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ABSTRACT

The Molecules with ALMA at Planet-forming Scales large program (MAPS LP) surveyed the chem-

ical structures of five protoplanetary disks across more than 40 different spectral lines at high angular

resolution (0.′′15 and 0.′′30 beams for Bands 6 and 3, respectively) and sensitivity (spanning 0.3 -
1.3mJy {beam}−1 and 0.4 - 1.9mJy {beam}−1 for Bands 6 and 3, respectively). In this article, we
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describe our multi-stage workflow—built around the CASA tclean image deconvolution procedure—
that we used to generate the core data product of the MAPS LP: the position-position-velocity image

cubes for each spectral line. Owing to the expansive nature of the survey, we encountered a range of

imaging challenges; some are familiar to the sub-mm protoplanetary disk community, like the benefits

of using an accurate CLEAN mask, and others less well-known, like the incorrect default flux scaling
of the CLEAN residual map first described in Jorsater & van Moorsel (1995) (the “JvM effect”). We

distill lessons learned into recommended workflows for synthesizing image cubes of molecular emission.
In particular, we describe how to produce image cubes with accurate fluxes via the “JvM correction,”

a procedure that is generally applicable to any image synthesized via CLEAN deconvolution but is

especially critical for low S/N emission. We further explain how we used visibility tapering to pro-

mote a common, fiducial beam size and contextualize the interpretation of signal to noise ratio when

detecting molecular emission from protoplanetary disks. This paper is part of the MAPS special issue
of the Astrophysical Journal Supplement.

Keywords: protoplanetary disks — submillimeter astronomy — radio interferometry — deconvolution

— surveys

1. INTRODUCTION

Sub-mm interferometers like the Atacama Large Mil-

limeter/submillimeter Array (ALMA) enable high spa-

tial and spectral resolution observations of protoplan-

etary disks. The Molecules with ALMA at Planet-

forming Scales large program (MAPS LP) used ALMA
to survey the chemical structures of five protoplanetary
disks across more than 40 different spectral lines: an
overview of the program and references to the full suite

of MAPS papers is provided in Oberg et al. (2021).

In this paper, we describe the imaging strategies we
employed to synthesize position-position-velocity image

cubes from the interferometric visibilities. These im-
age cubes form a core data product of the MAPS LP
from which other value-added data products like mo-

ment maps, radial intensity profiles, and emission sur-

faces are derived (Law et al. 2021a,b).

Consider an astronomical source whose spatial sky
brightness distribution is described by I. Over small an-

gular extents, the distribution is indexed I(l,m) by the
direction cosines l = sin (∆α cos δ) and m = sin (∆δ)

relative to some phase center, where α is right ascen-

sion and δ is declination; l increases to the east and m

increases to the north. The visibility function of an as-

tronomical source is the Fourier transform of the sky

brightness distribution, given by

V(u, v) =
∫∫

I(l,m) exp {−2πi(ul + vm)} dl dm, (1)

and is a complex quantity having real and imaginary

components with units of flux, e.g., Jy (for a full dis-

∗ NASA Hubble Fellowship Program Sagan Fellow
† NHFP Sagan Fellow
‡ NASA Hubble Fellow

cussion of the conditions that must be met in order for

Equation 1 to be accurate, see Thompson et al. 2017,

Ch. 3). Interferometers sample V at a discrete set of
spatial frequencies fundamentally dictated by the ar-

ray configuration and observing frequency (Thompson

et al. 2017). The spatial frequencies (u, v) are mea-

sured in multiples1 of the observing wavelength λ or

kλ, which can also be converted to length (e.g., m),
directly corresponding to the instantaneous, projected

baselines of the array.2 For radio interferometers like
ALMA, the fundamental data product is then—for every

spectral channel—a set of calibrated visibility measure-

ments at various (uk, vk) coordinates. These visibilities

are complex-valued numbers measured in the presence

of Gaussian noise

Vdata,k = V(uk, vk) + εk. (2)

The distribution from which the noise εk is drawn is

usually well-described by a Gaussian distribution with

the thermal weights3 equal to the inverse variance wk =
σ−2
k . Observational data is often interpreted in the con-

text of a model. Fortunately, this measurement process

1 Though l and m are technically unitless, for small angular extent,
they could also be considered to have units of radians, implying
that u and v can also be interpreted in units of cycles per radian.

2 Following the convention for l and m, u increases to the east and
v increases to the north. Since u and v correspond to the baseline
locations of the array, we plot u increasing towards the right, as
if the array were viewed on the surface of the earth from above
(e.g., Thompson et al. 2017, Figure 3.2).

3 Often these weights are presented proportionally wk ∝ σ−2
k

such
that the constant of proportionality is determined via the RMS
noise on a single correlator channel corresponding to a visibility
of unit weight (§3.2; Briggs 1995). In our definition, we assume
that this calibration has already been carried out and that the
weights have a direct statistical interpretation.
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defines a straightforward likelihood function for any set
of model visibilities V model,

lnL = ln p(V data|V model) ∝ −χ2

2
, (3)

where

χ2 =

N
∑

k

wk |Vdata,k − Vmodel,k|2 (4)

and N is the number of visibility measurements.

