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Abstract—The main appeal of task-specific model management
languages such as ATL, OCL, Epsilon etc. is that they offer
tailored syntaxes for the tasks they target, and provide concise
first-class support for recurring activities in these tasks. On the
flip side, task-specific model management languages are typically
interpreted and are therefore significantly slower than general-
purpose programming languages (which can be also used to
query and modify models) such as Java. While this is not an
issue for smaller models, as models grow in size, naive execution
of interpreted model management programs against them can
become a scalability bottleneck. In this paper, we demonstrate
an architecture for optimisation of model management programs
written in languages of the Epsilon platform using static analysis
and program rewriting techniques. The proposed architecture
facilitates optimisation of queries that target models of heteroge-
neous technologies in an orthogonal way. We demonstrate how
the proposed architecture is used to identify and optimise type-
level queries against EMF-based models in the context of EOL
programs and EVL validation constraints. We also demonstrate
the performance benefits that can be delivered by this form
of optimisation through a series of experiments on EMF-based
models. Our experiments have shown performance improvements
of up to 99.56%.

Index Terms—Model-Driven Engineering, Scalability, Model
Querying, Static Analysis

I. INTRODUCTION

Model querying is an essential part of many automated

model management activities, such as model-to-model and

model-to-text transformation and model validation. Queries on

models can be specified using general-purpose programming

languages such as Java or using tailored model-management

languages such as Object Constraint Language (OCL) – and

its various flavours embedded in model-to-model and model-

to-text transformation languages such as Acceleo and ATL

– the Epsilon Object Language (EOL) and the task-specific

languages that build on top of it, and the VIATRA Query

Language (VQL). The main strength of dedicated model

management languages is that they offer built-in abstractions

for common tasks (e.g. rule-based decomposition and element

resolution in model-to-model transformation, protected regions

for mixing generated and hand-written content in model-to-

text transformation, constraint dependency management in

model validation) which facilitate more concise, maintainable

and technology-independent model management programs.

The main shortcoming of dedicated model management

languages compared to general-purpose languages such as Java

is performance. While widely-used general-purpose languages

are typically compiled and benefit from advanced runtimes

offering advanced features such as adaptive optimisation

and microarchitecture-specific speed-ups, model management

languages are predominately interpreted, and therefore their

execution speed is substantially lower. This can become a

scalability bottleneck as models grow in size and inhibit their

applicability to projects that involve large models [1], [2].

In this paper, we introduce an architecture for improving the

execution speed of interpreted model management programs

written in languages of the Epsilon platform, using static

analysis and program rewriting techniques. We then demon-

strate an application of this architecture for detecting repeated

queries on all instances of types in EMF-based models and

for speeding-up their execution through the construction of

relevant indices. We have evaluated the proposed optimisa-

tion technique using large models that have been reverse-

engineered from Java code and a set of existing constraints,

and we have observed performance improvements of up to

99.56%. A speculative overview of the proposed approach was

first presented in a workshop paper [3] but without a sup-

porting implementation, or the ability to carry out evaluation

experiments, at that stage.

The remainder of this paper is organized as follows: Sec-

tion II, presents a motivational example and identifies the

performance challenges that this work seeks to address. Sec-

tion III, presents the architecture of the proposed program

optimisation approach over EMF models. Evaluation exper-

iments and the obtained results are presented and discussed

in Section IV. Section V discusses relevant work in the

field of model query optimisation and static analysis. Finally,

Section VI concludes the paper and presents direction for

further work.

II. BACKGROUND AND MOTIVATION

This section provides some background on tools and tech-

nologies used for the implementation of the proposed ap-

proach. Then, it presents a motivating example scenario that

illustrates the importance of query optimisation.



A. Epsilon

Epsilon 1 is a family of task-specific languages for au-

tomating common model-based software engineering activ-

ities. These activities include model merging (EML), code

generation (EGL), model migration (Flock), model compar-

ison (ECL), model to model transformation (ETL), model

refactoring (EWL), pattern matching (EPL) and model vali-

dation (EVL). Epsilon supports models from heterogeneous

modelling technologies such as EMF, UML, Simulink, XML

and others. EOL is the core language of Epsilon and is

extended by all other languages. Epsilon languages access

models through Epsilon Model Connectivity (EMC) layer,

offering a uniform interface for interacting with different mod-

elling technologies. While we have used Epsilon to implement

and evaluate the proposed query optimisation approach, the

approach is trivially portable to other model OCL-based model

management languages such as ATL [4] and Acceleo [5] too.

