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While operating a quantum random-number generator (QRNG), it is extremely useful to have a model

of the physical entropy source to guarantee that the device is delivering randomness of genuine quantum

origin. In this work we consider a QRNG based on a gain-switched laser diode and we develop a model to

quantify its phase noise. This model is based on the laser rate equations and the state-of-the-art techniques

for the characterization of laser diodes used in lightwave systems. These tools let us achieve a faithful mod-

eling of the phase noise and we verify its accuracy through comparisons with experimental measurements.

Furthermore, the model can be used to select optimal parameters to maximize the QRNG performance and

monitor the device behavior to detect malfunctioning or malicious tampering of the device.

DOI: 10.1103/PhysRevApplied.16.054012

I. INTRODUCTION

Unpredictability is an essential resource for crypto-

graphic applications, both classical and quantum. In the

last few years, many schemes to generate random num-

bers out of processes of quantum origin have been devised,

boosted by the promise of ultimate unpredictability [1,2].

However, in order to guarantee unpredictability, the

scheme has to be rigorously implemented within the

boundaries drawn by a theoretical model of the employed

quantum process. This is especially true for the so-

called device-dependent quantum random-number genera-

tors (QRNGs) whose notion of security strongly depends

on assumptions that have to be defined and hold for

both the parts of quantum state preparation and measure-

ment. In contrast, the class of semidevice-independent and

device-independent QRNGs allow the user to relax the

assumptions on either one or both the parts, respectively,

but this typically comes at the cost of a lower final secure

generation rate [3–5].

Recently, many different device-dependent generation

schemes have been introduced based on measuring laser

phase noise, which is a source of quantum random-

ness resulting from spontaneous emission [6–8]. Using

an asymmetric interferometer, laser phase noise can be
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converted to random fluctuations of intensity at the inter-

ferometer output, which can be measured and digitized.

All the recent implementations of the scheme achieved

ultrafast generation rates, in the order of hundreds of

Mbps and Gbps [7,9], by employing gain-switched laser

diodes (LDs) commonly used in ligthwave communication

systems.

In this work, we develop a general model that can

be applied to phase-noise QRNGs using gain-switched

LDs. First, we implement state-of-the-art techniques from

the field of fiber-optic communications to calibrate the

parameters in our model based on experimental mea-

surements. For engineering high-end telecommunication

devices, it is essential to predict what the diode perfor-

mances will be with different modulation regimes and a

vast literature indeed exists on the subject of LD mod-

eling and characterization [10–14]. With these analytical

and numerical tools we build a model that can be used to

identify the operational limits within which LDs should

be operated for random-number generation. In terms of

the device-dependent framework this is essential because

unpredictability can only be achieved when the laser is

driven in such a way that spontaneous emission becomes

the dominant process between two gain-switched pulses.

Second, we develop simple method for measuring phase

noise in gain-switched LDs. This allows us to validate the

operational limits established by the model by comparing

measurements of the phase noise to the model predic-

tions. The device characterization can be performed at

the beginning of the operational lifetime of the device, as

part of a certification process. Once the model parameters

have been determined, verified, and the operational limits

2331-7019/21/16(5)/054012(12) 054012-1 Published by the American Physical Society
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established, the QRNG can be programmed to monitor cer-

tain key parameters, such as bias current, or level of phase

noise, and take corrective action if these parameters fall

outside the operational range established by the charac-

terization. Furthermore, the model can be used to explore

different parameters and select optimal ones to maximize

performance.

In Sec. II, we briefly review random phase QRNGs and

the recent literature regarding physical characterization. In

Sec. III, we develop a rate-equation model for the pur-

poses of quantifying laser phase noise. We introduce a

technique to estimate the rate-equation-model parameters

and we verify the model accuracy with comparisons to

experiment. In Sec. IV, we use the rate equations to model

the impact of the spontaneous emissions on the laser phase

noise. Section V draws the connection between laser phase

noise and the effects this has on the performance of the

QRNG. We discuss our results in Sec. VI and conclude in

Sec. VII.

II. LASER PHASE NOISE

Laser phase noise is a consequence of spontaneous

emission [15–17]. Each spontaneously emitted photon has

a random phase that is added to the total electromagnetic

field, leading to random phase fluctuations. These fluctua-

tions can be measured using an asymmetric interferometer

to interfere the laser output with a delayed version of itself,

as in Fig. 1. During this time delay, spontaneous emission

events in the laser cavity randomize the phase, leading to

the interference of light with a random phase difference at

the interferometer output. This converts the random phase

into a random intensity, which can be measured and dig-

itized to generate random numbers. The intensity at the

output of the asymmetric interferometer is given by

Iout =
Iin

2
[1 + cos(�φ + φ0)], (1)

where Iin is the input intensity, �φ is the random phase

difference between delayed and nondelayed light due to

spontaneous emission, and φ0 is the relative phase between

both interferometer arms due to the difference in their

length. A key assumption made in phase-noise QRNGs

is that spontaneous emission fully randomizes the phase

during the time delay of the asymmetric interferometer.

That is, the phase difference �φ between the light that

has passed through the short and long arms of the inter-

ferometer is uniformly distributed in the interval [−π , π).

Iout would then follow an arcsine distribution. In reality,

the phase is a Gaussian random variable [15], but a Gaus-

sian distribution with a large variance, wrapped over the

interval [−π , π), is a good approximation to a uniform dis-

tribution. Still, it is useful to quantify the phase noise, i.e.,

the variance of the Gaussian phase distribution, to ensure

the variance is large enough for this approximation to hold.