Throughout this work, we use bold notation to signify

vector quantities. Model visibilities can be generated

from analytic forward models I(l,m) ⇌ V(u, v) (e.g.,
an axisymmetric intensity profile describing the thermal

emission from dust rings in a protoplanetary disk; Zhang

et al. 2016; Guzmán et al. 2018; Jennings et al. 2020) or

by Fast-Fourier-transforming complete radiative trans-
fer models of I(l,m) (e.g., complicated dust morpholo-

gies (Tazzari et al. 2018) or kinematic models of spatially
resolved CO emission (Czekala et al. 2019)). Regardless

of how model visibilities are generated, model fitting

with the visibility likelihood function (Equation 3) and

judicious choices of prior probability distributions cre-

ates a well-motivated posterior probability distribution

that can be used for Bayesian parameter inference (e.g.,
Hogg & Foreman-Mackey 2018; Speagle 2019).
Most of the difficulty in synthesizing images represen-

tative of the sky brightness distribution I(l,m) stems

from the fact that the visibility function is not ade-

quately sampled at all of the spatial frequencies where it

has significant power. Because the Fourier transform is a

linear operator, one maximum likelihood image solution

is simply the inverse Fourier transform of the visibility

measurements. In this inversion process, the unsampled

spatial frequencies are typically set to zero power. The

image that results is called the “dirty image.”4 By defi-

nition, the point spread function (PSF) for the dirty im-

age is the system response to an impulse sky-brightness

distribution (I(l,m) = δ(0, 0), where in this context δ

represents the Dirac delta function). The point spread
function is also called the “dirty beam” because it typi-

cally has a substantial sidelobe pattern, responsible for
the low fidelity of the dirty image. The PSF width and
sidelobe pattern amplitude can be altered by adjusting
the scheme by which nearby uv points are averaged or

“gridded” (with tradeoffs against the thermal noise level;

Briggs 1995).
The PSF sidelobe response can be (effectively, albeit

not perfectly) removed from the dirty image through

4 Both because of its typically lousy aesthetics and because it forms
the starting point for the CLEAN family of deconvolution algo-
rithms.

image deconvolution. The most widely used deconvo-

lution algorithm in the radio astronomy community is

CLEAN (Högbom 1974), which we describe in §3. For

more background on the CLEAN family of algorithms,
see Thompson et al. (Ch. 11, 2017).

An alternative family of imaging algorithms are the

“maximum entropy” techniques (Cornwell & Evans

1985; Narayan & Nityananda 1986; Cárcamo et al. 2018)
and, more generally, regularized maximum likelihood

(RML) methods (Event Horizon Telescope Collabora-

tion et al. 2019; Nakazato et al. 2019). Rather than

focusing on image deconvolution, these algorithms in-

stead forward model the visibility measurements using

flexible, non-parametric models of the sky brightness

distribution conditioned by well-motivated image priors.

We will present results of the RML technique (as imple-

mented in the MPoL package; Czekala & Loomis 2020)

applied to the MAPS LP in a forthcoming MAPS paper

(Czekala et al. in prep).

This article is arranged as follows. In §2 we describe

in detail how the configuration of antennas within the

interferometric array dictates the characteristics of the

synthesized image PSF. We describe how we use the

CLEAN algorithm to deconvolve the PSF sidelobe re-
sponse from synthesized images in §3. In §4 we examine

the implications of the so-called “Jorsater & van Moorsel

(1995) effect,” an important flux scaling issue critical to

correctly interpreting faint line emission. We discuss ad-

ditional strategies of CLEAN-masking and uv tapering
in §5 and §6, respectively. In §7 we discuss how signal

to noise ratio might be interpreted in the image prod-
ucts, with reference to the non-imaging matched-filter
approach used in Cataldi et al. (2021) and Ilee et al.

(2021). We conclude in §8 and describe the available

data products from the MAPS LP in §9.

2. SYNTHESIZED BEAMS AND THE IMPACT OF

UV COVERAGE

The projected length and orientation of each baseline
in the interferometric array directly corresponds to the

spatial frequency (uv point) of the visibility function

that it measures (Chapter 2; Thompson et al. 2017). A

longer baseline will sample a higher spatial frequency,

which corresponds to finer angular scales in the image-

plane. As the earth rotates over the course of an obser-

vation, the projected length and orientation of a baseline
relative to the astronomical source will change and the
visibility function will be sampled over a range of uv

values (Chapter 5; Thompson et al. 2017).

To maximise image sensitivity and resolution, multi-

ple sets of visibilities from short and long baseline array
observations are often concatenated together into a sin-
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gle measurement set and imaged. The MAPS program
utilized two separate configurations—nominally equiva-

lent to the C43-4 (“short”) and C43-7 (“long”) ALMA

configurations—with baselines ranging from 15–1400m

and 40–3600m, respectively. The full details of the ar-

ray configurations for each observation are summarized

in Tables 9 & 10 of Oberg et al. (2021).
As introduced in §1, the dirty image is generated

by taking the inverse Fourier transform of the visibil-

ity measurements while the unsampled spatial frequen-

cies are assumed to carry zero power. Following Briggs

(1995), the dirty image is formalized as

Idata(l,m) = C
N†

∑

k=1

TkDkwkVdata,k exp {2πi(ukl + vkm)}

(5)

where Tk is an optional visibility taper and Dk is a uv

density weight. In this instance and in what follows, we
assume that the set of visibilities have been augmented

to include their complex conjugates, N† = 2N . When
making images, it is necessary to sum over the Hermitian

conjugates of the visibilities to ensure that the sky image

is real. The normalization constant is

C = 1

/

N†

∑

k=1

TkDkwk. (6)

For the immediate discussion of this section, we assume

that Tk = 1 ∀k and the Dk values correspond to the

default density weighting of non-tapered MAPS images,
which is robust=0.5 (Briggs 1995). We will return to

discuss both tapering and density weighting in more de-
tail in §6. As discussed in Briggs (1995), the units of

the dirty image are such that a point source with flux

density S will have a peak numerical value of S in the

dirty image—for discussion purposes one can reference

the flux unit of Jy {dirty beam}−1.
The PSF or “dirty beam” of the synthesized image is

calculated with Equation 5 by setting Vdata,k = 1Jy ∀k,
which is the Fourier transform of an impulse sky bright-

ness distribution, i.e., a 1 Jy point source located at

phase center. The PSF is then

BPSF(l,m) = C

N†

∑

k=1

TkDkwk exp {2πi(ukl + vkm)} .

(7)

Phrased differently, if one considers the interferomet-

ric array transfer function W under a choice of density

weighting and tapering parameters

W (u, v) =

N†

∑

k=1

TkDkwkδ(u− uk, v − vk), (8)

the PSF is its Fourier dual (BPSF ⇌ W ). The units
of Jy {dirty beam}−1are technically undefined, since it

is not guaranteed that the PSF integrates to a finite

volume; however, the maximum is always BPSF(0, 0) =

1.

