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Abstract Predation is a strong driver of population
dynamics and community structure and it is essential
to reliably quantify and predict predation impacts on
prey populations in a changing thermal landscape. Here,
we used comparative functional response analyses to
assess how predator-prey interactions between dogfish
and invertebrate prey change under different warming
scenarios. The Functional Response Type, attack rate,
handling time andmaximum feeding rate estimates were
calculated for Scyliorhinus canicula preying upon
Echinogammarus marinus under temperatures of
11.3 °C and 16.3 °C, which represent both the potential
daily variation and predicted higher summer tempera-
tures within Strangford Lough, N. Ireland. A two x two
design of BPredator Acclimated^, BPrey Acclimated^,
BBoth Acclimated^, and BBoth Unacclimated^ was im-
plemented to test functional responses to temperature
rise. Attack rate was higher at 11.3 °C than at 16.3 °C,
but handling time was lower and maximum feeding
rates were higher at 16.3 °C. Non-acclimated predators
had similar maximum feeding rate towards non-
acclimated and acclimated prey, whereas acclimated
predators had significantly higher maximum feeding
rates towards acclimated prey as compared to non-
acclimated prey. Results suggests that the predator at-
tack rate is decreased by increasing temperature but

when both predator and prey are acclimated the shorter
handling times considerably increase predator impact.
The functional response of the fish changed from Type
II to Type III with an increase in temperature, except
when only the prey were acclimated. This change from
population destabilizing Type II to more stabilizing
Type III could confer protection to prey at low densities
but increase the maximum feeding rate by Scyliorhinus
canicula in the future. However, predator movement
between different thermal regimes may maintain a Type
II response, albeit with a lower maximum feeding rate.
This has implications for the way the increasing popu-
lation Scyliorhinus canicula in the Irish Sea may exploit
valuable fisheries stocks in the future.
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Introduction

Temperature is a driver of interspecific interactions
through mediating metabolism (Arrhenius 1889;
Brown et al. 2004) and therefore locomotion (Dell
et al. 2011; Dell et al. 2014), attack speed (Nowicki
et al. 2012), feeding rates (Iacarella et al. 2015), and
growth (Savage et al. 2004; Pörtner and Knust 2007).
Therefore, temperature has a direct effect upon energy
flux through an ecosystem and the population dynamics
within it (Woodward et al. 2010; Stevnbak et al. 2012;
Cahill et al. 2013). Thermal responses are understood to
be an underlying mechanism behind predator – prey
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dynamics (Berlow et al. 2009; Rall et al. 2010; Englund
et al. 2011), but predicting the outcome of such interac-
tions under future abiotic scenarios is highly problem-
atic (Le Quesne and Pinnegar 2011). This is partly due
to multiple layers of real world complexities such as
habitat heterogeneity (MacNeil et al. 2004; Ferner et al.
2009; Alexander et al. 2015; Barrios-O’Neill et al.
2015), light (Koski and Johnson 2002), multiple preda-
tor effects (Lang et al. 2012; Alexander et al. 2013;
Wasserman et al. 2016a). The apparent species specific-
ity of thermal dynamics poses an additional layer of
difficulty in response prediction due to the metabolism
of different species having varying sensitivity to tem-
perature effects and therefore producing differential re-
sponses (Lang et al. 2012). It is thus difficult to derive
accurate conclusions from thermal responses modeled
across numerous systems (Grigaltchik et al. 2012), but it
is widely agreed that temperature change alters ecolog-
ical stability (Dell et al. 2014; Gilbert et al. 2014).

