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RESEARCH ARTICLE Open Access

Multiple imputation for patient reported
outcome measures in randomised
controlled trials: advantages and
disadvantages of imputing at the item,
subscale or composite score level
Ines Rombach1,2* , Alastair M. Gray1, Crispin Jenkinson3, David W. Murray2 and Oliver Rivero-Arias4

Abstract

Background: Missing data can introduce bias in the results of randomised controlled trials (RCTs), but are typically

unavoidable in pragmatic clinical research, especially when patient reported outcome measures (PROMs) are used.

Traditionally applied to the composite PROMs score of multi-item instruments, some recent research suggests that

multiple imputation (MI) at the item level may be preferable under certain scenarios.

This paper presents practical guidance on the choice of MI models for handling missing PROMs data based on the

characteristics of the trial dataset. The comparative performance of complete cases analysis, which is commonly

used in the analysis of RCTs, is also considered.

Methods: Realistic missing at random data were simulated using follow-up data from an RCT considering three different

PROMs (Oxford Knee Score (OKS), EuroQoL 5 Dimensions 3 Levels (EQ-5D-3L), 12-item Short Form Survey (SF-12)). Data

were multiply imputed at the item (using ordinal logit and predicted mean matching models), sub-scale and score level;

unadjusted mean outcomes, as well as treatment effects from linear regression models were obtained for 1000

simulations. Performance was assessed by root mean square errors (RMSE) and mean absolute errors (MAE).

Results: Convergence problems were observed for MI at the item level. Performance generally improved with

increasing sample sizes and lower percentages of missing data. Imputation at the score and subscale level

outperformed imputation at the item level in small sample sizes (n ≤ 200). Imputation at the item level is

more accurate for high proportions of item-nonresponse. All methods provided similar results for large sample

sizes (≥500) in this particular case study.

Conclusions: Many factors, including the prevalence of missing data in the study, sample size, the number of

items within the PROM and numbers of levels within the individual items, and planned analyses need

consideration when choosing an imputation model for missing PROMs data.
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Background
Missing data can introduce bias in the results of rando-

mised controlled trials (RCTs), which can have a negative

impact on clinical decisions derived from them, and

ultimately patient care. Patient reported outcome mea-

sures (PROMs), which are increasingly used in RCTs as

primary or key secondary endpoints [1, 2], can be particu-

larly susceptible to containing missing data, either due to

unasnwered or incomplete questionnaires [3, 4]. PROMs

are carefully designed and validated instruments, often in

questionnaire form, intended to capture information on

health status from the patients’ perspective [5–7]. The

majority of PROMs consists of several questions, or items,

and are hence referred to as multi-item PROMs. The

PROMs items are usually combined into one composite

score and/or subscales. Missing data in multi-item

PROMs can occur either in the form of unit-nonresponse,

where all items have been left unanswered [8], or

item-nonresponse, where responses to the PROM are

incomplete [9]. Missing data can affect the calculation of

the composite score and/or subscales. Some scoring man-

uals allow for small amounts of missing items, while other

scoring manuals do not facilitate the calculation of com-

posite scores in the presence of any missing items.

Traditionally, research concerning missing data in

PROMs has focussed on how the missing PROMs com-

posite scores should be handled, with multiple imput-

ation (MI) methods considered to be one of the most

reliable methods [10–12], although MI is not commonly

implemented in the analysis of RCT data [13–16]. How-

ever, for multi-item PROMs, different imputation ap-

proaches are possible, e.g. imputation at the composite

score, subscale (where available) or items level. Imput-

ation at the item or subscale level may yield additional

information and therefore improve the accuracy of such

imputations.

Research has not commonly been performed on the

comparison between these approaches. Work by Simons

et al. [17] compared imputation at the item and compos-

ite score level for estimating EuroQoL 5 Dimensions 3

Levels (EQ-5D-3L) composite scores in the presence of

missing at random (MAR) data. The authors found that

both approaches performed similarly in terms of accur-

acy for larger data sets (n > 500) and where missing data

primarily followed a unit-nonresponse pattern for all

different proportions of missing data investigated (i.e. 5–

40% of missing data). As the sample size was decreased

to 500 observations or fewer, both approaches

performed similarly for up to 10% of missing data, how-

ever, MI at the composite score level was found to be

more accurate for 20 and 40% of missing data within these

smaller sample sizes. MI at the item level was found to be

performing better as the proportion of item-nonresponse

increased. The authors recommended further research to

assess generalisability of their findings to other PROMS

with potentially different psychometric properties.