In the first row of Figure 1, we show the uv-plane

sampling for a representative observation of a disk in
the MAPS sample: MWC 480 HCN J = 3 − 2 in spec-

tral setting B6-2 (for a full description of the MAPS
spectral setup, see Tables 2, 3, & 4; Oberg et al. 2021).

These samples are split into short and long baselines in

the left and middle columns, respectively, and they are

combined in the right column. For a sense of scale, the

“combined” panel contains 408,697 individual visibility
samples per spectral channel, which is typical of Band
6 MAPS observations.

The PSFs corresponding to the “short,” “long,” and

“combined” baseline sub-selections are shown in the sec-
ond row of Figure 1. Each disk in the MAPS LP was
also observed by ALMA at a different elevation, lead-

ing to a different set of projected baselines and thus
different PSF responses. For the same disk, all molec-
ular transitions observed at the same time as part of

a single spectral setup have the same baseline config-

uration, but different spectral setups were observed at

different stages of array (re-)configuration and therefore

have slightly different baseline distributions and PSFs.

Given the way that ALMA array configurations were
originally designed to sample the uv-plane,5 individ-

ual ALMA configurations retain approximately Gaus-

sian beams, with more extended configurations yield-

ing narrower beams and better spatial resolution images

(c.f. Figure 1, columns 1 & 2). Enhanced resolution
comes with tradeoffs, however.

The maximum recoverable scale (MRS) is a measure
of the largest angular scale that can be usefully imaged

from a set of visibility measurements. By definition, the

more extended configurations of ALMA have fewer short

baselines and thus are less sensitive to emission on large

spatial scales. If a source has emission on spatial scales

larger than the MRS of an array configuration, image
flux carried at these low spatial frequencies will not be
recovered in the synthesized image (for an analysis of the
missing flux using analytic sky brightness distributions,

see Appendix A of Wilner & Welch 1994).

The morphology of molecular line emission in pro-
toplanetary disks is a function of velocity (frequency),

with emission near the systemic velocity of the source

5 http://library.nrao.edu/public/memos/alma/main/memo400.
pdf and http://library.nrao.edu/public/memos/alma/main/
memo598.pdf
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Figure 1. How uv-plane coverage impacts the synthesized point spread function (PSF) or dirty beam. top row : The two
sets of baselines (i.e., short and long baselines from nominal C43-4 and C43-7 configurations, respectively) resulting from a
representative observation of a representative disk in the MAPS LP. middle row : The PSF that results from the default Briggs
weighting of MAPS (robust = 0.5). The CLEAN (or restoring) beam is an elliptical Gaussian function fit to the main lobe
of the PSF. bottom row : The deprojected and azimuthally averaged radial profiles of the PSF and CLEAN beams, with the
minimum-to-maximum range of the azimuthal variation of the PSF indicated by the shaded region. Considered individually,
ALMA nominal configurations yield dirty beams reasonably approximated (on average) by elliptical Gaussian CLEAN beams.
However, the joint baseline configuration results in a PSF with a substantial “shelf” to the main Gaussian core.
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(transition rest-frame frequency) usually being the most
spatially extended. The MRS6 of the nominal C43-7

configuration is only ≈ 1.′′1, while all disks targeted in

the MAPS LP (IM Lup, GM Aur, AS 209, HD 163296

and MWC 480) were known to have emission on spatial

scales larger than this (see §2.1 Oberg et al. 2021, and

references therein). This makes it necessary to observe
with a combination of array configurations to properly
sample the visibility function of each MAPS target, es-

pecially at the velocities (frequencies) where the emis-

sion is the most extended.

The combination of observations from short and long-
baseline configurations—at least those utilized by the

MAPS LP—yields a dirty beam that has a substantial

“shelf” at larger radii (Figure 1, right column). To high-

light this shelf, we compare each dirty beam to its corre-

sponding “CLEAN” beam in the third row of Figure 1.

The CLEAN beam is an elliptical Gaussian fit to the
main lobe of the dirty beam. The beam is reported using

the full-width half-maximum along the major and minor
axes (θa and θb, respectively) and a position angle of the

major axis (φ; degrees east of north). The beam power

pattern is then

BCLEAN(l,m) = exp

(

−1

2

[

(

l′

σl′

)2

+

(

m′

σm′

)2
])

(9)

where

l′ = l cosφ−m sinφ (10)

m′ = l sinφ+m cosφ (11)

and

σl′ = σl = θb/(2
√
2 ln 2) (12)

σm′ = σm = θa/(2
√
2 ln 2). (13)

To convert from units of Jy {CLEAN beam}−1 to

Jy {arcsec}−2, for example, one needs to divide by the
effective solid angle (angular area) of the CLEAN beam

ΩCLEAN =

∫∫

BCLEAN(l,m) dl dm =
πθaθb
4 ln 2

. (14)

This effective solid angle can be calculated by consider-

ing the beam response to a spatially uniform source (e.g.,
the Cosmic Microwave Background). Alternatively, the
size and shape of the PSF can be characterized by con-

sidering the beam as a three-dimensional solid with its

6 Using the 5th-percentile definition in the ALMA technical hand-
book (Remijan et al. 2019). See §2 of Huang et al. (2021) for a
discussion of how the MRS of the combined MAPS configurations
affects the interpretation of large-scale CO emission in GM Aur.

peak normalized to 1. The effective area is then the “vol-
ume” of this solid in units of 1 × arcsec2, for example,

and is graphically illustrated for the dirty beams in the
middle row of Figure 1. The CLEAN beam sizes for all

MAPS products are listed in Oberg et al. (2021, Table

5). To form the one-dimensional beam profiles in the

bottom row of Figure 1, we “deproject” both the dirty
and CLEAN beam by the aspect ratio of the CLEAN

beam and azimuthally average them. In reality, the dirty

beams are not azimuthally symmetric, so this is only an

approximation for the purposes of visualization (the full

range of azimuthal variation is conveyed by the shaded

region).