B. Motivating Example

Consider a scenario where we query a model for the purpose

of validating a model conforming to the UML2 [6] EMF-based

metamodel. In particular, we wish to check that:

• The names of all classes in the model are unique

• All class methods are called in at least one sequence

diagram

The relevant subset of the UML2 metamodel and imple-

mentations of the two constraints (using the Epsilon Valida-

tion Language) are illustrated in Figure 1 and in Listing 1

respectively. These constraints can be written in any model

management language. Here we consider EVL, as it allows

cross validation between models of various backend technolo-

gies. In Listing 1, the UniqueName constraint checks that for

every Class in the model, its name attribute is unique (lines 9-

14). Similarly, IsCalledInSequenceDiagram constraint checks

that every Operation is called in a sequence diagram at least

once (lines 16-21).

NamedElement

name : String

Message

messageSort : MessageSort

Namespace

ClassifierBehavioredClassifier 

Class

Operation

BehavioralFeature

sig
na

tu
re

<<enum>>
MessageSort

- synchCall
- asynchCall
- asynchSignal
- createMessage
- deleteMessage
- reply

Fig. 1. An excerpt of the UML2 metamodel

1 model UML driver EMF {

2 nsuri = "http://www.eclipse.org

3 /uml2/5.0.0/UML"

4 };

5 pre { }

6 context Class {

1https://www.eclipse.org/epsilon/

7 constraint UniqueName {

8 check: not Class.all.exists

9 (c|c.name = self.name and self != c) }

10 }

11 context Operation {

12 constraint IsCalledInSequenceDiagram {

13 check: Message.all.exists

14 (m | m.signature = self) }

15 }

Listing 1. Example EVL validation constraints before optimisation

Epsilon languages use all as an alias for allInstances().

In Listing 1, Class.all in line 10 and Message.all in line 17

retrieve all instances of Class and Message anywhere in the

model respectively. Evaluating these constraints over a UML

model containing a large number of classes and operations

would be computationally expensive. More specifically, the

complexity of UniqueName constraint is O(N*N) if we con-

sider the number of Classes to be N, and the complexity of

evaluating IsCalledInSequenceDiagram over M operations and

P messages would be O(M*P). Reverse navigation is a recur-

ring issue in model management programs [7] when working

with EMF models. For example in UML model, navigating

from Operation to Message. A common workaround to

reduce complexity in such occasions is to define opposite

references (e.g we could define an opposite reference from

NamedElement to Message) however this pollutes the meta-

model and in the case of standard meta models (e.g. such as

the UML2 metamodel used in this example) adding opposite

references is not an option. Moreover, we have to either

anticipate the needs of future model management programs

when we are constructing the metamodel or to naively add

opposites for all references in the metamodel.

1 model UML driver EMF {

2 nsuri = "http://www.eclipse.org

3 /uml2/5.0.0/UML"

4 };

5 pre {

6 UML.createIndex("Class", "name");

7 UML.createIndex("Message", "signature");

8 }

9 context Class {

10 constraint UniqueName {

11 check: not UML.findByIndex

12 ("Class", "name", self.name)

13 .select(c|c.self != c).size() > 0 }

14 }

15 context Operation {

16 constraint IsCalledInSequenceDiagram {

17 check: UML.findByIndex("Message",

18 "signature", self).size() > 0 }

19 }

Listing 2. Example EVL validation constraints after optimisation

To speed up this type of model validation, one optimisation

strategy is to programmatically create in-memory indices and

then use them for look-ups. Existing languages such as Ac-

celeo offer different facilities for this e.g., search for eInverse

[5]. Another approach for OCL is shown in [7]. This can

significantly reduce the complexity compared to the naive

iteration through all instances of the relevant model element

types. Such an optimised validation program is depicted in

Listing 2. These constraints are semantically equivalent to the



ones in Listing 1 but are much faster to execute. In Line 7 of

Listing 2, an index is constructed which maps names to lists of

classes with their name attribute, rather than naively iterating

through all the instances of Class. Similarly, in Line 8, an

index is constructed which maps names to lists of messages

with their signature attribute, rather than naively iterating

through all the instances of Message. Then in constraints,

these constructed in-memory indices (Lines 13-15, 21-22)

are searched instead. As in-memory indices can be stored

as hashmaps, finding UML classes by names and similarly

finding messages by signature, the computation cost would

be that of a hash function. Considering the complexity of

hash functions being O(1), the overall complexity of both the

constraints would be reduced to O(N) and O(M), respectively.