Eekhout et al. [18] compared a number of different

methods to account for missing data in the Pain Coping

Inventory (PCI), a 12-item PROM. In their work, the

PCI was used as a covariate in a regression model, and

the different MI approaches were compared in terms of

accuracy and precision of the fitted PCI regression coef-

ficients. In this scenario, MI at the item level achieved

the best results, while MI applied to the composite

scores resulted in overestimated standard errors where

large percentages (> 50%) of participants had missing

data. The authors also found that complete cases ana-

lysis (CCA), which does not impute missing data, yielded

acceptable results in terms of regression coefficients.

However, standard errors were overestimated, especially

when more than 10% of the study population had some

missing PROMs data, and therefore the authors advised

against the use of CCA. However, other research has

suggested that CCA may be appropriate for the analysis

of RCTs under specific circumstances, i.e. when missing

data is limited to a single outcome and if the variables in

the MAR mechanism are included in the covariates in

the analysis model [19].

Hypotheses for this work

The composite scores, and subscales where applicable,

for many multi-item PROMs are calculated as the

unweighted [20] or weighted [11, 12] sum of the items.

Generally, composite scores cannot be derived if at least

one item is missing, although some scoring manuals

allow for a small number of items to be substituted by

the mean score of the available items [20, 21].

All items contribute to the calculation of the compos-

ite scores. Therefore, we hypothesise, similarly to Simons

et al. [17], that where the MAR data follow an

item-nonresponse pattern, imputation at the item level is

superior to that at the composite score or subscale level,

particularly as the proportion of item-nonresponse

increases, as the latter approaches disregard some of the

available data. Correspondingly, we hypothesise that

where the MAR data follow primarily a unit-nonresponse

pattern, all MI approaches perform similarly, as in this

scenario the MI at the item level cannot utilise any add-

itional information that is not available to the MI at the

composite score or subscale level. Where validated sub-

scales exist for a PROM, we hypothesise that there are

benefits in terms of accuracy when imputing at the sub-

scale level compared to imputing at the composite score

level, given sufficient data is available to calculate at least

one of the subscales. No benefit of applying MI at the sub-

scale level over MI at the composite score level is ex-

pected in unit-nonresponse scenarios, or where neither of

the subscales can be estimated due to missing data.
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CCA is expected to perform similarly to MI at the

composite score level under MAR for appropriately ad-

justed analysis models, i.e. where the covariates include

the key components of the MAR mechanism [19].

Aims of this research

This research aims to compare different MI approaches

for handling missing PROMs data, i.e. imputation at

the composite score, subscale (where appropriate) or

item level, while also exploring the benefits and disad-

vantages of these approaches. A variety of different

MAR patterns, sample sizes and proportions of missing

data are explored using simulation studies using three

widely used PROMs. Performance of the different im-

putation approaches in terms for producing composite

scores and adjusted treatment effects are considered,

together with the performance of CCA for the gener-

ation of treatment effects. This research aims to valid-

ate previous findings in a different dataset, and to

expand this research to additional PROMs. This work

will generate clearer guidelines for the appropriate

handling of missing PROMs endpoints, specifically with

regards to the use of MI.

Methods
Design of the simulation exercise

An overview of the simulation study is provided in Fig. 1.

Simulations started with a complete dataset of the relevant

sample size. A pre-specified proportion of MAR data was

then introduced in the PROMs data at follow-up. MI was

performed at the composite score, subscale (where applic-

able) and item level. Estimates of the mean composite

scores, treatment effects and corresponding standard

errors (SE) were obtained from the complete dataset (i.e.

the ‘true’ estimates) and the different MI approaches. In

addition, the treatment effect was also estimated from the

dataset with imposed missing data using a CCA, i.e. an

analysis that excludes all participants with missing out-

come data. The treatment effects were estimated using a

regression model with the relevant composite PROMs

score as the outcome variable adjusting for baseline com-

posite scores, randomisation allocation, age and sex [22].

This simulation study aimed to obtain 1000 independ-

ent iterations for which the imputation models success-

fully converged (i.e. 1000 valid imputation results) for

each scenario. Where imputation models did not

converge, additional iterations were run (up to a max-

imum of 11,000 iterations per scenario).

The parameters of interest in this simulation study are

the mean composite outcome scores and the average

treatment effect. The performance parameters used in

this study were root mean square errors (RMSE), mean

absolute errors (MAE – shown in Additional file 1).

The simulation work was performed in StataSE 14

[23], and the mi impute and mi estimate commands

were used.

Case study

This simulation study was based on data collected

within the Knee Arthroplasty Trial (KAT) [22, 24].