Predicting future responses to warming temperatures
is complex due to systems being multifaceted in their
response to temperature change. The effects of temper-
ature change can be discernable on an individual level
(Huey et al. 1999; Calosi et al. 2013; Vasseur et al.
2014), and on population and community levels (Le
Quesne and Pinnegar 2011; Rall et al. 2012). Further-
more, thermal change may manifest as long-term chron-
ic temperature increase or as acute temperature varia-
tions over short periods of time (Vasseur et al. 2014).
While chronic warming allows time for adaption to a
higher temperature, short-term temperature variation
exposes organisms rapidly to potentially adverse condi-
tions. Both scenarios are caused by ongoing climate
change (Easterling et al. 1997, 2000) and can affect the
life history and fitness of organisms (Yocom and Edsall
1974; Biro et al. 2010; Terblanche et al. 2010; Clusella-
Trullas et al. 2011).

Prediction of consumer impact has been assessed
through the use of comparative functional response
analyses (Smout et al. 2010; Alexander et al. 2012;
Alexander et al. 2013; Dick et al. 2013; Dick et al.
2014; Laverty et al. 2014; Wasserman et al. 2016a, b;
Dick et al. 2017). This method has been pioneered for
the prediction of invasive species impacts in comparison
to trophically analogous native species (Dick et al. 2013;
Paterson et al. 2015; Dick et al. 2017). It is particularly
useful in assessing ecological impact under a number of
abiotic contexts (e.g. Alexander et al. 2015). Functional
response refers to the rate of consumption of a resource

with regards to resource density (Solomon 1949;
Holling 1959). It is clear that species with a higher
functional response (e.g., higher attack rates, lower han-
dling times, higher asymptote) have a higher impact
potential (Bollache et al. 2008; Haddaway et al. 2012;
Dick et al. 2013). Functional responses are categorised
into: the Type I rectilinear response, usually only found
in filter feeders where resource consumption is not
limited by handling time (Jeschke et al. 2004); the Type
II inversely density dependent response with high prey
consumption at low densities; and Type III sigmoidal,
positively density dependent response whereupon prey
have a low-density refuge (Oaten and Murdoch 1975).
Within these response types, it is also possible to quan-
tify the associated parameters of attack rate, handling
time and maximum feeding rates (Juliano 2001; Dick
et al. 2013). Functional response analysis therefore pre-
sents itself as a robust assessment method whereupon
ecological impact can be explained and predicted across
numerous biotic and abiotic contexts (Dick et al. 2014;
Dick et al. 2017).

Warming oceans have the potential to alter interaction
strengths between valuable commercial and non-
commercial fisheries (Le Quesne and Pinnegar 2011).
This has implications for maintaining biodiversity and
economic value. As such there should be an emphasis on
predicting and understanding the potential changes in
species ecology under such climatic scenarios. This will
pave the way for integrating results into management
techniques well in advance so as to attempt to mititgate
adverse change in community ecology and interaction
strengths. We investigated predation by juvenile
Scyliorhinus canicula (lesser-spotted dogfish) on amphi-
pod prey Echinogammarus marinus. Both species are
ubiquitous in temperate waters (Ellis and Shackley
1997; Duffy and Harvilicz 2001), resilient (Múrias et al.
1996; Revill et al. 2005; Leite et al. 2014) and pliable
laboratory species (Sims 2003). These are ecologically
relevant species as E. marinus has large impacts upon
community structuring (Duffy and Hay 2000; Dick et al.
2005), and is an important prey species (Leite et al. 2014)
that can additionally be considered a proxy for other
small crustacean species and small fish due to strong
swimming behaviours. S. canicula is a generalist benthic
predator (Kaiser and Spencer 1994; Domi et al. 2005)
with high abundances (Genner et al. 2010; Sguotti et al.
2016) that have been found to increase with increasing
temperature (Sguotti et al. 2016). S. canicula presents as
an ideal indicator species that is not affected by fishing
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mortality, due to lack of fishing pressure and high discard
survival rate (Revill et al. 2005).