Laser

FIG. 1. A typical phase noise QRNG setup. During the time

delay of the interferometer, spontaneous emission in the laser

cavity randomizes the phase, leading to random intensities at the

interferometer output.

For a cw operated laser, as used in demonstrations of

phase-noise QRNGs [18,19], quantifying the phase noise

is straightforward: the variance of the Gaussian phase dis-

tribution is inversely proportional to the coherence time

(τc) of the laser

〈

�φ2(t)
〉

=
2t

τc

. (2)

Therefore, in order guarantee an approximately uniform

phase distribution, the time delay of the interferometer

must be much longer than the coherence time, which

limits the sampling rate and hence the performance of

the QRNG. To increase phase noise, the laser can be

gain switched [6–8]. By driving the laser below thresh-

old between measurements, the phase noise is drastically

increased, enabling state-of-the-art RNG rates with little

added complexity. However, quantifying the phase noise in

a gain-switched laser is more challenging. Equation (2) no

longer applies since the laser linewidth, and hence coher-

ence time, strongly depends on the current. Previous works

have attempted to address this challenge in the context of

QRNG, and also quantum key distribution (QKD) where

phase randomized pulses of light are also required. The

use of gain switching to maximize laser phase noise for

QRNG was pioneered by Jofre et al. [6]. In Ref. [7] the

authors use a rate-equation model to estimate the phase

noise. The model parameters were a combination of typ-

ical parameters for semiconductor lasers, not specific to

their own laser, and parameters that were selected to best

fit the observed gain-switched power output of the laser.

They quantify the phase noise using the following linear

approximation [16]:

〈

�φ2(t)
〉

=
R

2S
(1 + α2)t, (3)

where R is the rate of spontaneous emission, S is the num-

ber of photons, and α is the linewidth enhancement factor

(also known as the Henry factor). R and S can be obtained

from the solution of the rate equations, and hence Eq. (3)

can be used to calculate the phase noise for any given

current input.
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Reference [20] presents a method of measuring phase

randomness by observing the visibility of interference

between successive pulses from a gain-switched laser. This

technique was used to verify that a gain-switched laser

diode can be operated at 10 GHz with sufficient phase

randomization for the secure implementation of QKD

protocols.

Another rate-equation-based approach is presented in

Ref. [21]. The authors implement a stochastic rate-

equation model to analyze the phase noise. They use

the Monte Carlo method to estimate the variance of the

phase due to phase noise. This approach has the advan-

tage of not relying on linear approximations such as Eq.

(3) and accounting for nonlinear effects, such as relax-

ation oscillations, which are significant for gain-switched

lasers.

In this work we build upon previous results [7,20,21]

and develop a stochastic rate-equation model to quantify

laser phase noise. We provide two main improvements:

first, we implement established techniques from the field

of classical fiber-optic communications to extract the rate-

equation-model parameters for our specific laser. Second,

we develop a simple method for measuring laser phase

noise in a gain-switched laser. Together, these improve-

ments allow us to make accurate quantitative simula-

tions of the laser power output and phase noise, and to

verify the accuracy of these simulations with compar-

isons to experimental measurements. This work therefore

presents a complete picture, from modeling to calibra-

tion measurements and experimental verification of the

model.

III. RATE-EQUATION MODEL

Laser rate equations are a very well-established method

for modeling semiconductor laser dynamics [10,11]. They

are widely used for simulating fiber-optic communica-

tion system performance, where semiconductor lasers

are used extensively [13]. We take advantage of the

advanced development of this technique to build a rate-

equation model for the purpose of modeling laser phase

noise and quantifying the quantum randomness pro-

duced in a phase-noise QRNG. We verify the accuracy

of our model through comparisons with experimental

measurements.

The laser rate equations are a system of three coupled

differential equations describing the interactions between

the carrier density N , photon density S, and phase φ of the

laser. The single-mode rate equations are

dN (t)

dt
=

I(t)

qV
−

N (t)

τn

− g
N (t) − N0

1 + εS(t)
S(t), (4)

dS(t)

dt
= Ŵag

N (t) − N0

1 + εS(t)
S(t) −

S(t)

τp

+
ŴaβN (t)

τn

, (5)

dφ(t)

dt
=

α

2

[

Ŵag[N (t) − N0] −
1

τp

]

, (6)

and the power output of the laser is related to the photon

density by

P(t) =
Vηhν

2Ŵaτp

S(t). (7)

The rate-equation parameters are as follows: I(t) is

the injection current, V is the volume of the active gain

medium, q is the electron charge, τn is the carrier lifetime,

τp is the photon lifetime, g is the differential gain coeffi-

cient, ε is the gain compression factor, N0 is the number

of carriers at transparency, β is the fraction of spontaneous

emission coupled into the lasing mode, Ŵa is the mode con-

finement factor, α is the linewidth enhancement factor, η

is the differential quantum efficiency, ν is the frequency,

and h is Planck’s constant. By numerically solving the rate

equations for a given current input we can obtain estimates

of the power and phase of the laser output. Note that Eq.