The dirty beam exhibits non-Gaussianity even for
the shortest baseline configurations (e.g., a slightly el-

evated “tail”). For the combined configurations, the

non-Gaussianity manifests as a shelf outside an approx-

imately Gaussian core. Though the shelf may appear

small, it is at the root of several issues which ramify

throughout the image deconvolution process. We will

now describe this process and how we mitigate these

issues.

3. THE CLEANING PROCESS

We synthesized and deconvolved image cubes using

the tclean task in the Common Astronomy Software

Applications (CASA) package version 6.1.0 (McMullin
et al. 2007). The salient components of this process are

illustrated in Figure 2 using a single channel contain-
ing significant but faint emission from an astrophysical

source (AS 209 DCN J = 3 − 2). The first algorithmic

decision is which functional basis set to use for CLEAN

components. The simplest version of CLEAN uses Dirac

δ-functions (Högbom 1974). We used the more advanced

“multiscale” algorithm (deconvolver="multiscale")

which is built on a set of variously-sized axisymmet-
ric tapered parabolic components similar to 2D Gaus-
sian functions (Cornwell 2008). CLEAN components

may also take on (small) negative amplitudes so that

components placed in later iterations can refine the

CLEAN model built from larger positive components

placed in earlier iterations. We set the component scales

to scales=[0, 5, 15, 25] pixels, where the pixel size
was chosen to correspond to ≈ 1/7th of the beamsize.

This pixel size adequately oversamples the beam FWHM

without making the image size impractically large: the

smallest image dimensions were for Band 3 or 0.′′3 ta-

pered images (1024×1024 pixels) and the largest image

dimensions were for Band 6 CO (2048× 2048 pixels).
The CLEAN algorithm starts by setting a “residual

image” equal to the dirty image and a “CLEAN model”

equal to a blank image. Each iteration of the CLEAN
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Figure 2. A schematic of the CLEAN-ing procedure tracking the residual image as new CLEAN components are deconvolved
and added to the CLEAN model. The residual image is initialized with the dirty image (which has “units” of Jy {dirty beam}−1).
With each iteration, the residual image is deconvolved by subtracting the convolution of the dirty beam with the new CLEAN
component(s), removing the effects of beam sidelobes (a 2D representation of the dirty beam is shown in the upper right grey
panel). At the end of the process, the CLEAN model is smoothed by convolution with the CLEAN beam (the FWHM of the
CLEAN beam is marked by the white ellipse in 2D dirty beam panel); the resulting image has units of Jy {CLEAN beam}−1.
The CLEAN models are shown with an aggressive color stretch (

√
) to better demonstrate the accumulation of CLEAN

components. (*) The same convolved CLEAN model is visualized with a softer linear color stretch in Figure 3.
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algorithm introduces new CLEAN components and two
things happen. First, the CLEAN model is gradually

built up when CLEAN components are placed at loca-

tions corresponding to the current peak flux in the resid-

ual map. It is possible to use a binary mask to restrict

the placement of new CLEAN components. Second, the

newly placed CLEAN components are deconvolved from
the residual map. The deconvolution is carried out by
subtracting the convolution of the CLEAN component

with the dirty beam. The algorithm continues iterating

until an exit criterion is triggered. The criterion may be

as simple as a maximum number of iterations or it may

correspond to a threshold on the noise properties of the

residual map. We have chosen the latter and we discuss

our choice of masks and thresholds in §5.

When the deconvolution procedure has finished, the

CLEAN model is convolved with the CLEAN beam to

form a convolved CLEAN model image. The final resid-

ual image is added to the CLEAN model to form the re-

stored (or “CLEANed”) image. For multi-channel mea-
surement sets like those of the MAPS LP, CLEAN im-
ages and deconvolves each channel with completely in-
dependent CLEAN components.

Though CLEAN is best-known for deconvolving dirty

beam sidelobes, an arguably more important function
of the CLEANing process is creating an interpretable

flux model. Because the flux units of the dirty image
are technically undefined (Jy {dirty beam}−1), any mea-

surements made using a dirty image are highly sensitive

to the uv-sampling distribution. For an extreme exam-

ple, consider the ill-advised task of measuring the flux of

a point source using the dirty image from a two-element

interferometer, better known as a fringe pattern (e.g.,

Ch. 9, Wilson et al. 2013).7 Depending on how one drew
their photometric aperture, one could just as easily in-

clude or exclude various nulls and maxima of the fringe

pattern and measure fluxes ranging from positive peak

to negative trough of the sine wave. However, if one were

to first deconvolve the fringe PSF from the dirty map,

reasonable inferences could be drawn on source flux (if

not location, in this contrived example).
Because the CLEAN model is built up with CLEAN

components, it has real, physical interpretabilty:

the units of the CLEAN model are Jy {pixel}−1

and the units of the convolved CLEAN model are

Jy {CLEAN beam}−1. Because the CLEAN beam has

finite volume (Equation 14), CLEANed images are on

7 A task more easily carried out by measuring the amplitude of the
fringe pattern or (equivalently) using a model-fitting approach
(Equation 3).

much surer flux-footing than dirty images, whose default
dirty beam is not guaranteed to have finite volume.

CLEAN components like δ-functions or tapered

parabolic components are rarely a perfect basis to rep-
resent a spatially resolved source. However, in the limit
of many low-amplitude components, reasonable mod-
els of source structure can be achieved. If the CLEAN

components were a good match to source morphology,

e.g., δ-functions for a field of quasars, then the CLEAN

model itself would be a reasonable product to use for

analysis. Like the CLEAN model in Figure 2, this is

rarely achieved in practice; it is more often the case
that the higher resolution information that could be con-

veyed by an accurate, native resolution CLEAN model
is gladly traded for a more visually pleasing convolved
CLEAN model, where errors stemming from a highly
discretized but imperfect CLEAN basis set have been

low-pass filtered out by CLEAN beam convolution (for

a visual explanation, see the discussion of “optimal res-

olution” in Chael et al. 2016, §5.3). This shortcoming is

one reason why flexible, non-parametric imaging tech-
niques can often produce higher resolution image prod-
ucts than CLEAN (see Event Horizon Telescope Col-

laboration et al. 2019 for a general discussion, and see

Pérez et al. 2019, Disk Dynamics Collaboration et al.