The present study presents the functional responses
of juvenile Scyliorhinus canicula preying on live
Echinogammarus marinus under the ambient tempera-
ture of 11 ± 0.09 °C and attempts to elucidate whether
there is a change in the functional response when tem-
perature is increased to 16.3 ± 0.20 °C, a value chosen as
it is in line with future Sea Surface Temperature (SST)
increase predictions (Sokolov et al. 2009). Furthermore,
we attempted to use comparative functional responses to
understand whether predator or prey was more pro-
foundly affected by the temperature increase. A 2 × 2
factorial design was employed wherein both predator
and prey were acclimated, just the predator was accli-
mated, just the prey were acclimated, and both predator
and prey were unacclimated to 16.3 °C. This takes into
account the effect of increased temperature on resource
consumption and the movement of predators between
different thermal regimes (Sims et al. 2001) in an at-
tempt to predict possible changes in predator-prey inter-
action strength in the future.

Methods

Thirty captive bred juvenile Scyliorhinus canicula
(34.82 ± 2.77 SD cm total length) were kept in three
holding tanks (120 × 60 × 60 cm) at Queen’s Marine
Laboratory (QML Portaferry) and maintained on
chopped mussel and mackerel ad lib. Three times a
week. Trials were carried out from May–June 2016.
The holding tanks were supplied with 11 °C UV filtered
seawater pumped directly from Strangford Lough,
Northern Ireland. Echinogammarus marinus were col-
lected by searching under cobbles on ‘Walter’s Shore’,
Portaferry. These were kept in aerated 28 L boxes.
E. marinus was fed with Laminaria digitata which
was replaced once a week.

Experimental setup involved three leader tanks
(120 × 60 × 60 cm) heated with aquarium heaters. Three
flow-through systems provided seawater into the leader
tank to be heated, the water then flowed from the leader
tank into six 60 L arenas. Airlines were fed directly into
each leader tank to avoid confounds of low dissolved
oxygen concentration (kept above 70% saturation DO).
Acclimation to the desired temperature took place over
three days as temperature was increased from ambient to
16.3 °C at a rate of 2 °C every two days, and then a

further two days at 16.3 °C. Ten lesser-spotted dogfish
were kept in each leader tank during acclimation.
Echinogammarus marinuswere acclimated in 28-l box-
es via the flow through system. The dogfish were fed ad
lib. Throughout this time to avoid hyperphagy (Wootton
and Ali 2001; Ali et al. 2003). Once the desired temper-
ature was achieved, the water was held at
16.3 ± 0.20 °C. The mean summer temperature in
Strangford Lough is 15.5 °C (AFBI 2016). The raised
temperature value reflects the potential daily variation in
the summer and the 3–5 °C global (SST) increase pre-
dicted in the coming century (Sokolov et al. 2009).

A 2 × 2 experiment design was implemented wherein
Factor 1 was BPredator Treatment^ with respect to non-
acclimation/acclimation to increased temperature and
Factor 2 was BPrey Treatment^ with respect to non-
acclimation/acclimation to increased temperature.
Therefore, treatments were: BPredator Acclimated^
(prey unacclimated), BPrey Acclimated^ (predator un-
acclimated), BBoth Acclimated^, BBoth Unacclimated^.
An BAmbient^ temperature treatment at 11 ± 0.09 °C
was included to get a baseline comparison. This was the
temperature of Strangford Lough during the trial period,
it represents the current spring average (AFBI 2016).
This was preferred to a winter average due to the very
low temperatures in winter slowing feeding behaviour
in preliminary trials. Lesser-spotted dogfish were select-
ed at random, measured and placed in arenas an hour
before the trials started. Recovery time was short as the
specimens were captive bred and somewhat used to
handling. Densities of prey were supplied at 1, 3, 5,
10, 15, 20 (n = 4 per density); prey size was ~5–
10 mm. Trials lasted for 2 h and the number of prey
consumed were recorded at the end of this time by an
observer. Individual fish were then placed in ambient
temperature holding tanks for a week before reuse, no
fish was reused in the same treatment or at the same prey
density to avoid pseudo-replication. Amphipods were
kept in experimental arenas in the absence of predators
at each density treatment (n = 3 per density).