KAT is a large multi-centre RCT considering the clin-

ical and cost effectiveness of new developments in

knee replacements. KAT was designed as a partial factor-

ial, pragmatic trial, with participants being randomised to

at least one of four different comparisons. In this simula-

tion study, only one of the comparisons is considered, i.e.

patellar resurfacing vs. no patellar resurfacing. Long-term

follow-up beyond 10 years is ongoing for KAT. Here, data

for a single follow-up time point at 5 years post random-

isation were considered, and only participants with fully

observed baseline and outcome data were included in the

simulation study.

Fig. 1 Design of the simulation study. MAR – missing at random, MI – multiple imputation, SE – standard error, RMSE – root mean square error,

MAR – mean absolute error
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A total of 1715 participants were randomised to the

patellar resurfacing vs. no patellar resurfacing comparison.

In this simulation study, the 11% of participants known to

have died before the 5 year follow-up were excluded. Of

the 1526 remaining participants, 5 year follow-up data for

the Oxford Knee Score (OKS), EQ-5D-3L and 12 item

Short Form Survey (SF-12) were unavailable for 17, 18

and 33%, respectively, with missing data rates similar in

both treatment arms. The OKS can be calculated for up

to two missing items, and there are additional participants

(approximately 7%) for whom one or two items are miss-

ing. One thousand four hundred twenty-two participants

were eligible to complete version 2 of the SF-12. The

remaining 104 participants completed version 1 of the

SF-12 at a minimum of one point in the trial and were not

included in these summaries.

Correlations between the PROMs (composite scores,

subscales and items) and the baseline data to be used in

the imputation and analysis modes are shown in the

Additional file 1. The correlations are low to moderate,

which is common in RCT datasets.

Instruments

The 5-year follow-up data for three patient reported out-

come measures is used, namely:

� The Oxford Knee Score (OKS): an instrument

designed to assess outcomes following a knee

replacement in RCTs [25, 26]. It consists of 12 five-

level items, and the composite score ranges from 0

to 48. The OKS can be divided into validated pain

and function subscales [20]. Higher scores indicate

better outcomes.

� The SF-12: a 12-item generic health measure [27, 28].

The SF-12 generates two subscales, the physical

component summary score (PCS) and the mental

health component summary score (MCS). Both

subscales are standardised to have a mean of 50 with

a standard deviation of 10 [29]. As the calculations for

both the MSC and PCS utilise all items, rather than

just a subset, they are referred to as ‘composite scores’

subsequently for consistency. Higher scores indicate

better outcomes.

� EQ-5D-3L: a utility questionnaire assessing

participants’ health state based on their mobility,

self-care, usual activities, pain/discomfort and anx-

iety/depression [30]. Scores of 1 indicate full health,

0 indicates a health state equal to death, and scores

lower than 0 indicate health states worse than death.

Missing data simulation

Missing data were introduced in a subset of participants

with completely observed data for their PROMs outcomes

and relevant baseline data (N = 1030 for the OKS, N = 1160

for the EQ-5D-3L and N = 797 for the SF-12 MCS and

PCS – i.e. the ‘base cases’). The simulated missing data pat-

terns mirrored those most commonly observed at the se-

lected follow-up for the three PROMs, which followed

predominantly a unit-nonresponse pattern (Table 1).

For the OKS, additional missing data patterns were simu-

lated, i.e. a scenario where all missing data was due to

unit-nonresponse, as well as a scenario where 70% of the

missing data were due to item-missingness. MAR data

was simulated using an algorithm by van Buuren et al.

[31] and also outlined in publications by Yu et al. [32] and

Simons et al. [17]. This algorithm allows researchers to

vary the missing data patterns, as well as the percentage of

Table 1 Missing data patterns simulated for each PROM

OKS SF-12 SF-12 EQ-5D-3L EQ-5D-3L

OKS missingness
patterns

Observed missing data
pattern

SF-12 missingness
patterns

Observed missing data
pattern

EQ-5D-3L missingness
patterns

Observed missing data
pattern

Unit-nonresponse 73.1% Unit-nonresponse 56.1% Unit-nonresponse 87.9%

Only item 7
missing

15.6% Only item 2b missing 20.3% Only item 5 missing 5.1%

Only item 4
missing

3.3% Only item 4b missing 6.5% Only item 1 missing 2.6%

Only item 6
missing

2.7% Items 2b and 3b
missing

4.5% Only item 4 missing 1.8%

Only item 9
missing

2.1% Only item 3b missing 4.0% Only item 3 missing 1.5%

Only item 10
missing

1.5% Items 2b, 3b and 4b
missing

3.5% Only item 2 missing 1.1%

Only item 1
missing

0.9% Items 2b and 4b
missing

3.3% n/a Other patterns occurred too
infrequently to be used in
simulation

Only item 12
missing

0.9% Only item 6c missing 1.8% n/a
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participants with missing data; implementation followed

the steps outlined in Fig. 2. Missing data were generated

for 5, 10, 20 and 40% of participants. Sample sizes of 100,

200, 500 and the maximum sample available were consid-

ered in this simulation work. Smaller sample sizes were

obtained by sampling the required number of participants

from the full dataset without replacement prior to the

simulation of missing data.

