hybrid model. Table 3 shows the performance of the
models mentioned in the article. Summarizing the researchers'
work, we found that the wind energy hybrid prediction
framework consists of four main steps: data pre‐processing,
predictor prediction, error post‐processing, and model per-
formance evaluation. The technologies that may be used in the
entire forecasting process can be divided into 10 categories:
denoising, outlier detection and correction, resampling,
normalization, decomposition, feature engineering, residual
error modelling, filter‐based correction, predictor and opti-
mization algorithm [7, 11, 140–142]. There has been a detailed
review of these technologies by scholars, and we will not repeat
them here. Moreover, we provide some research recommen-
dations for challenges and open issues in the wind energy
forecasting field as follows.

The prospect of multi‐modal learning that integrates
multi‐source heterogeneous data is broad. Proper fusion of
multi‐modal data can effectively use the abstract infor-
mation existing in the data to achieve integrated percep-
tion and prediction [143]. The geographic information
system (GIS) can provide detailed information about the
geographical space of wind farms, and fusion of the data
provided by GIS can link the location information of
wind turbines for centralized prediction. Interferometric
synthetic aperture radar is a radar technology used in
surveying, mapping and remote sensing. Images obtained
by synthetic aperture radar are used for coherent pro-
cessing to generate a digital elevation model. We can
extract spatial information from the model for wind en-
ergy prediction.

Enough emphasis should be put on the frontiers of deep
learning. Transformers have great advantages in processing
sequence data, modelling long‐term dependencies between
input sequence elements and supporting parallel processing
of sequences [144]. We can use models developed by re-
searchers based on transformers, such as DeepTransformer
[145] and Informer [146], for wind energy prediction tasks,
which may have incredible results. Neural networks of
different topology structures are feasible. The graph neural
network can be used to process the dependence relationship
between wind energy multivariate data and then make pre-
dictions [147]. The data processed by the multi‐resolution
method can take advantage of the information hidden by
the data [148]. The neural network based on the attention
mechanism has better performance than the traditional RNN,
and it brings very good results on many sequence processing
tasks [149, 150]. It is a good choice for learning the internal
temporal correlation of the data. Graph convolutional net-
works can be applied to learn the spatial correlation between
neighbouring sites [151]. Deterministic forecasting cannot
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reflect the uncertainty in the real world, and probabilistic
forecasting is the development direction of wind energy
forecasting in the future. Conditional GAN can be utilized to
learn the conditional probability distribution of wind energy
data sets [152].

Although the wind energy prediction model developed by
the researchers can already be used in practice, its interpretability
still lacks systematic research. Interpretability means that when
solving a problem, we can get enough information that we need
and understand [153]. In the field of wind energy prediction,
interpretability for deep learning models can give the basis for
decision‐making for each prediction. As a result, explanatory
models are more secure and their predictions are more reliable.
Interpretability research is necessary for risk control and man-
agement in the wind energy field.

5 | CONCLUSION

Wind energy is a kind of the renewable energy source with the
largest installed capacity in the world and the most promising
development in the future. The accuracy of wind energy
forecasting has a great impact on the stability and security of
the grid. Improving the accuracy of wind energy forecasting
can bring higher economic and environmental benefits. As an
important method in the wind energy forecasting field, deep
learning has been developed rapidly in recent years, and many
scholars have also reviewed this field. However, the existing
review does not pay attention to the development logic of deep
learning in the field of wind energy prediction.

This article introduces various wind energy prediction
models based on deep learning. Deep learning predictors mainly
include CNN, RNN, DBN etc. These hybrid prediction models
based on DNNs have their own advantages and disadvantages
under different prediction tasks. For example, RNN‐based
models are better at extracting dependencies within time se-
ries, and based on the CNN model is better at extracting the
correlation of multiple time series. Some possible future devel-
opment trends are also provided for researchers' reference. For
example, methods in other time‐series forecasting fields can be
migrated to the wind energy forecasting field, and advanced
neural network architectures developed in recent years can also
be used. In the literature reviewed, it does not involve the use of
optimization algorithms to optimize neural network parameters
or hyperparameter models but mainly focusses on the archi-
tecture and methods of predictive models.
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