This paper provides an approach for detecting optimisation

opportunities such as the ones shown in the above example

and then automatically rewriting relevant model management

programs accordingly. This research focuses on investigating

how such optimisations can be performed behind the scenes,

using static analysis and automated program rewriting so that

developers can express model management programs in a

naive form (as in Listing 1) and benefit from index-based

optimisation (as in Listing 2) as seemlessly as possible.

III. QUERY OPTIMISATION

This section discusses the proposed query optimisation

architecture in detail, an overview of which is illustrated in

Figure 2. This approach takes a model management program

as input and passes it through a static analyser component

to compute an abstract syntax graph. The abstract syntax

graph (type-resolved abstract syntax tree) is input to the

query optimiser block, (this part can involve multiple query

optimisers, up to one for each modelling technology) which

outputs the rewritten optimised program to be executed.

This query optimisation architecture works with heteroge-

neous modelling technologies as each such technology can

offer its own technology-specific optimisations. Also, this

architecture is extensible: any modelling technology that has

to offer query optimisation can register its own rewriter. A

rewriter has its own rewrite() method whereby before program

execution, after static analysis, all the rewriters of the modeling

technologies involved in the program are invoked to perform

technology specific query optimisations. The responsibility of

rewriting into semantically equivalent programs is delegated to

the individual optimisers involved and hence each optimiser

should be tested for its correctness, further elaborated in Sec-

tion IV. The optimised program that is semantically equivalent

to the input program, is then executed instead.

A. Static Analysis

Static analysis is the first step of the proposed query

optimisation approach. An overview of the process of static

analysis is depicted in Figure 3. Beyond the typical activity

of checking the program for type-related errors and warnings,

static analysis is useful for extracting information useful for

program optimisation. This information mainly include type

information of elements and control flow of the program. Static

analysis of Epsilon programs was initially discussed in [8]. We

extended the open-source static analyser presented in [8] by

adding features such as type inference and type resolution us-

ing metamodel introspection. Static analysis capabilities were

implemented for EOL, as it is the core language of Epsilon

with all other languages extending it. We then extended this

EOL static analyser to create an EVL static analyser, with both

EOL and EVL static analysers providing error and warning

reporting as well.

Let us consider Listing 1 to see how type resolution works.

Class in line 8 would be resolved to the respective model

element type of the UML model. In line 11, c and self are

variables and are inferred to be of type Class, as Class.all is a

collection of Classes. Hence, c.name and self.name would be

resolved to be of String type. Overall the resolved type of the

expression in the check part of the constraint UniqueName in

Line 9-12 is boolean. Similarly for the second constraint Is-

CalledInSequenceDiagram, UML!Operation in line 15 would

be resolved to the Operation model element type. Message.all

in line 17 returns a collection of Messages and therefore the

type of m is inferred as Message. Similarly, In line 18, the

types of self and m.signature are resolved to Operation.

B. Finding Optimisable Queries

The second step of the approach is to find potential op-

portunities for speeding up queries using indices. Our query

optimiser operates over programs that consume EMF models.

The indexing approach is done only for EMF models as for

some types of models (e.g. Simulink) it is possible to look up

elements by feature values using built-in indices maintained by

the modelling tool. The first step of the process is to find poten-

tial indices by visiting the entire program. The static analyser

detects where the user is retrieving all instances of a type,

filtered by a specific property or attribute, then only for such

properties will indices be created. This approach works by

detecting expressions in the form of Class.all.operation(...) to

optimise. It currently supports filtering operations like select,

selectOne and exists, while it can be extended to support other

first order operations as well, as discussed in the Further Work

Section VI. As all Epsilon languages are built on top of EOL,

certain expressions in an Epsilon program may be executed

just once such as Line 9 in Listing 4. For such expressions

the overhead of the computation of indices would not pay off if

that index is to only be used once. To tackle this issue, we need

to find the expressions that are likely to be executed multiple

times in a script. We use Algorithm 1 to carry out call graph

analysis and identify such expressions. OptimiseBlock method

is a recursive method and calls OptimiseStatement for every

atomic statement. Finally OptimiseStatement method checks if

the statement is optimisable or not and then added to a list of

potential indices.

The condition expression in the detected first-order expres-

sions, which can be executed multiple times, can have logical

operators. The condition expression abstract syntax graph

is decomposed into each logical operand and then indexed
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Fig. 3. The structure of the static analyser

separately based on the type of logical operator. Indexing for

“and” and “or” logical operator conditions is shown in Table I.