2020, or Jennings et al. 2020 for discussions specific to
protoplanetary disks).

While the CLEAN procedure may be familiar to many
radio astronomers, it is still a non-linear process subject

to myriad algorithmic choices like loop gain, threshold

stopping criteria, and masking regions, among other pa-

rameters embodied in the tclean argument list.8 When

the basis sets are mismatched from the source morphol-
ogy (e.g., when multi-scale Gaussian components are

used to deconvolve a source that is actually composed of
concentric rings), it is very important to correctly tune
these algorithm parameters to obtain faithfully restored

images. It is not common practice within the protoplan-

etary disk community to publish representations of the

CLEAN model in scientific analysis, but we argue that

inspection of the CLEAN model (and its potential de-
ficiencies) should be part of any radio astronomy work-
flow, especially where fine-featured source morphologies
are concerned.

4. THE JVM EFFECT AND CORRECTION

8 See the CASA tclean documentation for a full de-
scription: https://casa.nrao.edu/casadocs-devel/stable/
global-task-list/task tclean/about and the NRAO pipeline
scripts (https://github.com/AstroChem/MAPS/tree/master/
NRAO processing) for all parameter settings. Any non-default
parameter choices we made are discussed in this article.
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Figure 3. After the deconvolution iterations are complete, the residual map is added to the convolved CLEAN model to
form the final image. Because the residual map is derived from the dirty image, it has units of Jy {dirty beam}−1. In the
standard CLEAN workflow (top panel), this creates a final CLEANed image with mismatched units, and therefore compromised
interpretability. Following Jorsater & van Moorsel (1995), one solution is to scale the residual map by the ratio of the CLEAN
beam volume to the dirty beam volume, a process that we term the “JvM correction.” In the bottom panel we show our revised
CLEAN workflow that includes the JvM-corrected residual, which results in a final CLEANed image with the correct intensity
units. All images in this figure appear with the same color scale stretch and limits.
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4.1. The problem: the CLEAN model and residual
image have different units

Now that we have outlined the broad contours of

the CLEANing process, we revisit the final step of the
CLEAN algorithm when the final CLEANed image is
formed by summing the residual image and the con-

volved CLEAN model, shown graphically in the top

panel of Figure 3 as the “standard” workflow. There

are usually two reasons why radio astronomers carry

out this final step, even though we just discussed reasons

why the CLEAN model is a reasonable scientific product

on its own terms. One, this gives the final CLEANed

image some representation of the thermal noise, which is

useful for interpreting the significance of features. Two,

the residual map still contains some (ideally small level

of) real astrophysical flux that was not adequately de-

convolved (e.g., see the “residuals” panel in the top row
of Figure 3). Adding the residuals back to the CLEAN

model provides some insurance that this real flux at least

appears in the final image, though it will still exhibit the

effects of the sidelobe response.

Because the residual map originated as the dirty

image, it technically has units of Jy {dirty beam}−1,

while the convolved CLEAN model has units of

Jy {CLEAN beam}−1. This means that the final

CLEANed image is created with mismatched units. If

the CLEAN beam accurately approximates the dirty

beam, the unit mismatch is inconsequential. However,

if the dirty beam has even a small shelf, such as the

∼ 10% amplitude shelf on the robust=0.5 beam shown

in Figure 1 and replicated in Figure 4, there can be
severe implications for accurate flux recovery. Because

the shelf occurs at large beam radius, it contributes to

a large mismatch in differential volume, even though it

is small in relative profile. This small shelf means that

a CLEAN beam fit to this dirty beam main lobe will

encompass only 60% of the full dirty beam volume (us-

ing the first null as a proxy for dirty beam extent, even

though the response extends much further). Therefore,

the units Jy {CLEAN beam}−1 and Jy {dirty beam}−1

differ substantially. The shelf of naturally weighted im-

ages is usually even more severe than for robust or uni-

formly weighted images.9

To our knowledge, this issue and its implications for

flux conservation were first described in Jorsater & van
Moorsel (1995, Appendix A), and so we term this the

“JvM” effect throughout the MAPS paper series. We

9 Because visibility-fitting techniques and forward-model imaging
approaches eschew image-plane deconvolution entirely, they have
the potential to accurately recover flux even when the dirty beam
has a non-trivial shelf.
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from the joint baseline configuration in Figure 1, with the
first null (zero-crossing) of the dirty beam labeled as a proxy
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the PSF peak, because it is at large radius, it leads to a sig-
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process into the proper units of Jy {CLEAN beam}−1.

calculate the ratio of beam volumes as

ǫ =
VCLEAN(r)

Vdirty(r)

∣

∣

∣

∣

first null

, (15)

using the CLEAN beam and the .psf dirty beam files
produced by tclean. The procedure originally de-
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scribed in Jorsater & van Moorsel (1995) calculates ǫ
using the ratio of the CLEAN model to the difference

between the dirty image and the residual map.10 Our

calculation using the ratio of beam volumes yields a sim-

ilar result via direct calculation. The bottom panel of

Figure 4 shows a 1D representation of this calculation,

though in practice we use the 2D beam profile since the
dirty beam is not axisymmetric.

One might think that the units mismatch can be

avoided if only one fully CLEANed one’s images, i.e.,

the CLEAN model contained all of the real astrophysi-
cal flux and the residual map contained only noise. We
concur with Jorsater & van Moorsel (1995) that this is

unattainable in any real world application of CLEAN.