Variables included in the algorithm to generate MAR

data were treatment allocation, age, baseline PROMs

score, height, ASA Grade (American Society of Anesthesi-

ologists physical status classification system) and size of

the recruiting centre (< 30, 30–100, > 100 participants).

Implementation of the MI models

All imputation models were implemented using an MI by

chained equations (MICE) approach [33]. MI models to

handle missing continuous data (i.e. composite scores and

subscales) were based on linear regression models, using a

predicted mean matching (PMM) approach. Imputations

at the item level were implemented as ordered logistic re-

gression models and also as regression models (using

PMM), treating the items as continuous variables. Covari-

ates used in all MI models included the baseline compos-

ite PROM score, as well as all variables used in the

analysis model and those used in the simulation of MAR

data. For the OKS simulations, MI models at the subscale

and item level also included the baseline values of the

subscales.

Imputations were performed separately by randomised

treatment, where feasible [19]. This approach allows fac-

tors such as the distribution of outcomes, their variance

and relationship with any of the covariates to differ

between treatment arms. If model convergence was low,

imputations included the randomised treatment as a

covariate instead. The number of imputations was 50 for

all imputations at the composite score and subscale

level. For MI at the item level and simulations reprodu-

cing the observed missing data patterns, 50 imputations

were run for the base cases, and imputations equal to

the percentage of missing data were used for smaller

sample size [33], while 10 imputations were used for

exploratory scenarios.

The MI models at the item level were complex, and

convergence issues have been demonstrated [17]. There-

fore, imputations at the item level were run one-by-one

(i.e. using the add(1) option in Stata’s mi impute com-

mand), which ensured that additional imputations con-

tinued to be generated after one out of the required

imputations failed. We allowed for up to 50% of the re-

quired imputations to fail to converge before an iteration

of the item level imputation simulation was classed as

having failed.

After the presentation of the simulation results, the

different imputation approaches were applied to a case

study to examine how they affected the interpretation of

the trial. This example included a random subset of 200

participants, with missing data imposed as described

above for approximately 20% of participants.

Results

Feasibility of the MI approaches

Imputations at the composite score and subscale level

were feasible in all simulation scenarios. However, conver-

gence failures were observed for almost all scenarios at

the item level using the ologit approach; instances of

non-convergence increased markedly for decreasing sam-

ple sizes and increasing proportions of missing data

(Table 2). For this reason, item-level imputations for the

OKS and SF-12 were not run separately by treatment arm

as a compromise. Considerations for this approach are

discussed later. Scenarios with fewer than 1000 valid im-

putations at the item level were not included in subse-

quent comparisons, e.g. insufficient valid results were

Fig. 2 Depiction of the algorithm used for each iteration simulation

of missing PROMs data within the complete cases dataset
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obtained for MI at the item level for 10% or more missing

data for sample sizes of 100, and for the combination of

40% of missing data and a sample size of 200.

Some instances of non-convergence were also ob-

served for small sample sizes for imputation at the item

level using the PMM approach.

Performance of the different imputation approaches and

CCA

Generally, RMSE (and MAE; see Additional file 1) in-

creased with increasing percentages of missing data, as

well as with decreasing sample size.

OKS with observed missing data pattern

Figure 3 shows the RMSE in the estimated OKS com-

posite scores after applying the different MI approaches

to datasets covering a range of sample sizes and propor-

tions of participants with missing PROMs data following

the observed missing data pattern.

RMSE for MI at the composite score level was almost

identical to the RMSE for MI at the subscale level.

Higher levels of the RMSE were observed for MI at the

item level (both the ordinal logit and PMM approach)

for higher proportions of missing data and smaller sam-

ple sizes. The SEs for these composite score estimates

were larger than the true SE for scenarios with 20 and

40% of MAR data for all imputation approaches (Fig. 4).

Figure 5 presents the RMSE in the treatment effect esti-

mates using the imputed OKS composite scores as the

outcome variable in the regression model. All MI ap-

proaches and CCA performed very similarly. As above, the

SE for these estimates was marginally increased compared

to the true SE for scenarios of 20% or more MAR data.