Statistical analyses

Data were non-parametrically bootstrapped (n = 30) to
calculate multiple estimates of attack rate, handling time
and maximum feeding rate. Welch’s t-test was used to
test differences in bootstrapped parameters between
BAmbient^ and BBoth acclimated^ (i.e. Braised’)
groups. Generalised linear models (GLM) with quasi-
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Poisson error distribution to account for over dispersion
in the model were used to test for differences in func-
tional response parameters [attack rate (a), handling
time (h), and maximum feeding rate (1/hT)] with respect
to two factors; BPredator Treatment^ and BPrey
Treatment^. Tukey honest significant difference post-
hoc tests were used for multiple pairwise comparisons.

Functional response analyses were carried out in R
v.3.3.0 (R Development Core Team 2015). The R pack-
age ‘frair’ (Pritchard 2014; Pritchard et al. 2017) was
used to model the functional response Type of
Scyliorhinus canicula preying on Echinogammarus
marinus. Functional response Type (I, II, III) was deter-
mined using a logistic regression of the proportion of
prey consumed against prey density. If the proportion of
prey consumed decreases with increasing prey density,
then the logistic regression will produce a significantly
negative first order term and thus the functional re-
sponse Type will be classed as Type II (Juliano 2001).
If the logistic regression produced an non-significant
first order term, a GLM was run on the proportional
data, in this case a Type II response would be signified
by a significantly negative first order term followed by a
significantly positive second order term (Juliano 2001),
while a Type III is signified by a significantly positive
first order term and significantly negative second order
term (Juliano 2001). AType I functional response could
be determined from a non-significant first or second
order term, however a Type I is categorical only in filter
feeders or systems that meet the requirements stated in
Jeschke et al. (2004). Therefore, when non-significant
terms were encountered, a scatterplot with locally
weighted scatterplot smoothing (LOWESS) lines, with
a smoothing factor of 9/10, were fitted to assess the
direction of proportional consumption. This was used
to assess the shape of proportional consumption of prey
at different prey densities (Pritchard et al. 2017).

When a Type II response was indicated, the function-
al responses were modeled using Rogers’ (1972) Ran-
dom Predator Equation, due to the prey not being re-
placed as they were consumed (Juliano 2001):

Ne ¼ No 1−exp a Neh−Tð Þð Þð Þ ð1Þ

where Ne is the number of prey eaten, N0 is the initial
density of prey, a is the attack rate, h is the handling time
and T is the total time available. The Lambert W func-
tion was implemented to fit the model to the data
(Bolker 2008).

When Type III functional responses were indicated,
Hassell’s Type III response was modeled to the data
wherein a is a hyperbolic function of No (Juliano 2001),
where b, c and d are constants and prey are depleted:

Ne ¼ No 1−exp d þ bNoð Þ hNe−Tð Þ= 1þ cNoð Þ½ �f g ð2Þ
Flexible models were also modeled on the data as

categorical Type II functional responses are q = 0 and, as
q > 0, the functional response becomes proportionally
more sigmoid, with q = 1 indicating a Type III response.
Treatments with GLMs indicating Type III were also
modeled with a flexible model with q fixed at 1 and
Type II were modeled with q fixed at 0. The flexible
model is an alteration of Rogers’ Random Predator
Equation (Eq. 1) with the addition of a scaling exponent
q (Real 1977; Vucic-Pestic et al. 2010).

Ne ¼ N 0 1−exp bNq
o hNe−Tð Þ� �� � ð3Þ

where Ne is the number of prey consumed, No is the
initial prey density, b is the search coefficient, h is
handling time, q is the scaling coefficient, and T is the
total time available. The search coefficient in Eq. 3, b
combines withNo and q to produce attack rates that vary
with prey density, (i.e. a = bNo

q) unlike in Eq. 1 where
attack rate is fixed at all prey densities (No).