Consider an example where the CLEAN threshold is set

at 2 × RMS. At the end of the CLEANing process

the residual map will contain some real astrophysical

flux below this threshold while the CLEAN model will

contain some components that were erroneously decon-

volved from noise spikes above this threshold. Vary-
ing the threshold just changes the balance of flux in
the residual map or CLEAN model—it is impossible to
CLEAN to a zero-flux threshold without also adding

a significant number of erroneous components to the

CLEAN model. The JvM effect makes imaging faint
molecular line emission challenging because (by defini-

tion) a significant fraction of the flux in each channel will
exist at or below a typical CLEANing threshold level
(e.g., a few ×RMS). When particularly faint datasets,

such as the one chosen to illustrate Figures 2 & 3 (AS 209

DCN J = 3 − 2), are CLEANed to anything but the

deepest thresholds (generally inadvisable for other rea-
sons, see §5), the residuals may contain 50% or more of

the total flux in the image. If one were to erroneously
assume the products in the top row of Figure 3 were all

in units of Jy {CLEAN beam}−1(as is normal practice),

the residuals, CLEANmodel, and final image would con-

tain 70mJy, 33mJy, and 103mJy of flux, respectively.

The JvM effect is often less pronounced when syn-
thesizing images of high S/N continuum emission be-

cause in that application the CLEAN model will hold
a higher proportion of astrophysical flux. However, it
may still hamper the characterization of fainter regions

within those images.

10 The ratio of beam volumes need not always be ǫ < 1; depending
on the choice of CLEAN beam, which can technically be set to
any arbitrary finite-volume beam, values ǫ > 1 are possible. In
practice, though, we fit elliptical Gaussian CLEAN beams to the
main lobe of the dirty beam and thus ǫ . 1 across MAPS image
products.

4.2. The solution: rescaling the residual image using
the “Jorsater & van Moorsel (JvM) correction”

While “fully CLEANing” images is not a practi-

cal solution to the units mismatch issue, we can ap-
proximately convert the residual map from units of
Jy {dirty beam}−1 to units of Jy {CLEAN beam}−1.

This is achieved by rescaling the residual map by a factor
of ǫ before it is added to the CLEAN model (see Fig-

ure 3, middle panel; for this dataset, ǫ = 0.359). We call
this the “JvM correction,” which we implement using

the immath CASA task and the .model and .residual

outputs from tclean. Under the revised workflow, the

scaled residuals, CLEAN model and final image in the

bottom row of Figure 3 contain 25mJy, 33mJy, and

58mJy of flux, respectively (resulting in a dramatic 50%

change in total flux compared to the standard workflow).

As demonstrated by this faint dataset, failure to apply
the JvM correction can have a profound effect on both
the total flux contained within an image and the mor-
phological characteristics of that flux (c.f. Figure 3 final

images).

The ǫ values for all MAPS image cubes are listed in
Table 11 of Oberg et al. (2021). Band 3 image cubes

typically have ǫ values in the range 0.7 - 1.0, while band
6 image cubes typically have ǫ values in the range 0.2

- 0.7. The effect of the JvM correction becomes more

significant the more ǫ deviates from 1.

JvM still matters for signal-free channels!—Since the

JvM correction modifies the residual map, this cre-

ates ambiguity around an image-plane RMS measure-

ment. Technically, even signal-free channels with zero
CLEAN components still need to be corrected for
the JvM effect since they are formed from a residual

map in units of Jy {dirty beam}−1 but are reported in

units of Jy {CLEAN beam}−1. Unless otherwise stated,

throughout the MAPS paper series we specify RMS val-

ues in Jy {CLEAN beam}−1 measured from emission-
free images corrected for the JvM effect (but not yet

corrected for the primary beam sensitivity).11

A notable exception is when we specify CLEAN-

ing thresholds. Since the tclean procedure references

threshold values in the dirty map itself, we report these
thresholds with respect to RMS values measured in the

non-JvM-corrected dirty map.

5. MASKING TO IMPROVE THE CLEAN MODEL

11 Thus, the RMS values are equivalent to an RMS value measured
at the phase center of an image corrected for the primary beam
sensitivity.
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Binary image plane masks are useful to guide the
placement of CLEAN components to locations believed

to correspond to physical flux. Simple elliptical masks

are often reasonable choices, especially for single-channel

continuum images. Since the spatial distribution of

molecular line emission in a protoplanetary disk changes

considerably (but predictably) as a function of observ-
ing frequency (corresponding to velocity, e.g., Figure 3,
Oberg et al. 2021), using the same elliptical mask for

all channels means that large areas of blank sky will be

at risk of having erroneous CLEAN components placed

within them.
CASA allows masks to be hand-drawn for complicated

spatial emission. This is often the most accurate op-

tion, but mask drawing quickly becomes onerous for

even a single large spectral cube. For the MAPS LP

program, the time investment is prohibitive. CASA’s

auto-multithresh algorithm (Kepley et al. 2020) is
a promising solution, however, given its computational

overhead, we instead exploited the Keplerian rotation
pattern of the protoplanetary disk (e.g., Horne & Marsh

1986; Semenov et al. 2008) to create parametric CLEAN

masks (e.g., Rosenfeld et al. 2013).

5.1. Keplerian masking

We generated a Keplerian mask for each disk by the

following procedure. Each image-plane pixel (l,m) was

first deprojected into disk-centric cylindrical coordinates

(r, φ, z)disk, based on an assumed disk inclination i, posi-

tion angle PA, and constant emission surface slope (z/r,
e.g., Teague et al. 2019) representing the surface of an

optically thick cone in three dimensions. Disk inclina-

tion and position angle values were drawn from the lit-

erature (see Oberg et al. 2021, Table 1), while emission

surface slope was refined by hand as described below.

The disk-centric coordinates correspond to the location

where a ray drawn from pixel (l,m) intersects the sur-
face of the cone. Depending on the disk inclination and

orientation, not all pixels necessarily intersect the cone.