A call graph is a control flow graph representing the

operation calls from the program’s entry point(s) and within

each operation. The call graph’s vertices (nodes) represent

the operations, starting from the program’s entry point(s) and

then the hierarchy of how other operations are called. Each

edge (x,y) indicates that operation x calls operation y. The

edge labels capture if an operation is called from a loop or

not. If an operation is called from a for or a while loop or

from an first-order operation call (e.g. select, collect, reject,

exists). Since in Epsilon programs context type and parameter

type polymorphism is supported, it can be challenging to

understand which operation would be called at runtime. This

is handled through type resolution and inference achieved

through static analysis. We exploit this type resolved AST to

find the most exact match for every operation call. Consider

the following example:

1 var a : Class = Class.all.first();

2 a.printName();

3

4 operation Message printName() {

5 return self.name.println("Message Name:");;

6 }

7 operation Class printName() {

8 return self.name.println("Class Name:");

9 }

10 operation Any printName(){

11 return self.name.println("Name:");

12 }

Listing 3. Context type polymorphism example

There are three operations with same name printName() but

the context type is different for each operation. In line 2, the

second printName() operation will be called.

We pass the type resolved AST to a call graph generator

component, which generates the input program’s call graph.

An example of a call graph generated from Listing 4 is shown

in Figure 4. Call graphs for EOL programs can be visualised

on the fly using Graphviz2 through Picto [9].

1 model UML driver EMF {

2 nsuri = "http://www.eclipse.org/uml2

3 /5.0.0/UML"

4 };

5 printMessagesofReplySort();

6 getClassByName("A").println("Class A:");

7 operation getClassByName(name: String) {

8 Class.all.select(a|a.name = name);

9 }

10 operation printMessagesofReplySort() {

11 for(n in Message.all.select

12 (m|m.messageSort = MessageSort#reply)) {

13 getMessageByName(n.name).println();

14 }

15 }

16 operation getMessageByName(name: String) {

17 Message.all.select(a|a.name = name);

18 }

Listing 4. Example of call graph program input

loop

main

getClassByName(name: String) printMessagesofReplySort()

getMessageByName(name:
String)

Fig. 4. Generated Call Graph (from Listing 4)

2https://www.graphviz.org



TABLE I
INDEXING AND QUERY REWRITING FOR LOGICAL OPERATORS

Input EOL Expression Rewritten EOL Expression

UML!Class.all.select(c | c.name = ”ClassA” or c.visibility =
”public”)

UML.findByIndex(”Class”, ”name”,”ClassA”).includingAll(
UML.findByIndex(”Class”,”visibility”,”public”))

UML!Class.all.select(c | c.name = ”ClassA” and c.visibility =
”public”)

UML.findByIndex(”Class”, ”name”,”ClassA”).select(c | c.visibility =
”public”)

UML!Class.all.select(c | c.name = ”ClassA” and c.name = ”ClassB”)
UML.findByIndex(”Class”, ”name”,”ClassA”).includingAll(

UML.findByIndex(”Class”,”name”,”ClassB”))

UML!Class.all.select(c | isPublic(c) and c.name = ”ClassA”) UML!Class.all.select(c | isPublic(c) and c.name = ”ClassA”)

UML!Class.all.select(c | c.visibility = ”Public” and not c.returnType
= null)

UML.findByIndex(”Class”, ”visibility”,”Public”).select(c | not
c.returnType = null)

For EVL programs, the call graph generator considers

the expressions in the check, guard and message block of

constraints as being called from a loop. This is because in

EVL constraints are often evaluated over a Context (instances

of a model element) and hence such expressions are to

be considered as candidates for potential indices. Also, the

operation calls from within constraints are considered as being

made from a loop.

C. Query Rewriting

After collecting potential indices i.e., class-feature pairs, by

analysing the input program in the first phase, the final phase is

to rewrite the program. The program is traversed again to find

expressions which can leverage the created in-memory indices.

This rewriting is performed behind the scenes: it does not alter

the original program nor is it visible to the user (unless they

wish to see it in which case there is a dedicated eclipse view

for this, detailed below). Rewriting includes two main tasks:

i) Injecting createIndex statements for creating in-memory

indices ii) Rewriting the relevant expressions to findByIndex

statements, where these indices are used. The respective syntax

of createIndex() and findByIndex() statements is showcased in

Listings 5 and 6.