Considering other missing data patterns for the OKS

Under a unit-nonresponse scenario, the RMSE observed in

the composite scores estimates was similar for all imput-

ation at the composite score, subscale and item level using

the ologit approach, except for small sample sizes and 40%

of missing data, where performance of the item level MI

was marginally worse (Fig. 6). Imputation at the item level

using a PMM approach performed worse. MI approaches

and the CCA performed similarly in terms of bias observed

in the treatment effects, except for imputation at the

item level using a PMM approach, which had higher

RMSEs for larger proportions of missing data.

When the item-nonresponse was increased to 70%, all

approaches performed similarly for large sample sizes. Item

imputation (both ologit and PMM approaches) performed

worse than its comparators for small sample sizes when

composite scores were estimated (Fig. 7). Considering the

estimates of the treatment effects, imputation at the item

and subscale level offered a marginal benefit over imput-

ation at the composite score level and CCA in terms of the

performance measure observed in the treatment effects for

large proportions of missing data (20% or more), as seen in

Fig. 8. The different approaches of handling missing data

performed similarly for smaller proportions of missing data.

Table 2 Proportion of item-level simulations (ologit) not converging until 1000 valid simulation results were obtained*

Sample
size

Proportion
of missing
data

OKS SF-12 EQ-5D-3L

Observed missing data
pattern

Unit-nonresponse 70% item
missingness

Observed missing data
pattern

Observed missing data
pattern

100 5 88.2% 89.7% 88.0% 91.9%* 72.1%

10 95.6%* 95.3%* 94.1%* 98.2%* 83.8%

20 99.8%* 99.6%* 99.1%* 99.9%* 94.4%*

40 100%* 100%* 100%* 100%* 99.9%*

200 5 40.1% 22.7% 35.4% 52.1% 19.9%

10 50.8% 25.2% 45.6% 69.6% 25.5%

20 64.5% 32.1% 57.0% 87.2% 45.30%

40 99.7%* 60.0% 78.4% 99.3%* 85.6%

500 5 21.6% 8.84% 20.0% 3.5% 11.2%

10 24.9% 9.3% 23.4% 6.3% 14.2%

20 27.8% 11.0% 27.5% 12.8% 17.3%

40 41.4% 16.0% 28.6% 34.7% 23.6%

Full
samplea

5 1.0% 0% 0.7% 0% 0.3%

10 3.9% 0.1% 1.6% 0.2% 1.86%

20 12.5% 0.4% 5.2% 1.1% 6.8%

40 28.0% 3.8% 10.4% 8.4% 17.4%

*For scenarios highlighted *, 1000 valid simulations could not be obtained, and these scenarios are not included in subsequent summaries
aThe full sample includes 1030 observation for the OKS simulation, 797 for the SF-12 and 1160 for the EQ-5D-3L
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SF-12 simulation results

Simulated missing data in the SF-12 was due to item

missingness for almost 45% of participants. RMSEs

observed in the physical component summary score

(PCS) were very similar for imputations at the com-

posite score and item-level imputation (ordinal logit),

but higher for the item level imputation using the

PMM approach. For the mental health component

summary score (MCS), higher RMSEs were produced

by MI at the item level (ologit approach), for combi-

nations of higher proportions of missing data and

smaller sample sizes (Fig. 9), with similar results
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imputation; OKS – Oxford knee score; PMM – Predicted mean matching; RMSE – Root mean square error
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observed otherwise. Imputation at the item level using

the PMM approach produced higher RMSEs for

higher proportions of missing data.

RMSEs observed in the treatment effects were marginally

lower when item imputation was used for combinations of

larger proportions of missing data. MI at the composite

score level and CCA performed similarly (Fig. 10 –shown

for the PCS).

All approaches to handling missing data resulted in

similar increases in the SE.
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Fig. 5 RMSE in the treatment effect estimates using the imputed OKS composite scores as the outcome variable in the regression model
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EQ-5D-3L simulation results

Almost 88% of the missing EQ-5D-3L data were due to

unit-nonresponse. Considering estimates of the compos-

ite scores (Fig. 11), imputation at the composite score

level and at the item level using the PMM approach

performed similarly. Imputation at the item level using

the ologit approach performed worse for combinations

of large proportions of missing data and smaller sample

sizes. A similar trend was observed for the estimated

treatment effects (Fig. 12), although the differences in
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Fig. 7 RMSE in the OKS composite score estimates (70% item-nonresponse simulations). Abbreviations: MAR – Missing at random; MI – Multiple

imputation; OKS – Oxford knee score; PMM – Predicted mean matching; RMSE – Root mean square error
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Fig. 12 RMSE in the treatment coefficient estimates using the imputed EQ-5D-3L composite scores as the outcome variable in the regression model.
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the RMSE between the item level imputation using the

ologit approache and the other imputation approaches

were less pronounced. The CCA performed similarly to MI

at the composite score level. All approaches performed

similarly for large sample sizes.