(6) describes the deterministic evolution of phase due to

changes in the refractive index of the lasing medium that

occur with changes in the carrier density. In the follow-

ing we are not concerned with this deterministic evolution

of the phase, but rather with the random fluctuations of

phase driven by spontaneous emission in the laser cav-

ity. To model the effects of spontaneous emission, a set

of Langevin noise terms can be added to the rate equations

[22,23]:

FN (t) = FZ(t) −
FS(t)

Ŵa

, (8)

FS(t) =

√

2ŴaβN (t)S(t)

τn�t
× xS, (9)

Fφ(t) =

√

ŴaβN (t)

2τnS(t)�t
× xφ , (10)

where FZ(t) =
√

2N (t)/(Vτn�t) × xZ is a Langevin noise

term, uncorrelated to FS(t) and Fφ(t), used to define the

carrier-density noise term FN (t). �t is the time step of the

integration and xS,φ,Z are three independent random num-

bers taken from a Gaussian distribution with zero mean and

unit variance. The terms FN (t), FS(t), and Fφ(t) are added

to the rate Eqs. (4)–(6), respectively. An analytical expres-

sion for the phase-noise variance
〈

�φ2(t)
〉

, which is valid

for large signal modulations cannot be obtained. Instead,

the phase-noise variance can be estimated using the Monte

Carlo approach [21]. The stochastic rate equations can be
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solved repeatedly and each solution will yield a different,

random value for �φ, according to the underlying Gaus-

sian phase distribution. The variance of these solutions for

�φ therefore gives an estimate of
〈

�φ2(t)
〉

.

Each laser has a unique set of rate-equation parameters.

Therefore, to quantitatively model the behavior of a spe-

cific laser it is necessary to extract these parameters based

on measurements of the laser. In the following section we

implement a parameter extraction method based on sim-

ple measurements of three quantities [24–26]: the laser

intensity modulation (IM) response, the transfer function

of a dispersive optical fiber, and the power-current (PI)

curve of the laser. Analytical expressions for these quanti-

ties can be derived from the rate equations, thereby relating

the rate-equation parameters to experimentally observable

quantities. By fitting these measurements to their analytical

expressions, we can estimate all the rate-equation param-

eters. These three measurements are selected for being

simple to implement using standard fiber-optic labora-

tory equipment, while fully constraining the rate-equation

parameters.

A. Experimental validation

Our experimental setup is shown in Fig. 2 and con-

sists of a 13.5-GHz network analyzer, dc current source,

laser diode, 10-GHz photodiode, and 50 km of standard

single-mode optical fiber. The exact length of fiber varies

according to the bandwidth of the network analyzer, and

the properties of the laser, as explained below. The cur-

rent source is used to set the bias current of the laser. A

bias tee is used to superimpose a small modulation current

from port 1 of the NA onto the dc bias current. Finally,

the laser output is measured by the photodiode connected

to port 2 of the network analyzer (NA). The NA is set

to measure the S21 parameter. The 50 km of optical fiber

are inserted between the laser and detector for the fiber

transfer function measurement. The PI curve of the laser

is separately measured using the current source, laser, and

a power meter.

In the following, we describe each measurement in

turn along with the analytical equations, derived from the

rate equations, used to fit the measurements. These equa-

tions are standard results from semiconductor laser theory

and are stated without derivation. To verify the validity

of the rate-equation model and extracted parameters, we

compare the model predictions of the power output of a

gain-switched laser to experimental measurements.

1. Laser intensity modulation response

The laser IM response (HIM) is the transfer function

from current modulation to power output of the laser [10].

An analytical expression can be derived from the rate

equations by modulating the current I(t) and determining

the leading-order approximation of the solution [27]. It is

FIG. 2. Setup for measuring the laser IM response (without the

fiber) and the transfer function of 50 km of dispersive fiber. Port

1 of the network analyzer sends a small modulation signal to

the laser, and port 2 measures the response at the detector. The

current source sets the bias current of the laser.

given by [28]

HIM(fr) =
Z

(i2π fr)2 + i2π frŴ + Z
, (11)

where Z = 4π2f 2
r + Ŵ2/2. Ŵ and fr are the relaxation

oscillation frequency and damping factor, respectively.

Both quantities increase with bias current:

f 2
r =

Ŵag

4π2qV
(Ibias − Ith) , (12)

Ŵ =
1

τn

+ Kf 2
r , (13)

K = 4π2

(

τp +
ε

g

)

, (14)

where Ibias and Ith are the laser bias and threshold cur-

rents, respectively, and K is known as the K factor [29].

Experimentally, the IM response can be measured using a

network analyzer [30], with one port modulating the laser,

and a second port measuring the response from a detector,

as shown in Fig. 2.

By measuring the IM response at different bias currents,

we can determine g, τn, and K . The measured response

will, however, contain parasitic contributions from the

mount and packaging of the laser, as well as the detector.

To remove the nonlaser contributions, the IM response is

measured at two different bias currents, one near and one

well above threshold, and the results are subtracted (in dB).

The analytical expression for the subtracted IM response is

therefore

S(fr) = 20 log10

∣

∣

∣

∣

HIM (fr; Ŵ1, Z1)

HIM (fr; Ŵ0, Z0)

∣

∣

∣

∣

, (15)

where the subscript 0 (1) refers to the near (well above)

threshold measurement. By fitting experimental measure-

ments of the (subtracted) IM response to Eq. (15) we can
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(a)

(b) (c)

FIG. 3. (Top) The laser IM response is fitted to Eq. (15) to

obtain estimates for Ŵ and fr at different bias currents. (Bottom)

Using the fitted Ŵ and fr values we can plot Eqs. (12) and (13).

Linear fits give estimates for g, τn, and the K factor.

estimate Ŵ and fr at different bias currents [see Fig. 3(a)]. g

can be determined from the gradient of a plot of f 2
r against

Ibias − Ith [Fig. 3(b)] and τn and the K factor are determined

from the intercept and gradient, respectively, of a plot of Ŵ

against f 2
r [Fig. 3(c)]. Our results are shown in Fig. 3, giv-

ing values of g = 1.70 × 10−6 cm3/ s, τn = 0.15 ns, and

K = 2.51 × 10−10 s.