Suitability of each model was compared with Akaike
Information Criterion (AIC). Functional responses were
then fitted using maximum likelihood estimation (MLE;
Bolker 2010) and the Lambert W function (Bolker 2008).

Results

Control group prey survival was >99% and thus prey
mortality was assumed to be due to predation in the
experimental groups. Attack rate was significantly higher
at ambient (0.92±0.05 SE) than raised temperature (0.10
±0.010 SE) (t = 13.82, df = 30.59, p < 0.001). Handling
time was significantly shorter at raised temperature (0.06
±0.008 SE) compared to ambient (0.10±0.008 SE)
(t = 4.18, df = 51.03, p < 0.001). This translated into a
significantly higher maximum feeding estimate at raised
temperature (29.42±4.23 SE) compared to ambient
(12.37±1.67 SE) (t = 3.74, df = 30.91, p < 0.001).

Attack rate had a significant Bpredator treatment^ x
Bprey treatment^ interaction effect (F1, 102 = 98.69,
p < 0.001; Fig. 1). Wherein, predators that were non-
acclimated showed higher attack rates to prey that were

1254 Environ Biol Fish (2017) 100:1251–1263

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



acclimated as compared to prey that were non-acclimat-
ed, whereas predators that were acclimated showed
higher attack rates toward non-acclimated as compared
to acclimated prey (Fig. 1).

Handling time had a significant Bpredator treatment^
x Bprey treatment^ interaction effect (F1, 102 = 32.14,
p < 0.001; Fig. 2). That is, predators that were non-
acclimated showed higher handling time to prey that
were acclimated as opposed to non-acclimated, and
predators that were acclimated showed higher handling
times to prey that were non-acclimated as opposed to
acclimated (Fig. 2).

Maximum feeding rate had a significant Bpredator
treatment^ x Bprey treatment^ interaction effect (F1,
102 = 17.75, p < 0.00; Fig. 3). When predators were non-
acclimated the maximum feeding rate was similar towards
prey that were non-acclimated and prey that were accli-
mated, whereas when predators were acclimated the max-
imum feeding rate was higher towards prey that were
acclimated as compared to non-acclimated prey (Fig. 3).

At ambient temperature (11 °C), the predator showed
a Type II functional response (Table 1, Fig. 4). When
just the predator was acclimated to 16.3 °C, there was no
statistically significant Type III functional response, in-
dicating that in this treatment there is a boundary Type I/
Type III response. Therefore, while fitting the model of
a Type I response at the densities investigates, it was

modeled as a Type III (Jeschke et al. 2004) (Table 1, Fig.
4). When both predator and prey were acclimated to
16.3 °C a Type III response was fitted to the data
(Table 1, Fig. 4). This had the highest maximum feeding
rate estimate. When just the prey was acclimated there
was a Type II functional response (Table 1, Fig. 4).
When both predator and prey were unacclimated to
16.3 °C there was an non-significant Type III functional
response which, again, was instead modeled as a Type
III as suggested by the shape of the GLM (Table 1, Fig.
4). This has the lowest maximum feeding rate estimate.
In both instances where there was an non-significant
logistic regression and GLM, locally weighted
scatterplot smoothing was used on the proportion of
prey consumed per density to investigate the shape of
the response (Fig. 5). It should be considered here that
the handling times reported for predator acclimated and
both unacclimated are unreliable due to the Type I
response generated at the prey densities investigated.

Discussion

Prediction of the ecological ramifications of facets of
climate change is particularly difficult due to inherent
confounds of interactions between dissolved oxygen con-
centration and temperature (Peck et al. 2009; Grigaltchik
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et al. 2012) and multi-species systems (Broitman et al.
2009). However, here we have shown that by using
comparative functional response analyses, in a similar
way to invasive species impact predictions (Dick et al.
2014; Wasserman et al. 2016b), it is possible to identify
the impact of a predator under various warming scenarios

and assess whether there are interaction effects when both
sides of the predator-prey dynamic are considered.