Additional results using the MAE confirmed the findings

reported here and can be accessed in the Additional file 1.

Application of the different imputation approaches to a

case study

The case study includes 200 participants, equally split

between the treatment arms, with 17% of participants

having missing OKS outcome data. The estimates of the

treatment effect are displayed in Table 3. The data shows

that the estimates produced from the imputation at the

item level (ologit) are most similar to the CCA, while

the treatment effect from the imputation at the item

level using the PMM approach, subscale and composite

levels are very similar, and slightly lower than the

estimates produced by the other approaches. However,

in this case, all analyses approaches lead to the same

conclusion, i.e. that there is insufficient evidence to sug-

gest a statistically significant difference in OKS out-

comes between the trial arms.

Discussion

PROMs are commonly used in clinical research, but can

be prone to missing data. Analytical methods to limit

the potential bias introduced by missing data are widely

discussed in the current literature, with MI considered

to be one of the most appropriate methods to handle

missing data. In this simulation work, MI was not shown

to perform significantly better than CCA in estimating

treatment effects, in line with the literature [22]. How-

ever, this is due to the fact that the variables in the ana-

lysis model were also very influential in the algorithm

generating the MAR data. In reality, it is likely that the

MAR mechanism will be related to more variables out-

side the analysis model, and hence MI may be preferable

to CCA due to its ability to account for complex MAR

mechanisms.

When implementing MI, there is little guidance on

whether imputation should be applied at the composite

score, subscale or item level. This simulation work has

shown that MI at the item level may not be feasible for

small sample sizes, particularly as the number of

PROMS items increases. However, where feasible, it can

have advantages over imputation at the composite score

level, or subscale level, where applicable, in term of

accuracy of the statistical output or facilitation of subse-

quent analyses. Arguably, the differences in performance

for the imputation approaches were relatively small, e.g.

up to one point on the OKS, which ranges from 0 to 48,

and small differences in the estimated treatment effects,

as shown in the case study. These differences lie within

the measurement error of the PROM, and do not exceed

the minimal important difference, which are estimated

to be four points or five points [34]. However, many tri-

als aim to detect small effect sizes; i.e. the KAT study

was powered to detect a difference of 1.5 points in the

OKS (patella resurfacing comparison) [22]. Therefore,

even these moderate differences could affect trial con-

clusions, and the choice of MI approach hence needs to

be considered carefully, taking into account a multitude

of factors:

Sample size, proportion of missing data and missing data

patterns

The different imputation approaches yielded similar

results for large sample sizes, as well as smaller sample

sizes with 10% missing data or less, except for simula-

tions with high proportions of item-nonresponse, where

imputation at the item or subscale level (OKS) may be

advantageous. For smaller samples with large amounts

of missing data, imputation at the composite score level

is likely to be more beneficial in scenarios with a pre-

dominantly unit-nonresponse pattern, in line with previ-

ous research [17]. Imputation at the item or subscale

level (where available) becomes more beneficial with

increasing amounts of item-nonresponse.

Generally, imputation at the item level may not be

feasible for scenarios with small sample sizes.

Feasibility of the imputation model

Item-level imputation models are complex, and may not

be feasible for small sample sizes and/or larger propor-

tions of missing data, and the issue of non-convergence

becomes increasingly prominent with increasing amounts

of items to be imputed, and lower counts in some of the

item levels. Using treatment as an explanatory variable in

Table 3 Impact of the different analysis approaches on the trial conclusion

Analysis approach Treatment effect (95% CI) Number of participants included

Complete cases analysis 0.9 (−2.6, 4.4) 167

MI at the composite score level 0.7 (−2.8, 4.2) 200

MI at the subscale level 0.7 (− 2.7, 4.1) 200

MI at the item level (ologit) 0.9 (−2.5, 4.3) 200

MI at the item level (PMM) 0.6 (−2.7, 3.9) 200
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the MI model instead of running imputations separately

by treatment arm may enable convergence of complex im-

putation models at the item level when imputing using

ordinal logit models for the PROM items. However, this

approach is not in line with current guidance and its

appropriateness is dependent on distributional assump-

tions [19, 35], which need to be assessed on a case-by-case

basis. The approach was used in this simulation study as a

compromise to achieve higher convergence rates, and jus-

tifiable because the distribution of outcomes, their vari-

ance and relationship with other covariates was assumed

to be the same across treatment arms. However, re-

searchers should bear in mind that this assumption may

not hold for other datasets.