2. Fiber transfer function

The optical spectrum of a directly modulated laser

contains modulation sidebands, which travel at different

velocities through dispersive optical fiber. After a certain

distance these sidebands will interfere destructively, lead-

ing to a sharp dip in the fiber transfer function [31]. An

analytical expression for the fiber transfer function, using

a directly modulated laser, was derived in Ref. [32] and is

given by [33]

Hfiber(f ) = cos(θ) − (α − j αfc/f ) sin(θ), (16)

where θ = f 2πλ2DL/c and fc = Ŵaε (I − Ith) /(2πqV), D

is the dispersion coefficient of the optical fiber, L is the

length of the fiber, and fc is a characteristic frequency of

the laser [33,34]. The fiber transfer function can be mea-

sured using the same setup as for the laser IM response,

FIG. 4. The fiber transfer function is fitted to Eq. (16) to obtain

estimates for α and fc. The laser is biased at 30 mA.

and including approximately 50 km of standard single-

mode fiber between the laser and detector. The fiber can

be of any length, however the sharp dips in the mod-

ulation response occur at smaller frequencies for longer

lengths of fiber. Given the finite bandwidth of the net-

work analyzer (13.5 GHz in our case), a sufficiently long

fiber must be used so that at least one of the dips occurs

at a measurable frequency in order to properly constrain

the fitting parameters. As before, by fitting the measured

response to the analytical expression we can estimate α

and fc (and D, which we disregard). Again, the measured

response will include contributions from the laser packag-

ing and detector, so to remove the nonfiber contributions,

the response is measured with and without the optical fiber

and the results are subtracted. The fiber adds significant

attenuation (approximately 10 dB) to the system, so for the

measurement without the fiber we increase the attenuation

using a variable optical attenuator to match the attenua-

tion for both measurements. To account for the time delay

introduced by the 50 km of fiber, the sweep time of the net-

work analyzer needs to be reduced. The laser is biased at

30 mA. Our result is shown in Fig. 4, leading to values for

α = 2.95 and fc = 5.85 × 108 Hz.

3. Steady state power versus bias current

Finally, an analytical expression for the steady-state

power versus bias current (PI) curve can be obtained by

setting the time derivatives in the rate equations to zero.

Following Ref. [24], assuming β ≪ 1 and ε/(gτn) ≪ 1,

the PI curve is given by

(FP)2 − (I − Ith − Is) FP − IsI ≈ 0, (17)

where F = 2eλ/(hcη), Is = βqV/(Ŵagτnτp), and Ith =
qV(N0 + 1/Ŵagτp)/τn. The measured PI curve can then be

fitted to Eq. (17) to access these parameters. Our results

are plotted in Fig. 5, giving values of F = 4.77 AW−1,

Is = 6.16 × 10−4 mA, and Ith = 14.7 mA.
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FIG. 5. Fit of the laser PI curve to Eq. (17), using F , Is, and

Ith as fit parameters. The inset shows a good fit around the lasing

threshold Ith = 14.7 mA.

In total, the fitted parameters are g, τn, K , α, fc, F , Is, and

Ith, giving eight constraints to the rate-equation parame-

ters. There are ten rate-equation parameters, however V

and Ŵa just reflect the choice of expressing the rate equa-

tions in terms of number or density of carriers and photons.

They do not affect the simulation results, and so we can

assume a reasonable value for each: V = 2 × 10−17 m3

and Ŵa = 0.2. The remaining eight rate-equation param-

eters are fully constrained by the fitted parameters, and

can be calculated using the relationships stated above: ε

is calculated from fc; then τp can be calculated from the

K factor, ε and g; β is calculated from Is and finally

N0 is calculated from Ith. Alternatively, the rate equations

can be rewritten in terms of the fitted parameters [24].

The extracted rate-equation parameters for our laser, based

on the measurements plotted in Figs. 3–5, are shown in

Table I.

4. Comparison to experiment

To confirm the accuracy of the model and extracted

parameters, we compare the model predictions to exper-

imental measurements. For a given current I(t) the rate

TABLE I. The extracted rate-equation parameters, based on

the measurements shown in Figs. 3, 4, and 5.

Parameters Values Description

τn (ns) 0.15 Carrier lifetime

τp (ps) 4.47 Photon lifetime

g (×10−6 cm3s−1) 1.70 Differential gain coefficient

ε (×10−17 cm3) 3.24 Gain compression factor

N0 (×1018 cm−3) 3.79 Carrier density at transparency

β (×10−5) 4.44 Spontaneous emission factor

α 2.95 Linewidth enhancement factor

η 0.52 Differential quantum efficiency

V (×10−11 cm3) 2 Active layer volume

Ŵ 0.22 Mode confinement factor

FIG. 6. Measured (dotted blue) and simulated (solid orange)

laser pulses, at different bias currents (modulation current,

30 mA; repetition rate, 1 GHz).

equations can be solved numerically to simulate the power

output of the laser. We use the ordinary rate equations,

Eqs. (4)–(6), without noise terms since we are here inter-

ested in the average power output. We directly measure

the current from the pulse generator and use this mea-

surement to define I(t) in the rate equations. We use a

single-frequency sinusoidal current to minimize the effects

of high-frequency parasitics from the laser circuitry and

packaging. To model the finite-bandwidth (10 GHz) of

the detector we apply a 10-GHz first-order, low-pass fil-

ter to the rate-equation solutions, which has the effect of

reducing the amplitude of the relaxation oscillations.