1 ModelName.createIndex(

2 "ModelElement", "property");

Listing 5. Syntax of CreateIndex Statement

1 ModelName.findByIndex("ModelElement",

2 "property", "value");

Listing 6. Syntax of FindByIndex Statement

Calls to createIndex statements are injected at the beginning

of an EOL program, for creating in-memory indices. The target

expression ModelName is the name of the model for which

we wish to create an index. ModelElement is the metaclass,

while property is the name of the feature based on which

allInstances are filtered. For an EVL program, these statements

are injected into a pre block, which contains EOL statements

to be executed before evaluating the constraints themselves.

Next, findByIndex statements are injected in the AST of

the EOL/EVL program, for searching model element instances

through their respective indices, replacing the naive iteration

code that would have otherwise been executed. The target

expression ModelName is the name of the model in which

ModelElement belongs. Property is the index that should be

traversed, and the value represents the value of the property

that needs to be searched. When rewriting the AST to find-

ByIndex statements, any expressions that can make use of the

available indices are rewritten, even if those expression are not

detected to be executed multiple times by call graph analysis.

This is done to reuse the established in-memory indices in

the entire program, for reducing the program execution time.

Let us consider an example scenario for such a case as shown

below:

1 var c2= Class.all.select(c|c.name = "c2"

2 and c.visibility = "private");

3 while (condition) {

4 var c2= Class.all.selectOne(c|c.name = "c2"); }

Since we will create an index class.name due to line 4, we

use it to rewrite the statement in line 1 to take avdantage of

the re-writing.

Rewriting is performed behind-the-scenes, before the execu-

tion of the program. The original lines and column coordinates

of ASTs are maintained, so that if exceptions occur at runtime,

they are reported at the correct location in the original pro-

gram. If the user wishes to visualise this automated program

rewriting, we have implemented a query rewriting view shown

in Figure 5, which displays the rewritten program of the EOL

or EVL file in the currently active editor.

Fig. 5. Screenshot of the Query Rewriting View



Algorithm 1 Algorithm for Finding Potential Indices

1: let model = current model rewriter (separate rewriters for every model)

2: let inLoop = false

3: let allOperations = all, allInstances

4: let optimisableOperations = select, exists

5: let callGraph = call graph of the input program

OPTIMISEBLOCK(main statement block)

6: procedure OPTIMISEBLOCK(StatementBlock)

7: for all statement s in StatementBlock do

8: if s is a ForStatement or WhileStatement then

9: inLoop = true OPTIMISEBLOCK(body of s)

10: else if

then

11: visit every DOM element recursively

12: else

OPTIMISESTATEMENT(s)

13: end if

14: end for

15: end procedure

16: procedure OPTIMISESTATEMENT(Statement)

17: if s is an OperationCallExpression then

18: repeat

OPTIMISESTATEMENT(target of s)

19: until targetExpression is instance of NameExpression

20: for all Parameters of s do

21: repeat

OPTIMISESTATEMENT(parameterExpression)

22: until parameterExpression is instance of NameExpression

23: end for

24: end if

25: if s is an FirstOrderOperationCallExpression then

26: if target of s is a PropertyCallExpression or OperationCallExpression then

27: if allOperations contains name of target then

28: if optimisableOperations contains operationName of s then

29: if target of propertyCallExpression is owned by model then

30: if inLoop then

31: add to Potential Indices

32: end if

33: end if

34: end if

35: end if

36: end if

37: end if

38: end procedure

39: for all op in getDeclaredOperations do

40: if path p from main to op exists then

41: if p contains an edge labelled as loop then

42: inLoop= true

43: end if

OPTIMISEBLOCK(body of op)

44: end if

45: end for



IV. EVALUATION

This section presents the experimental setup used for eval-

uating the static analysis based query optimisation approach,

explains the methodology employed and discusses the results

obtained. It concludes by presenting the limitations and threats

to the validity of the obtained results.

A. Experiment Setup

TABLE II
SPECIFICATIONS OF JAVA MODELS USED FOR BENCHMARKING

ID Model Name No of Model Elements Size in MBs

1 eclipseModel-0.1 100,126 24.5

2 eclipseModel-0.2 200,224 50.8

3 eclipseModel-0.5 500,510 131.8

4 eclipseModel-1.0 1,000,658 258.3

5 eclipseModel-1.5 1,500,304 410.3

6 eclipseModel-2.0 2,000,329 555.7

7 eclipseModel-2.5 2,500,194 698.2

8 eclipseModel-3.0 3,000,159 948.5

9 eclipseModel-3.5 3,500,107 1080.0

10 eclipseModel-4.0 4,000,426 1110.0

11 eclipseModel-all 4,357,774 1210.0

The execution-time performance of the proposed approach

to optimise EVL programs over large-scale EMF models has

been evaluated. Since Epsilon supports parallel execution [10]