Non-convergence of the item imputation using ordinal

logit models was caused by perfect prediction, due to

very low numbers of observations in one or more of the

levels in one of the items to be imputed. Therefore, be-

fore attempting imputation at the item level using or-

dinal logit models, the dataset should be investigated

thoroughly for low count and potential problems due to

perfect prediction. Even if there is no perfect prediction

in the data for the imputation model for a specific item,

low counts may still result in unreliable estimates and

standard errors to be produced by the statistical models,

which are likely to lead to bias in the MI estimates.

Therefore, ahead of implementing imputation models,

each statistical model to be used in the imputation

should be run individually, and separately (by treatment

arm if imputations are to be run this way), to confirm

that appropriate estimates can be produced.

For combinations of small sample sizes and larger pro-

portions of missing data, problems were also observed

for imputation at the item level were a regression model

using PMM was used to impute missing data. These is-

sues were related to overfitting of the model, i.e. the use

of too many covariates for small amounts of data. Again,

the individual statistical models should be checked

ahead of implementing any imputation models.

Planned analysis

While the different imputation approaches may not offer

distinct benefits in terms of reducing the RMSE and

MAR in some circumstances, there may still be situa-

tions where imputation at the item or subscale level is

advantageous. This is true where the planned analysis in-

cludes not only the analysis of the composite scores,

but also of the subscales (where applicable) or even

the PROMs items. If feasible, imputation at the item

or subscale level ensures that a common imputation

dataset can be used for all analyses related to the

relevant PROM.

Overall, performance of the analysis approaches

decreased with increasing proportions of missing data,

emphasising the importance of preventing the occur-

rence of missing data prospectively [36].

Strengths and limitations

This research contributes to the literature in that it uses

new datasets to validate previous work on the effect MI

at the item and composite score level on the RMSE and

MAR observed in the composite scores [17] and treat-

ment effects [18] in PROMS analysis to different data-

sets and patient populations. In addition, previous

research has been extended to additional questionnaires,

and additional missing data scenarios, thus offering add-

itional guidance to researchers faced with missing PROMs

data in RCTs. This study covers a range of sample sizes

(100 to approximately 1000) and rates of missing data (5,

10, 20 and 40%), which are representative of current fig-

ures observed in published RCTs [14–16, 37, 38]. While

RCTs with lower sample sizes are also common, these are

often pilot and feasibility studies which focus on endpoints

such as recruitment and completeness of endpoints, or

are underpowered for the type of analyses used in this

simulation study.

Although every effort was made to conduct this simu-

lation study as thoroughly and completely as possible, it

is not without limitations. Scenarios considered are lim-

ited to specific sample sizes, proportions of missing data

and missing data patterns. However, we believe that

sample sizes between 100 to around 1000 participants,

and missing data levels between 5 and 40% are represen-

tative for the vast majority of RCTs. Future work on lar-

ger sample sizes, expanding the generalisability to

larger-scale epidemiological research, is needed. These

studies often collect a larger pool of patient demograph-

ics, the inclusion of which may affect the performance of

the imputation models. Similarly, the missing data pat-

terns used were based on those observed in the KAT

trial. It is believed that these patterns are realistic and

representative for the PROMs used, and we included

variations in the amount of unit-nonresponse for the

OKS simulations.

This simulation work is restricted to the KAT dataset.

Additional validation work in further datasets, other dis-

ease areas, as well as PROMs may be useful to explore if

the recommendations provided here still hold when the

different approaches are applied to datasets with differ-

ent correlations between baseline and outcome data,

distributions of outcomes, different treatment mecha-

nisms and different MAR patterns. However, the fact

that findings by Simons et al. [17] and Eekhout et al.

[18] could be replicated indicates that findings are gen-

eralisable. The main body of this simulation work used

the missing data pattern observed in the KAT study at the

5-year follow-up. Additional missing data patterns (i.e. unit-

nonresponse and increased levels of item missingness)
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were only considered for the OKS, in order to supplement

the findings by Simons et al. [17] on the effect of increased

proportions of unit-nonresponse in the EQ-5D-3L.

Findings are limited to PROMs with up to 12 items.

Therefore, uncertainty still exists as to the maximum

number of items within a PROM for which item imput-

ation would still be considered feasible, which is likely to

be related to both the construct of the PROM, as well as

the sample size. However, we believe that larger datasets

are needed to ensure feasibility of item imputation for

PROMs with more than 12 items, which are therefore

not within the remit of this research.

In this simulation work, the relative performance of

the imputation approaches appeared to be related to the

outcome of interest, with smaller differences for the esti-

mation of the treatment effect compared to the estima-

tion of the composite scores across all scenarios. Further

research is needed to establish if this is an artefact of

these parameters being estimated on different scales (i.e.

the OKS ranges from 0 to 48, while the treatment effects

observed in the trial were nonsignificant and close to

zero), or whether this is a more generalisable finding.