Figure 6 shows a comparison between the simulated and

measured intensity output of the laser when driven at a

repetition rate of 1 GHz for different bias currents. There

is a good agreement between experiment and simulation.

The model correctly predicts the main features of the laser

output: the steady-state power output, the turn-on delay

and the amplitude, damping, and frequency of relaxation

oscillations.

IV. MODELING LASER PHASE NOISE

Having verified the accuracy of the rate-equation model

for simulating the power output of a gain-switched laser,

we now turn to simulations of the laser phase noise. Recall

that the phase noise is quantified by the variance
〈

�φ2(t)
〉

of the Gaussian-distributed phase. We cannot derive an

analytical expression for this quantity, and instead we

employ the Monte Carlo method: we repeatedly solve the

stochastic rate equations, and calculate the variance of the

resulting distribution of phase values to estimate
〈

�φ2(t)
〉

.

To verify the accuracy of this estimate we again compare

the model predictions against experimental measurements.
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We cannot measure phase directly, but we can indirectly

measure
〈

�φ2(t)
〉

by observing the distribution of intensi-

ties at the output of an asymmetric interferometer, like in

Fig. 1 [35]. The experimentally observable intensity dis-

tribution depends on
〈

�φ2(t)
〉

, giving experimental access

to this quantity. What is needed, therefore, is an analytical

expression that relates the observable intensity distribution

to
〈

�φ2(t)
〉

. Reference [35] achieves this by setting the

fixed interferometer phase φ0 = π/2 and choosing a small

interferometer delay such that sin(�φ) ≈ �φ. Equation

(1) then becomes

Iout =
Iin

2
(1 + �φ) (18)

such that the intensity is proportional to the phase and

therefore the variance of the phase is simply proportional

to the variance of the intensity, which can be measured.

The shortcoming of this method is that it is limited to

small phase-noise values for the small angle approximation

to hold. We remove this constraint by using an analytical

expression for the probability density function (PDF) of

the intensity distribution for arbitrary phase-noise values.

This PDF was derived in Ref. [36], and here we quote the

result. Appendix A provides a full and intuitive derivation.

Let Y = cos(�φ + φ0) be the normalized intensity, ignor-

ing units and displacements along the x axis. Then the PDF

of Y is

fY(y, σ) =
∞

∑

n=−∞

1
√

1 − y2

{

f�φ[2(n + 1)π − cos−1(y) + φ0, σ 2]

+ f�φ[2nπ + cos−1(y) + φ0, σ 2]

}

, (19)

where fY is the PDF of the normalized intensity, f�φ is the

PDF of the Gaussian distribution (with zero mean) and

σ 2 =
〈

�φ2(t)
〉

. As required, this expression relates the dis-

tribution of the phase f�φ to the experimentally accessible

distribution of the intensity, fY. By fitting measurements of

fY to Eq. (19) we can estimate
〈

�φ2(t)
〉

by using it as a

fitting parameter. Equation (19) includes an infinite sum,

however, we can truncate the sum at n = ±100 with negli-

gible effect on the results. One limitation of our method is

that above a certain level of phase noise, fY becomes exper-

imentally indistinguishable from an arcsine distribution. In

fact, a wrapped Gaussian distribution with a large variance

approaches a uniform distribution, so for large phase-noise

values fY approaches an arcsine distribution. Therefore,

our technique is limited to measuring phase-noise values

below the threshold at which fY approaches an arcsine

distribution. We find this happens around
〈

�φ2(t)
〉

≈ 9,

which is in good agreement with previous results [7,20,36].

dc bias current (mA)

FIG. 7. Comparison between measured and simulated values

of the phase noise
〈

�φ2(t)
〉

as a function of bias current. Mea-

surements are taken for two different modulation currents (30

and 35 mA), as indicated. The threshold at which the wrapped

Gaussian phase distribution becomes approximately uniform is

marked with a dashed line.

For our purposes this limitation is acceptable since we

are exactly interested in determining whether the phase

is approximately uniformly distributed, and hence do not

need to measure higher phase-noise values.

Finally, we compare the model predictions with exper-

imental measurements of the phase noise using the mea-

surement technique just described. We perform a Monte

Carlo simulation, calculating the laser phase evolution

over one period (1 ns) 10 000 times by solving the stochas-

tic rate equations under gain-switched conditions. We

again use a measurement of the pulse generator output

to define the current I(t) in the stochastic rate equations.

An estimate for
〈

�φ2(t)
〉

is then given by the variance of

the 10 000 solutions for �φ. We use this approach to esti-

mate
〈

�φ2(t)
〉

as a function of the laser dc bias current,

at two different modulation currents (30 and 35 mA). Our

simulation results are shown in Fig. 7.

To measure the phase noise, we gain switch the laser

using the same current parameters as in the simulation,

and measure the output power over 25 µs, corresponding

to 25 000 pulses. We sample the intensity of each pulse

and plot a histogram, which can be fit to Eq. (19), using
〈

�φ2(t)
〉

as a fitting parameter. In our measurements we

observe a slow drift of φ0, on the order of rad/s, due

to mechanical or thermal instabilities affecting the length

difference between the short and long arm of the interfer-

ometer. This drift is much slower than our measurement

time of 25 µs, so the effect on individual measurements is

negligible. However, φ0 can take on different values for

measurements at different times, and to account for this

we include φ0 as another fitting parameter. Additionally

we model classical sources of noise, such as electronic

noise and laser intensity noise, with a Gaussian distribution
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FIG. 8. Measured (solid blue) intensity distributions at dif-

ferent bias currents, fitted (dashed red) to Eq. (19). The effect

of the slow drift of the relative interferometer phase φ0 can

be seen by most clearly comparing the intensity distributions

at 32 and 33 mA. The peaks of the distributions are at differ-

ent intensities, even when the phase noise is similar for both

measurements.

independent from φ0 or
〈

�φ2(t)
〉

. The total intensity distri-

bution from classical and quantum sources is then given

by the convolution of the Gaussian classical noise, and the

intensity distribution due to phase noise fY. We include the

variance of the Gaussian classical noise as a third fitting

parameter.