Temperature increase mediated changes to the pa-
rameters associated with the functional response. There
was a significantly higher attack rate when at
BAmbient^ temperature compared to BBoth Predator
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and Prey Acclimated^ to 16.3 °C. This contrasts with
the meta-analysis by Rall et al. (2012) and the assump-
tion that attack rate is temperature invariant (Dell et al.
2014), but is similar to results in Grigaltchik et al.
(2012), wherein there was a decreased attack rate but
a high predation pressure at increased temperature.
Further, our results are similar to Wasserman et al.
(2016b), wherein attack rate was highest in the lowest
temperature at zero habitat complexity. Furthermore,
attack rate considers both predator and prey responses
thus, at a lower temperature, swimming speed may be
decreased in the smaller bodied prey species and there-
fore make them easier to attack as they must use more
energy to escape (Dell et al. 2011; Dell et al. 2014). As
a consequence, the attack rate of the predator may be
higher at lower temperature due to a change in attack
success as a result of prey escape energy. The handling
time was significantly shorter at the higher temperature
and therefore the maximum feeding rate estimates were
significantly higher at the higher temperature.

Temperature directly affects poikilotherm metabolism
and has a somewhat bell shaped relationship with
maximum consumption (Englund et al. 2011). At am-
bient temperature, dogfish take 2–3 days to fully digest
a meal due to the slower rate of chemical reactions at
low body temperature (Van Slyke and White 1911),
thus the increase in digestion rate is comprehensible at
a higher temperature (Gilbert et al. 2014). Juvenile
lesser-spotted dogfish have almost double the metabo-
lism rate of adult specimens (Sims 1996), so despite
the short trial time, the predator may experience more
motivational states during the raised temperature treat-
ments due to the increased rate of digestion. This may
alter searching behaviour at high prey densities (Clark
and Mangel 2000; Ariyomo and Watt 2015). The be-
haviours that make up handling time are considered to
be composite of a multitude of processes including;
subduing, chewing, swallowing, digestion and gut
evacuation, all of which are controlled by physiological
processes that are affected in different manners by

Table 1 Logistic regression first order terms, GLM first and second order terms with associated p values and Functional Response Type for
all experimental treatments

Treatment (Log. Reg.) First order
term, (p)

(GLM) First order
term, (p)

(GLM) Second order
term (p)

Functional
Response type

Ambient −0.053, (<0.05) −0.133, (0.25) 0.003, (0.47) II

Predator acclimated −0.024, (0.30) 0.164, (0.14) −0.007, (0.08) III

Both acclimated 0.087, (<0.001) −0.127(<0.001) 0.008, (0.05) III

Prey acclimated −0.025, (0.33) −0.365, (<0.01) 0.014, (<0.01) II

Both unacclimated 0.008, (0.74) 0.071, (0.54) −0.002, (0.58) III
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increasing temperatures (Jeschke et al. 2002). This
produces a complex picture, wherein, the attack rate
is high at low prey densities under current temperatures
which could manifest as destabilising for prey popula-
tions. Warming may mitigate the risk for low density
prey populations due to the change in Functional Re-
sponse Type to the stabilising Type III under raised
temperatures. Nonetheless, there was a higher maxi-
mum feeding rate at the raised temperature treatment
which suggests that despite a change in resource con-
sumption with regards to resource density, the end
result remains that consumption increases due to tem-
perature increase as a result of shorter handling time.

Attack rate signifies the instantaneous rate of success-
ful search (Holling 1959) and determines the initial in-
crease of consumption at low resource density. When the
predator was non-acclimated the attack rate was higher
towards acclimated prey. This may be due to the temper-
ature rise increasing the metabolism of the prey and
causing a consequent increase in prey velocity and in-
creased boldness (van Baalen et al. 2001; Nowicki et al.
2012). As a result, more stimuli are provided to the
predator and the encounter rate is increased, leading to
a higher attack rate when the prey is acclimated (Curio
1976; Taylor 1984). However, when the predator was
acclimated the attack rate was higher toward non-
acclimated prey and lower toward prey that were accli-
mated. This suggests that acclimation to temperature may
dampen attack rate in juvenile lesser-spotted dogfish and
thus negate the effects of increased prey stimuli.