Using the disk-centric coordinates for each pixel, the

projected Keplerian velocity is

vKep, proj(r, z) =

√

GM⋆r2

(r2 + z2)3/2
sin(i) cos(φ) (16)

where M⋆ is the central stellar mass. The total pro-

jected velocity component at each pixel is the sum of

the Keplerian rotation and the systemic velocity, v0 =

vKep, proj + vLSR.

Motivated by the fact that disk temperature declines
with increasing r, the intrinsic line width is also assumed

to narrow following a power law profile

∆V (r) = ∆V0 ×
( r

1′′

)∆Vq

(17)

Table 1. Keplerian Mask Parameters

Source rout ∆V0 ∆Vq z / r θconv

(′′) (m s−1) (′′)

IM Lup 5.8 400 -1.0 0.3 0.5

AS 209 1.8 400 -0.5 0.1 0.5

GM Aur 3.0 500 -0.5 0.2 0.3

HD 163296 5.6 500 -1.0 0.3 0.3

MWC 480 3.0 300 -0.5 0.3 0.3

where ∆Vq ≤ 0. An initial mask was generated such
that for a channel with central velocity vchan and width

∆vchan, masked regions satisfied |vchan−v0| ≤ (∆vchan+

∆V ). For image cubes with low spectral resolution, the

channel spacing ∆vchan dominates the mask. For im-

age cubes with high spectral resolution, the line width
∆V is of greater importance in determining masked re-

gions. After the initial mask was generated, it was con-
volved with a 2D Gaussian profile to smooth the mask
edges (with FWHM θconv tuned to provide an adequate

“buffer” region near otherwise sharp contours). The full
script used to generate the masks is available in the
keplerian mask package (Teague 2020).

We tuned the mask parameters to match the 13CO

J = 2 − 1 emission for each disk; the final parameters

are listed in Table 1. The mask parameters should not

be considered true properties of the protoplanetary sys-

tem, rather they are the parameters that best represent

the spatial distribution of emission using the framework

described above. The same mask parameters are used

for all default image products for all observed transi-
tions, with the exception of 12CO J = 2 − 1, whose

extended and complex emission morphology warranted
bespoke, hand-drawn masks. For some specialized appli-

cations, it was advantageous to tune the Keplerian mask

parameters from those values used here to produce the

default image products. Where applicable, these alter-

native masks are noted in MAPS publications.

5.2. “Stippling” with deeply CLEANed models

In Figure 5 we compare the results of the CLEANing

process for three channels of an example measurement

set (AS 209 13CO J = 2−1) using an elliptical mask vs.

a Keplerian mask. To demonstrate the impact of the

differently shaped masks, we CLEANed to two different
depths: 4×RMS and 1×RMS. As noted previously, for

CLEAN applications we used the RMS measured from

a signal-free region prior to the JvM correction.
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Figure 5. A comparison of elliptical (left column) vs. Keplerian (right column) binary masks for three channels of the AS 209
13CO J = 2 − 1 measurement set CLEANed to an ideal depth of 4 × RMS (top grouping) and over-CLEANed to a deeper
yet-still-plausible depth of 1 × RMS (bottom grouping). All panels are on the same color scale stretch. If the parameters of
the tclean algorithm are set optimally, a well-designed mask will not significantly improve image quality over a generic mask,
as demonstrated by the identical images generated using the 4× RMS threshold. However, if an image is CLEANed to a deep
noise threshold, a poorly designed mask will more easily allow components to be erroneously added to the CLEAN model.
These errant components are barely noticeable in the “standard” CLEAN workflow (which unfortunately has inconsistent flux
units, Figure 3), but when the JvM correction scales the residuals by a factor of ǫ the stippled pattern becomes apparent.
Well-designed Keplerian masks can mitigate but not eliminate this behavior. The default choices for MAPS data products are
labeled with a thick blue border (Keplerian masks, threshold=4× RMS).
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If the measurement set is properly calibrated and the
tclean parameters are set optimally, i.e., the basis set is

an adequate match to the source morphology, loop gain

is sufficiently conservative given the complexity of the

deconvolution task, and the CLEANing threshold is ap-

propriate, a well-designed mask will not significantly im-

prove the end result (cf. elliptical vs. Keplerian masks
at a threshold = 4×RMS in Figure 5). If the algorithm

is tuned correctly, CLEAN will eventually converge as

it steadily but surely deconvolves real astrophysical flux

(presumed to be responsible for the brightest features in

the residual map at each iteration) down to the thresh-

old. Through careful experimentation, we arrived at

4 × RMS as the ideal cleaning depth to balance the

number of erroneous CLEAN components against flux

retained in the residual map.

However, the optimal tclean parameters can be dif-

ficult to ascertain without some trial and error, and the

threshold is an example of a parameter that is sometimes

difficult to tune a priori. In these instances, properly-
fitting binary masks can guard against the incorrect

placement of CLEAN components and mitigate (but not

eliminate) some of the adverse effects of improperly set

tclean parameters. In the threshold=1× RMS exam-

ple in Figure 5, we see that numerous low-amplitude
CLEAN components are added to the model, corre-

sponding to noise spikes above the threshold level that
were erroneously deconvolved from the residual map
(top row: “conv. model”). Because the elliptical mask

encompasses a larger area without plausible astrophysi-

cal flux, there are more opportunities for components to

be incorrectly deconvolved.
Under the standard CLEAN workflow, the visual ap-

pearance of the final product (labeled “standard” in

Figure 5) is not significantly affected at either thresh-

old. However, we remind the reader that the flux units

of the CLEANed image produced under the standard

workflow are inconsistent (§4), and therefore any resid-

ual flux that was not deconvolved (particularly that out-
side the mask) is not represented with the appropriate

strength. Moreover, as a matter of principle, it is not
desirable to have a CLEAN model contain components
known to correspond to pure noise, especially if it were

to be used for further data reduction or analysis (e.g.,

self-calibration; Brogan et al. 2018).