Figure 8 shows examples of fitted intensity distributions

for different bias currents of the laser, keeping other current

parameters (modulation current, 30 mA; repetition rate,

1 GHz) constant. In Fig. 7 we plot the fitted values of
〈

�φ2(t)
〉

alongside the simulation. We see that at low bias

currents, the model predicts ever-higher phase-noise val-

ues, while our measurements plateau around
〈

�φ2(t)
〉

= 9.

This corresponds to the level of phase noise at which the

intensity distribution becomes indistinguishable from an

arcsine distribution. At higher bias currents, with lower

values of phase noise, we see a good agreement between

experiment and simulation, verifying the accuracy of the

model. Figure 7 clearly shows the point at which the

Gaussian phase becomes approximately uniform: when the

intensity distribution becomes indistinguishable from an

arcsine distribution at lower bias currents, the measured

phase-noise values plateau [around
〈

�φ2(t)
〉

= 9], while

the simulation continues increasing. From our measure-

ments we can therefore say that for a modulation current

of 30 mA (35 mA), a bias current below approximately

26 mA (approximately 29 mA) is required to guarantee an

approximately uniform phase, and hence the security of the

QRNG.

V. EFFECTS ON PERFORMANCE

The effect of poorly selected laser driving parameters

on the performance of a phase-noise-based QRNG can be

made explicit by considering the min entropy associated

to the interference signal. The min entropy quantifies the

amount of identically and independently distributed (IID)

bits in the digital codes, which are generated by an analog-

to-digital converter (ADC) sampling the photodiode (PD)

current signal. We consider an (ideal) ADC with a res-

olution of d bits and a measurement range of R volts,

such that the range is divided into 2d intervals of width

� = R/2d. We associate the random variable W to the

ADC output codes, each code corresponding to the index

of the voltage interval into which the PD signal is mea-

sured at the time of sampling, i.e., [w�, (w + 1)�), with

w ∈
{

0, 1, . . . , (2d − 1)
}

. The min entropy of W is then

defined as

Hmin(W) = −log2

[

max
w

PW(w)

]

, (20)

where the discretized sample probability PW(w) is given by

PW(w) =
∫ (w+1)�

w�

fY(y, σ)dy, (21)

where fY is the PDF of the interference signal given by Eq.

19, allowing us to calculate the min entropy as a function

of phase noise [36]. In the case of high phase randomiza-

tion, the interferometer output intensity and therefore the

amplitude of the PD signal, follows an arcsine distribu-

tion. In this case maxw PW(w) corresponds to either the

destructive or the constructive signal amplitudes, Y = yd

and Y = yc. For example, if yd and yc fall into intervals

w and w′, respectively, maxw PW(w) will correspond to

the largest between
∫ (w+1)�

yd
fY(y, σ)dy and

∫ yc

w′� fY(y, σ)dy.

Ideally, in the absence of fluctuations and additive elec-

tronic noise, the distribution fits the whole range R such

that codes w = 0 and w = (2d − 1) occur with the same

discretized probability. Hence, if we assume a typical ADC

resolution of d = 8, when the phase noise is uniformly

distributed we obtain Hmin(W) = 4.65 bits.

We can now see how a nonuniform phase distribution

will negatively affect the QRNG performance, by lower-

ing the min entropy of the raw output distribution. Figure

9 plots the min entropy as a function of phase noise
〈

�φ2(t)
〉

= σ 2 with d = 8 and φ0 = 0. When the phase

is not fully randomized, the resulting intensity distribu-

tion will become more asymmetric, as shown in Fig. 8.

Crucially, this asymmetry will lead to a decreased min

entropy: since one of the peaks in the distribution becomes

larger, the probability of the most-likely outcome likewise

increases. The physical reason for this behavior is that the

smaller
〈

�φ2(t)
〉

the less the phase changes from pulse
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FIG. 9. Min entropy as a function of the phase noise, assum-

ing 8-bit digitization resolution. The min entropy quantifies the

extractable randomness of the QRNG and is proportional to the

secure random-number generation rate. The numbers correspond

to the measurements plotted in Fig. 8 at different bias currents,

indicating a clear connection between the bias current, the phase

noise, and the performance as quantified by the min entropy.

to pulse and hence the higher becomes the probability

constructive and near constructive interference events.

We can combine this result with our simulations of the

min entropy as a function of phase noise (Fig. 7) to directly

relate the min entropy to the bias current. We indicate in

Fig. 9 the points along the min-entropy curve correspond-

ing to different levels of bias current, as measured in Figs. 7

and 8. In this way, combining the rate-equation simulations

with the analytical calculations of the min entropy, we can

quantify the effects on the performance of the QRNG as a

function of the dc bias current directly, or any other current

or laser rate-equation parameter.

Given the min entropy, the ADC output should be pro-

cessed with a seeded randomness extractor, such as a

two-universal hash function, in order to actually distill

the IID bits from the samples [37]. It is worth stressing

that Hmin(Y) in Fig. 9 is not taking into account various

factors such as dependencies among the samples, nonide-

alities of the ADC, electronic noise, laser fluctuations, so it

overestimates the actual entropy content one would obtain

in a realistic situation. However, since the postprocessed

generation rate is proportional to the min entropy, Fig. 9

shows the critical loss of secure bits the QRNG user would

experience in case the laser drifts away from the driving

conditions that guarantee the larger phase randomization.