Handling time relates to the time taken to eat and
digest prey items (Jeschke et al. 2002). Unfortunately,
we cannot discuss the handling times of the treatments
BPredator Acclimated^, and BBoth Unacclimated^ with
conviction, due to the non-significant logistic regression
and GLM first and second order terms. Nonetheless, we
can speculate from the results accumulated that at higher
prey densities there may be further differences in re-
source consumption and, thus, handling times, as the
motivational state changes (Englund et al. 2011). When
the predator was non-acclimated the handling time was
longer towards prey that were acclimated. This demon-
strates that prey acclimation to temperature has a large
effect on the handling of the prey possibly due to a mis-
match in swimming speed of predator and the prey, and
digestion speed in the predator (Dell et al. 2011). When
the predator was acclimated the handling time was
longer towards prey that were non-acclimated. This
may again be related back to encounter rate (Curio
1976; Taylor 1984) and an increased metabolism and
digestion speed due to acclimation of the predator (Dell
et al. 2011). Therefore, when predator and prey are both
acclimated to the same temperature there is a decrease in
handling time which implies that consumption rates will
also increase with temperature warming. While the ef-
fects of oxygen concentration were not tested in the
present study, air was bubbled through all arenas during
the treatments. Oxygen is a respiratory limiting factor at
high temperatures and this effect is increased during
acute warming scenarios, wherein there is no
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acclimation as organisms consume more oxygen when
exposed to an abrupt temperature change than after an
acclimation period (Bullock 1955; Kitching 1977).

Maximum feeding rate estimations are derived from
functional response handling times (Juliano 2001).When
the predator was non-acclimated the maximum feeding
rate did not change with prey treatment but when the
predator was acclimated the maximum feeding rate was
far higher when prey were also acclimated. This indicates
that when predator and prey populations undergo simul-
taneous acclimation to higher temperatures there will be a
large increase in resource consumption, presumably due
to the temperature mediation of the processes associated
with handling time. When considered with the functional
response types, it seems that simultaneous heating and
acclimation produce an additive affect, which increases
the maximum feeding rate and predator impact when
prey is at ‘high’ densities. Although this must be caveated
with the unreliable handling estimates of BPredator
Acclimated^, and BBoth Unacclimated^ which could be
revealed under further investigation to have higher max-
imum feeding estimates.

There was a high variability in the shape of functional
response in the different treatments with, justifiably, all
three categorical functional responses observed. How-
ever, Type I functional responses require simultaneous
handling and digestion and thus are only reported de-
finitively amongst filter feeders (Lehman 1976; Jeschke
et al. 2002; Jeschke et al. 2004). The intermediate re-
sponse that was modeled is likely due to the low densi-
ties of prey supplied during the treatments (Jeschke et al.
2004), or the lack of habitat complexity in the experi-
mental arena reducing handling limitations. As such, the
results indicating Type I boundary responses may not
directly reflect feeding ecology in the wild, but in this
case serve as a comparison between the relative differ-
ences in parameter values. The results obtained were
modeled as Type III responses due to the difference in
proportional consumption. A Type III functional re-
sponse was prevalent in trials at temperature apart from
BPrey Acclimated^. The change from Type II to Type III
is concordant with other studies using fish predators
which report shifts with environmental changes (Koski
and Johnson 2002; Alexander et al. 2012), but contrasts
with Wasserman et al. (2016b), which observed no
functional response change in an invertebrate predator
– prey system over various temperatures and habitat
complexity. The Type III response when both were
acclimated may be accounted for by the increased