for EVL, the proposed approach is compared with the parallel

mode of EVL execution. The first experiment evaluates the

constraints using EVL without optimisation with parallel mode

enabled. The second evaluates the use of our rewriting strategy

(with an extension of EMF EMC driver with two additional

createIndex and findByIndex methods discussed in Section

III-C) also in the parallel mode of EVL. In the rest of the

section, the first approach is referred to as EVL– since it

executes the EVL programs in a naive parallel mode, while

the second one is referred to as EVL-QR – since it makes use

of the query rewriting strategy, on the top of the EVL engine

in parallel mode. We also compare our results and presented

speedups compared to OCL. For OCL evaluation, we wrote

the same Java findBugs in OCL and reported the execution

time.

Constraints and Models: For evaluating the query optimi-

sation approach, the validation constraints that we used were

introduced in [10] and are based on the Findbugs [11] project,

a static analysis tool that reports a large number of “code

smells” in Java code. Our EVL script (Java findBugs) consists

of 31 constraints over 17 contexts, and 11 operations. We

execute the Java findBugs script over a set of large models

reverse-engineered from the Java source code of Eclipse

projects [12] using MoDisco [13]. We opted for the Modisco

Java metamodel, as it is both complex enough and relatively

familiar to Java programmers. Also, such reverse engineered

models are commonly used to evaluate the scalability of

MDE tools [14], [15]. The models that we used vary from

approximately 100k to over 4 million elements, as illustrated

in Table II.

Correctness: The program is rewritten by our query

rewriter, so it is essential to check that this rewritten pro-

gram is semantically equivalent to the original input program.

Correctness of the results has been verified through automated

JUnit tests, ensuring that query results are the same in EVL

and in EVL-QR. For that, we execute several test EOL and

EVL scripts mined from GitHub and compare the outputs of

both programs. We found no differences in outputs given by

the input (original) and the rewritten programs. For our main

test case Java findBugs, we matched the number of unsatisfied

constraints for OCL,EVL and EVL-QR. After running the

correctness tests, we are confident of the semantic equivalence

of the rewritten programs and hence of the query rewriter logic

used in this approach.

Machine Specification: Our evaluation experiments were

performed on a machine with the following specifications:

MacBookPro @ 2.8 GHz Quad-Core Intel Core i7, 16 GBs of

RAM, Mac operating system BigSur version 11.1, and Java

15 on JDK 15.0.2 with JVM MaxHeapSize 4GBs.

B. Results

The computation time taken for the static analysis and

query rewriting processes has been measured to assess the

overhead they incur. Then, the execution time of the program

itself is recorded, as this approach does not interact with

model loading and thus has no effect on model loading

times. The script is executed using Epsilon in a standalone

manner and the execution time is measured using Epsilon’s

profiling capabilities. The measured program execution times

are reported in milliseconds in Table III.

Static analysis and query rewriting works at the metamodel

level and does not require any information from models

themselves. Static analysis and program rewriting took less

than 50ms for all the experiments, and therefore the overhead

incurred can be seen as negligible, with respect to the overall

execution times observed for these experiments. Also, this

computation time is independent of model size, due to the

fact that the whole process of query optimisation only uses

metamodel introspection. Time for static analysis and query

rewriting depends on two major factors: the size of the

program under consideration and the size of the underlying

model’s metamodel. To investigate the most computationally

expensive constraints, we measured the distribution of overall

execution times of the validation program. We divided this

program into two parts and reported execution times for the

first constraint as FindBugs First and then execution times of

the remainder of the constraints as FindBugs Rest in Table IV.

Out of 31 constraints in the Java FindBugs script, the first

constraint named allImportsAreUsed is the most expensive

one, as illustrated in Table IV. allImportsAreUsed being very

demanding, takes 99% of the execution time and it contains

an expression that is optimisable using our technique. Due to
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TABLE III
EXECUTION TIME IN SECONDS

Model ID 1 2 3 4 5 6 7 8 9 10 11

OCL 126.9 538.7 3649.5 TO TO TO TO TO TO TO TO

EVL 7.29 28.6 179.3 583.5 1206.7 2322.6 3797.4 3934.9 5003.6 5987.3 7826.9

EVL-QR 1.3 2.8 6.3 9.1 14.5 17.9 21.3 23.2 27.8 28.9 34.3

Speedup vs EVL 5.6 10.21 28.46 64.1 83.22 129.75 178.28 169.60 179.98 207.17 228.18

Speedup vs OCL 97.61 192.39 579.28 - - - - - - - -

OCL (No eOpp) 5256 23263 TO TO TO TO TO TO TO TO TO

EVL (No eOpp) 24579 777997 TO TO TO TO TO TO TO TO TO

EVL-QR (No eOpp) 3.44 9.22 13.20 18.07 22.53 34.81 34.32 47.58 61.154 68.84 84.77

Speedup vs EVL 7145 84564 - - - - - - - -

Speedup vs OCL 1527.9 2522.9 - - - - - - - -

this, in the case of EVL Query rewriting we see a significant

improvement in performance, by just creating one index.