This study only considers analysis scenarios with a sin-

gle follow-up time point. This approach was chosen be-

cause the primary analyses of many trials focus on the

primary endpoint at a specific follow-up time point, ra-

ther than analyses approaches that take into account the

longitudinal data. Imputation of PROMs item level data

at additional time points was ruled out as infeasible due

to the low convergence rates already observed in the

current scenarios. While including in the item level im-

putation model of PROMs follow-up data at intermedi-

ate time points may have improved imputations at the

five-year follow-up, in practice this data is often less well

collected at the outcome data at the primary follow-up

time point. This leads to additional complexity of the

imputation models, and was therefore not included in

this study. Researchers should examine on a

case-by-case basis if sufficient intermediate or later

follow-up data is available to benefit the imputation of

missing outcome data.

Missing not at random (MNAR) mechanism and mis-

specification of MI models were not considered in this

paper, although Simons et al. [17] reported benefits of

MI at the item level over MI at the score level for the

latter scenario. However, it was felt that MI levels could

be misspecified in a number of ways, and that the results

from selected misspecifications may not be generalisable.

This is because some variables are much more predictive

of the missing data than others. The same applies to

MNAR scenarios, which could be considered as misspe-

cified MI models, as they are unable to account for im-

portant factors that are predictive of data being missing

as well as the missing observations themselves. We

recommend that MNAR analyses are best addressed as

part of a sensitivity analysis [39–41].

Some of the non-convergence rates observed in the re-

sults are very high, and could have been improved by

simplifying the MI models. However, MI models were

constructed using the full base case datasets, and were

then applied to all sample size scenarios to allow a direct

comparison of performance between the different sce-

narios. In reality, MI models should be generated based

on the dataset under consideration, and should adjust

their complexity based on the type and quantity of data

available, and ensure that relevant variables that are good

predictors of data being missing, and/or the variables to

be imputed, as well as that the functional form of the im-

putation model is appropriate for the data. Here, the cor-

relations between outcomes and the covariates used in the

imputation models were low to moderate. While this is

representative of RCTs in general, the inclusion of more

highly correlated variables will improve imputation re-

sults. Researchers should also run all required imputations

within the same model. The approach chosen in this

simulation study, whereby item level imputations were

run one-by-one to exclude occasional instances of

non-converges was chosen as a compromise to increase

convergence rates within these simulations.

The high failure rates in some of the simulations may

have resulted in a systematic selection bias being ob-

served for the results of the relevant simulation scenar-

ios, due to item MI being more likely to fail in datasets

with certain characteristics. MI at the item level is con-

sidered less likely to be feasible in these scenarios, which

were typically those with smaller sample sizes and higher

missing data rates. More likely, however, is that for the

smaller sample sizes, the ordinal logit models used in

the item regression are of suboptimal fit to produce reli-

able prediction to inform the imputations. For this rea-

son, imputation at the composite score or subscale level

is recommended for these scenarios. Simulations with

higher convergence rates are not thought to be affected.

Different numbers of imputations were used for the im-

putations at the item level, mainly for practical reasons in-

cluding time taken to perform large numbers of the

imputations at this level, and were therefore inconsistent

across some of the scenarios. The number of imputations

performed were still in line with available guidance, and

are therefore expected to produce robust results. However,

it may be possible that the differences in the number of

imputations has added some variation to the study results.

Finally, simulations were restricted to 1000 iterations,

again mainly for practical reasons including time taken

to perform large numbers of the imputations at the item

level. Additional simulations (up to 5000) were run for

isolated scenarios, and results were consistent with those

presented in this paper.
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Conclusions
We concluded that the differences between the imput-

ation at the item/subscale level and the imputation at the

composite score level are likely to be small across realistic

settings in studies with incomplete patient-reported

outcome measures.

In idealistic settings, the imputation at the item/subscale

level may provide more precise estimates of treatment ef-

fect compared to the imputation at the composite score

level or CCA, because it better captures the correlation

amongst the different items.

However, both the case study and simulations sug-

gested that the imputation at the item/subscale level is

often infeasible and prone to convergence (perfect pre-

diction) issues, and hence unlikely to be an appropriate

method for imputing missing PROMs across more real-

istic circumstances.

Choosing an appropriate MI approach can help ensure

the trial reports accurate estimates of treatment effects

in the presence of missing data. However, better analyt-

ical approaches for handling missing data do not reduce

the importance of taking active steps to minimising the

occurrence of missing data at the trial’s design and

follow-up stages. Appropriate sensitivity analysis to

assess the impact of missing data on the trial results

when changing the underlying assumptions about the

missing data mechanism also remains imperative.
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