movement at high temperature (Biro et al. 2010) causing
low consumption at low resource densities, but as the
prey density increases there is a higher encounter rate
and thus higher consumption. Furthermore, it is consid-
ered that when mortality is independent of foraging,
foraging activity should increase concomitantly with
resource availability (McNamara and Houston 1994).
This would be the case when related to S. canicula in the
Irish Sea where they are under low predation pressure.
BBoth Acclimated^ had the highest magnitude function-
al response, while BPrey Acclimated^ had the lowest.
As BPrey Acclimated^ functional response intensity was
less than BAmbient^ it suggests that the effect of tem-
perature acclimation on E. marinus is more profound
than on the predator, potentially because of the small
body size of E. marinus giving the prey a metabolic
advantage as the increased metabolic demands are mit-
igated by the small body size compared to the larger
predator (Lincoln 1979; Whiteley et al. 2011; Reuman
et al. 2014; Di Santo and Lobel 2016).

The combined additive effects of predator and prey
acclimation appear to increase predator impact, while
temperature increase drives a shorter handling time de-
spite reducing the attack rate. While the present study
deals specifically with juvenile lesser-spotted dogfish the
results remain informative of the changes that tempera-
ture exerts on predation. This could have implications on
the impacts of wild populations of S. canicula as they
show spatial segregation by sex, temporal segregation
and varying thermal strategies (Sims et al. 2001) as this
may mediate the predation impacts when moving be-
tween thermally varied micro-climates. It is considered
that when functional response is delivered as a phenom-
enological tool, the focus shifts from the shape of the
response to the relative differences in parameter estimates
(Lehman 1976; Jeschke et al. 2002; Alexander et al.
2012). This is due, in part, to the laboratory set up being
inherently dissimilar to the conditions in sitú with regards
to variation in temperature, prey availability, arena size,
lack of refugia and habitat complexity. Nonetheless, we
have provided a useful parameterization of the differ-
ences in resource consumption when predator and prey
are factorially exposed to temperature increase.

This study demonstrates the importance of tempera-
ture as a regulating driver of predation. Temperature has
the ability to increase predation pressure. Due to the high
densities of Scyliorhinus canicula (Richardson 2016),
increasing population size (Richardson 2016), and high
discard survival rate (Revill et al. 2005), there is
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likelihood that predation on important fisheries species
will increase. However, due to the generalist feeding
strategy (Murdoch 1969) and patchy spatial distribution
of prey, the Type III response is likely to prevail in the
field (Trenkel et al. 2004).

Furthermore, Echinogammarus marinusmay have an
evolutionary advantage, due to body size, at higher tem-
peratures (Genner et al. 2010; Di Santo and Lobel 2016),
yet this may be mitigated when prey is found in high
densities. The rate of warming, and subsequently envi-
ronmental variation, affects maximum feeding estimates;
consequently variation from the mean temperature is
likely to have an impact upon predation pressure (Dell
et al. 2011; Paaijmans et al. 2013; Vasseur et al. 2014).
Furthermore, patchiness of prey populations could confer
a benefit against predation, despite increased predation
pressured conferred through decreased handling time.
Though, it is necessary to caveat with the emphasis that
thermal responses are species specific (Helmuth et al.
2002; Broitman et al. 2009; Englund et al. 2011), as is
the Benvironment^ that each species experiences
(Kearney 2006; Broitman et al. 2009), but also highly
variable between individuals (Spicer and Gaston 1999;
Calosi et al. 2013).

It is important to understand and quantify interaction
strength in food webs and the how changes in abiotic
context will affect predator-prey dynamics with regards
to species and individual levels within a system (Calosi
et al. 2013). The functional responses and associated
parameters shown here demonstrate the differential re-
sponses within two organisms to a range of climatic
scenarios. This will have implications for the sustain-
ability of fisheries in the Irish and Celtic Seas, wherein
there is high abundance of Scyliorhinus canicula, as
acclimation to increased temperature increases maxi-
mum feeding rate but changes the proportional con-
sumption of sparse prey populations.
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