TABLE IV
DISTRIBUTION OF EXECUTION TIME IN FINDBUGS SCRIPT

Model ID FindBugs First FindBugs Rest FindBugs All

1 5,94 1,351 7,29

2 26,40 2,243 28,64

3 175,11 4,265 179,38

4 576,13 7,451 583,59

5 1 196,81 9,930 1 206,74

6 2 310,47 12,181 2 322,65

7 3 780,41 17,020 3 797,44

8 3 916,61 18,370 3 934,98

9 4 985,02 18,665 5 003,69

10 5 966,36 21,003 5 987,37

11 7 798,84 28,066 7 826,90

Average % 99.54 0.46 100

Observing the comparison graph shown in Figure 6, we

see that EVL with query rewriting is substantially more

performant than EVL. In a naive EVL execution, as the model

size grows, the execution time increases non-linearly, in this

case from about 7 seconds to 130 minutes for models with

100k elements to 4.35M elements, respectively (a three order

of magnitude increase, for models of around one order of

magnitude in variance). In comparison with EVL, EVL-QR

speeds up the validation by 5.6x for the smallest model and

228.18x for the largest model. While in comparison with OCL,

EVL-QR speeds up the validation by 97.6x for the smallest

model and upto 579.2x and even more for larger models where

OCL’s performance is timed out. This gives us confidence

that the proposed query rewriting approach is scalable and

efficient for very large models. Overall, these results illustrate

that automated query rewriting has performance benefits both

for small and large models. The results also suggest that the

larger the model size, the more the performance gain is in

terms of execution time. This can be explained by the fact

that in smaller models, the overhead of creating indices is

proportionally more, than for larger models.

We also performed experiments on the same validation

constraints after removing the opposite references from the

Java metamodel. The reason for removing opposites is to

create more room for optimisations as sometimes adding

opposite references is not an option, such as for standardised

metamodels (See Section II). The original Java metamodel

has 173 references in total out of which 48 have opposite



references. We removed opposites on the following criteria: if

a reference is containment, we remove its opposite reference. if

a reference is non-containment, then we remove one of the pair

of opposites based on alphabetical order. In total, we removed

23 opposite references, which leaves 150 references in the

modified metamodel. Model migration was then carried out to

update the original models to conform to the new metamodel

without opposites using Flock [16]. EVL validation constraints

and OCL constraints were also updated to not make use of the

removed opposite references. For example, VariableDeclara-

tion class had an opposite reference to SingleVariableAccess.

The variableIsUsed constraint is written originally as:

1 context VariableDeclaration {

2 constraint variableIsUsed {

3 check: self.usageInVariableAccess.notEmpty() } }

After removing the opposite reference the constraint is

changed and rewritten as:

1 context Java!VariableDeclaration {

2 constraint variableIsUsed {

3 check: Java!SingleVariableAccess.all

4 .select(sva|sva.variable=self).notEmpty() } }

This experiment has as goal to measure the performance of

query optimisation when having opposites (to speed up certain

classes of queries) is not possible. The graph shown in Figure 7

illustrates the comparison between EVL and EVL-QR with no

opposite references in the model. Validation with EVL is so

computationally expensive in this case, that it timed out(TO)

even for models with around 500K elements. Utilising EVL-

QR, shows a performance gain of over 84564x in comparison

with EVL for the experiments that were completed. EVL-QR

provides a performance gain of over 2522x while comparing

with OCL. When there are opposite references, there is still

more room for creating in-memory indices and thus reducing

the execution time overall, as some queries may have to keep

navigating through the entire model to find matching elements

(that could have otherwise been navigable through an opposite

reference).