In this situation, although the rate diminishes, the distilled

random bits are secure as long as the randomness extractor

is recalibrated on the actual min-entropy value.

This is not the case if instead of using a seeded random-

ness extractor, the user implements some unseeded post-

processing algorithm. We consider an unbiasing algorithm

based on finite impulse response (FIR) filters [8,9,38],

in which the unbiased output code u(n) is given by

scrambling together the last n − M ADC codes w(n), i.e.,
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FIG. 10. The p values of different statistical tests from the

TestU01 randomness testing suite applied to 1 GB of raw data

from the QRNG at different bias currents. The bottom four tests

correspond to the Alphabit battery of tests, and the rest are from

the Rabbit battery of tests. Passed tests are drawn in green, and

the p values of the failed tests (p value below 0.001) are indicated

by the colorbar. Starting at 32 mA, the QRNG fails several tests

with very low p values, indicating that the phase noise, and hence

entropy, is too low for the unbiasing algorithm to completely

remove bias and correlations from the generated numbers.

u(n) =
∑M

i=0 biw(n − i) mod 2d where bi are the coeffi-

cients of the filters. As FIR filter-based processing does

not compress the raw random numbers, the generation rate

is constant. This makes them a practical solution for appli-

cations such as Monte Carlo simulations, which consume a

large amount of data but are less recommendable for cryp-

tographic applications, since the generation rate does not

depend on the actual min-entropy content.

As an experimental demonstration, we use the standard

phase-noise QRNG setup from Fig. 1 with the laser oper-

ated at 1 GHz, the PD sampled at 1 GSsample/s by an

ADC with 8-bit resolution, which we employ to generate

1 GB of raw output numbers at different levels of dc bias

current while keeping constant the modulation amplitude.

We then use the fifth-order FIR filter, i.e., M = 4 and with

binomial coefficients bi = M !/i!(M − i)! [8] and analyze

the results using the batteries Rabbit and Alphabit of the

suite TestU01 for statistical randomness assessment [39].

These batteries are applied to the whole 8 × 109 bit long

strings and Fig. 10 shows the test results at each level

of bias current. As one can appreciate, when the laser is

properly driven with low bias current, the FIR filter is

very effective in unbiasing the output, since the tests out-

put acceptable p values. However, starting at 32 mA, the

QRNG begins to fail more tests and from 33 mA onward

most of them fail catastrophically. Comparing these values
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of bias current to Fig. 7 we see that at these levels of bias

current, the phase noise is well below the uniform distribu-

tion threshold. So, again, the rate equations help determine

the operational limits of dc bias current, or any other rate-

equation parameter, required for the correct operation of

the QRNG.

VI. DISCUSSION

The assumption of a uniform phase distribution due

to spontaneous emission, leading to an arscine-distributed

intensity, is fundamental to the security of phase-noise

QRNGs. Our work puts this assumption on a stronger foot-

ing by quantifying the phase noise using a rate-equation

model. Rate-equation modeling of laser diodes is a well-

established technique from the field of classical optical

communications, giving confidence that our analysis rests

on solid foundations. We choose a parameter extraction

technique based on a small number of simple measure-

ments. Our method for measuring phase noise can be

implemented with a standard phase-noise QRNG setup,

with no need for additional equipment. This makes our

analysis easy to replicate and implement as part of a certi-

fication process to guarantee the security of phase-noise

QRNGs. Appendix B summarizes the steps outlined in

this work to identify the operational limits of a phase-

noise QRNG. Although we focus on quantifying the phase

noise for the purposes of security, a rate-equation model

has other useful applications. Here we describe two such

potential applications.

We show how a rate-equation model can be used to

quantify the phase noise in a gain-switched laser. Such a

model can also be used to optimize the performance of a

phase-noise QRNG, by selecting parameters to maximize

the phase noise. The maximum sampling rate of the QRNG

is limited by the time it takes for the laser to reach full ran-

domization. Increasing the phase noise can therefore allow

for higher sampling rates. Figure 7 shows that a 1 GHz

gain-switched laser is able to achieve full phase random-

ization for appropriately selected current parameters. Our

model can be used to investigate the maximum repetition

rate at which the laser can be driven while still guarantee-

ing full phase randomization. The model also gives insight

into which rate-equation parameters (intrinsic to the laser)

affect the phase noise, notably α and β. Choosing a laser

with a high value of α or β could again improve the

maximum sampling rate. The effect of other rate-equation

parameters is less obvious, but can similarly be investi-

gated. Laser phase noise is not the only consideration for

maximizing the QRNG performance. For example, laser

chirp is a feature of directly modulated laser diodes, which

can lead to low visibility interference at the interferome-

ter output. It is especially problematic at high repetition

rates and large intensity modulations. The rate equations

can again be used to select current parameters such that the

chirp is minimized, or to find a suitable trade-off between

high sampling rate and high visibility interference.