C. Threats to validity

This experiment uses one metamodel and one set of in-

creasingly large models conforming to it. While both the

models and metamodel were not specifically targeted for any

other reasons other than availability and ease of understanding

(as well as offering model sizes that are both large enough

and not synthesized), we understand that they play a large

role in determining the results obtained. The proposed query

optimisation approach can benefit from experiments performed

on more diverse models with a broader range of sizes and

more complex constraints, both for investigating semantic

equivalence and performance. Creating in-memory indices

naturally has an added overhead in the execution time, which

is handled by call graph analysis at the program and meta-

model level. Another possible threat to the validity of these

experiments, is the addition of possibly substantial overheads

when evaluating large enough programs or metamodels. For

example, if a constraint is evaluated over a context with one or

very few elements then indexing attributes from the respective

check block can incur additional overhead. We believe that

for large enough models, whereby this approach offers the

most benefits, this is very unlikely to be the case. Also, to

ensure more accurate static analysis and thus enable efficient

program rewriting, we recommend to use a more strict coding

style and explicitly declare types, and avoiding Any type as

much as possible for accurate type resolution. Finally, it is

worth noting that the model management program used for this

benchmarking is limited to read-only operations. Since EOL

offers model manipulation it would be worth investigating

programs that change the model, to ensure there are no

unforseen consequences of our approach there.

V. RELATED WORK

This section, summarises existing work within the scope of

this article in two main categories: First, it lists existing tools

in MDE that provide static analysis facilities; and second it

discusses model query optimisation strategies.

AnATLyzer [17] is a tool for static analysis of ATLAS

Transformation Language (ATL) transformations that provides

type checking, problem reporting and quick fixes. AnATLyzer

checks that the transformation is correctly typed with respect

to the source metamodel. It ensures that the generated target

model conforms to the target metamodel. It also identifies any

conflicting or missing rules. AnATLyzer is limited to static

analysis of ATL model transformations only.

Another tool [18] provides a static analysis facility for

graph transformations. This work is based on Constraint

Satisfaction Programming (CSP), containing a type checker

for the Viatra2 framework. As this type checker is based on

CSP, it is not guaranteed to find all the errors in a single run

using static analysis. This tool is limited to static analysis of

Viatra2 transformations. Static analysis of OCL is discussed

in [19], where a pseudo-type OCLSelf is introduced to infer

the type of built-in operations such as oclAsSet() and oclType().

Willink [20] introduced safe navigation operators in OCL. This

operator solves the problem of declaring non-null objects and

null-free collections and enables OCL navigation to be fully

checked for null safety.

AnATLzyer, is used in [21] to develop an A2L compiler

for parallel execution of ATL transformations. It uses static

analysis to generate efficient code at the transformation level

which results in improved performance.

In Hawk [22], a derived attributes approach includes pre-

computing certain expensive features and caching them in the

model index. Results have shown a decrease in execution time

by using derived attributes, but it has certain shortcomings as

well. Firstly, it adds an overhead of computing these derived

attributes, which increases the model insertion time containing

derived attributes, as well as the overhead of updating the

values of these features when the model changes. However,

these attributes are defined by the user and to the best of our

knowledge, there is no automatic detection of optimisation

opportunities through static analysis such as the one proposed

in this paper.



Another approach presented in [23] is to execute calls to

allInstances() queries efficiently. This approach is based on

greedy computation instead of on-demand computation. It

checks if the program makes multiple calls to allInstances(),

then precomputed all collections and caches them in one pass.

The approach just works on allInstances() calls.

In [24], the authors present how combining three op-

timisation techniques (parallelisation, lazy evaluation, and

short-circuiting) can significantly increase the performance

of queries over large models. It requires the use of the

parallel variant of EOL, which can be automated through static

analysis, as is the case in our proposed approach. We use

parallelisation proposed in [24] as a comparison baseline for

our approach. In [25], a tool called Mogwai is proposed for

efficient and scalable querying. Mogwai maps OCL and ATL

expressions to Gremlin scripts – a query language for NoSQL

databases. This leverages the optimisations implemented by

the underlying database technology.

VI. CONCLUSIONS AND FURTHER WORK

This paper presented an approach and a prototype for

optimisation of type-level model queries (i.e. queries on

allInstances()) built on top of EOL and EVL. The proposed

approach detects expressions of interest using static call graph

analysis and then augments the input program with index-

building statements and replaces calls to said expressions with

equivalent expressions that make use of the computed indices.

Experimental evaluation has demonstrated that the proposed

approach can deliver significant performance benefits, partic-

ularly where larger models are involved.

Directions for future work include extending the proposed

approach and prototype to support additional model man-

agement languages (e.g. for M2M/M2T transformation), ad-

ditional modelling technologies (e.g. Simulink models i.e.

translating from EOL to native MATLAB commands) and for

detecting further language and modelling technology-specific

optimisation opportunities.
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