Even if suitable parameters have been chosen for the

operation of the QRNG, the device can malfunction or its

performance can degrade over time. QRNGs, like RNGs

in general, can also be the targets of hacking attacks. For

these reasons it is helpful to monitor the behavior of the

QRNG to detect malfunctioning or other deviations from

normal behavior. The standard approach consists of run-

ning statistical tests on the generated numbers to detect

correlations or other signs of nonrandomness. However,

passing statistical tests of randomness is a necessary but

not sufficient condition for establishing the correct opera-

tion of a QRNG. A seemingly random string of numbers

can nonetheless be predictable and hence insecure (see,

e.g., the “memory-stick attack” [40]). Having a strong

understanding of the physical process by which the num-

bers are generated, backed up by a suitable model, is a

more reliable approach to certifying the randomness of

the output numbers. Our rate-equation model can serve

to establish a baseline of correct operation to which the

device behavior can be compared.

VII. CONCLUSION

In this work, we develop a laser rate-equation model

for quantifying the phase noise of a gain-switched laser

in a QRNG. We employ a parameter extraction method

based on simple measurements, allowing us to quantita-

tively compare the model to experimental measurements.

We find the model accurately predicts the power output and

phase noise of the laser. By quantifying the phase noise

using a model, we can give stronger guarantees that the

generated numbers originate from quantum phase noise,

improving the security of phase-noise QRNGs.
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APPENDIX A: DERIVATION OF EQ. (19)

We derive the PDF of the normalized intensity Y (fY)

when the phase �φ follows a Gaussian distribution (f�φ).

We first derive the cumulative distribution function (CDF)

FY, and then differentiate it to obtain the PDF.

The CDF of Y = cos(�φ + φ0) is by definition

FY(y) = Pr(Y ≤ y), y ∈ [−1, 1]

= Pr[cos(�φ + φ0) ≤ y].
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FIG. 11. Plot of the normalized intensity Y. The CDF of Y,

FY(y), is given by the probability that �φ + φ0 lies in one of

intervals drawn in bold.

Figure 11 shows a plot of Y. The sections of the curve

that are below y are drawn in bold. The probability that

Y falls into one of these regions is therefore equal to the

probability that the phase �φ + φ0 falls into one of the

highlighted intervals on the x axis. These intervals occur

every 2π radians and are given by

�φ + φ0 ∈[2nπ + cos−1(y), 2(n + 1)π − cos−1(y)]

�φ ∈[2nπ + cos−1(y) − φ0,

2(n + 1)π − cos−1(y) − φ0],

(A1)

where n ∈ Z. The probability that �φ lies in one of these

intervals is given by

FY(y) =
∞

∑

n=−∞
{F�φ[2(n + 1)π − cos−1(y) − φ0]

− F�φ[2nπ + cos−1(y) − φ0]}, (A2)

where F�φ is the CDF of the Gaussian phase distribution.

The last step is to differentiate both sides of the equation,

using the fact that d/dy(F�φ) = f�φ and d/dy[cos−1(y)] =
−1/

√

1 − y2, to obtain Eq. (19):

fY(y, σ) =
∞

∑

n=−∞

1
√

1 − y2

{

f�φ[2(n + 1)π − cos−1(y) − φ0, σ 2]

+ f�φ[2nπ + cos−1(y) − φ0, σ 2]

}

. (A3)

APPENDIX B: EXPERIMENTAL PROCEDURE

FOR FINDING THE OPERATIONAL LIMITS OF A

PHASE-NOISE QRNG

We provide a step by step procedure for identifying the

operational limits of a phase-noise QRNG, using a rate-

equation model backed up by experiments.

1. Implement the stochastic rate equations: the

equations can be solved using stochastic numerical inte-

gration, for example, with the Euler-Maruyama method.

2. Extract the rate equation parameters: (2a) measure

the IM response of the laser at a range of bias currents

(from approximately 1.2Ith to approximately 3Ith). Subtract

the lowest bias current measurement from the rest to obtain

the subtracted IM response. Fit the subtracted response to

Eq. (15) to measure fr and Ŵ at each bias current. Plot Eqs.

(12) and (13) using the fitted values to obtain estimates

for g, the K factor, and τn. (2b) Measure the fiber trans-

fer function at a bias current of approximately 2Ith. Repeat

the measurement removing the fiber from the system and

subtract this measurement from the first. Extra attenuation

should be added to the no-fiber setup to match the attenu-

ation for both measurements. The NA should measure the

same response at 0 Hz for both measurements. Fit the sub-

tracted transfer function to Eq. (16) to obtain estimates for

α and fc. (2c) Measure the PI curve of the laser and fit to

Eq. (17) to find estimates for F , Is, and Ith. (2d) Use the

fitted parameters to calculate the rate-equation parameters.

3. Verify the extracted parameters: measure the power

output of the laser under gain-switched conditions, for dif-

ferent combinations of bias and modulation current. Use

a sine wave modulation to reduce the effects of high-

frequency parasitics from the laser circuitry. Separately,

measure the output of the pulse generator and use this to

define I(t) in the rate equations. Solve the ordinary rate

equations, without noise terms, with the extracted parame-

ters to simulate the laser power output and compare this to

the measurements.

4. Use the model to establish operational limits: for a

range of bias and modulation currents, perform a Monte

Carlo simulation of the phase noise. Solve the stochastic

rate equations repeatedly, and record the change in phase

over one period. Calculate the variance of the resulting

phase values to obtain an estimate for
〈

�φ2(t)
〉

, which

quantifies the phase noise. A value of
〈

�φ2(t)
〉

> 9 is

required for the phase to be approximately uniformly

distributed.

5. Verify the operational limits: using the phase-noise

QRNG setup (Fig. 1), measure the intensity distribution at

the output of the asymmetric interferometer. Fit this dis-

tribution to Eq. (19), with
〈

�φ2(t)
〉

as a fitting parameter

to measure the phase noise. Compare these measurements

with the Monte Carlo simulation results.
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