When the residual map and CLEAN model are prop-

erly combined under the JvM workflow (labeled “JvM”
in Figure 5), the defects of the CLEAN model become

apparent in the form of a stippled pattern. The reason

this stippling occurs is because when ǫ < 1, the flux dis-

tribution loses support under the CLEAN model: the

CLEAN algorithm deconvolves the residual map with a

dirty beam that is substantially larger than the CLEAN

beam can restore. When the residual map is properly

scaled to Jy {CLEAN beam}−1 using the JvM correc-

tion, the previously artificially high residual map drops

to a lower level and the stippling pattern appears. The

stippling effect is most apparent in regions of low as-

trophysical flux and might lead to the misinterpreta-

tion of substructure in what would otherwise be inter-

preted as smooth regions (Disk Dynamics Collaboration

et al. 2020). As mentioned, we used the carefully tuned

4×RMS cleaning depth to minimize the appearance of

stippling across the MAPS data products (see the panels
with a blue border in Figure 5).

6. UV TAPERING TO IMPROVE BEAM SHAPE

The primary goal of this section is to describe how

the tapering coefficients Tk of the dirty image equation

(Equation 5) can be modified to standardize PSF char-

acteristics throughout the MAPS LP and aid compar-

isons between molecules and across disks. Because PSF

tapering is interrelated with the density weighting coeffi-

cients Dk, however, we first briefly review how uniform,

natural, and robust weighting affect PSF shape through

uv cell averaging and density weighting (see also Chap-

ter 10.2.2; Thompson et al. 2017). We also comment on

how the images generated with these weighting schemes

relate back to the data likelihood originally discussed

in §1. Then, we discuss how the tapering and density
weighting coefficients can be co-varied to achieve a range

of desired PSFs. In Figure 6 we demonstrate how the

density weighting schemes and tapering coefficients af-

fect the beam sidelobes, beam (non)axisymmetry, and

JvM correction factor.

6.1. Cell averaging, density weighting, and maximum

likelihood images

As discussed in the introduction (§1), Equation 5 is

used to synthesize a “dirty image” from a set of discrete

visibility samples {Vdata,k}Nk=1. In practice, the visibili-

ties and their Hermitian conjugates are first “gridded,”

or interpolated, onto a regularly spaced array of ui, vj
points12 so that the fast Fourier transform may be used
to accelerate the imaging calculation. This grid presents

a convenient partition centered on the ui,vj pairs with

12 The method by which visibilities are interpolated to grid center
points turns out to have implications for image fidelity, especially
for high dynamic range applications. Nearest-neighbor or linear
interpolation can result in significant numerical errors; convolu-
tional regridding schemes using prolate spheroidal wave functions
are good choices to minimize these errors (Schwab 1984; Czekala
et al. 2015). For the discussion that follows, however, the main
conclusions are unchanged if simple nearest neighbor interpola-
tion is assumed.
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cell sizes ∆u and ∆v with which to a) average multi-
ple visibilities contained within the cell and b) use as a

bounding box to calculate local sample density. The cell

sizes used for averaging and density calculations need

not be the same as those in the gridded array, but for

demonstration purposes we assume that they are.

For the sake of discussion, we consider an arbitrary
cell i, j containing L visibilities, indexed such that each

l index corresponds to some specific k index. For ex-

ample, l = {1, 2, 3, . . . , L} might correspond to k =

{304, 305, 307, . . . , 320}, depending on how exactly the

visibilities are indexed relative to the grid boundaries.

When all L visibilities inside the cell are gridded, the

“effective” visibility located at the cell center is

Vgrid,i,j =

L
∑

l=1

TkDkwkVdata,k. (18)

To simplify the comparison of density weights that fol-

lows, we will assume that there is no tapering (Tk = 1)

and that all visibilities within a cell have a common ex-

pectation value 〈Vdata,k〉i,j = V(ui, vj), since the cell size

is assumed to be small relative to the expected features

in the visibility function (i.e., the chosen image size and

resolution “Nyquist sample” the visibility function).

Uniform weighting—“Uniform” weighting is arrived at

by minimizing the sidelobe level of the main beam (for

a derivation, see §3.3.3; Briggs 1995), which yields con-

stant density weights for all visibilities within the cell

Dk =
1

wcell,i,j
(19)

where wcell,i,j =
∑L

l=1 wl. The effective value of the

uniformly gridded visibility is

Vgrid,i,j =

∑L
l=1 wlVdata,l
∑L

l=1 wl

= 〈Vdata,k〉i,j . (20)

Uniform weighting delivers the minimum variance es-

timate of the visibility mean, since it is obtained by

weighting each sample by its inverse variance (wk =

1/σ2
k). Moreover, the statistical uncertainty on Vgrid,i,j

is encapsulated with wcell,i,j in the same way as for
ungridded visibilities Vdata,k with wk. While uniform

weighting usually produces the highest resolution dirty

beam (Figure 6, first row), a downside is that the dirty

image usually has the worst sensitivity.

Natural weighting—The RMS thermal noise in the dirty

image is minimized when

Dk = 1, (21)

since wk = 1/σ2
k (for a derivation, see §3.3.1; Briggs

1995). This is called “natural” weighting and results in

an image that has the lowest RMS and thus greatest
sensitivity. The effective value of the naturally gridded
visibility is

Vgrid,i,j =

L
∑

l=1

wlVdata,l. (22)

Natural weighting diverges from estimating 〈Vdata,k〉i,j
and instead upweights those grid cells containing large
quantities of high S/N visibilities. Natural weighting

results in a beam (Figure 6, second row) that is useful

for detection (especially of point sources), but at the cost

of substantial sidelobes negatively impacting resolution.

Robust weighting—Briggs (1995) developed the “robust”

weighting scheme

Dk =
1

1 + wcell,i,jf2
(23)

where

f2 = (5× 10−R)2

/(

∑

i

∑

j w
2
cell,i,j

∑N†

k=1 wk

)

. (24)

Values of R = 2 approximate natural weighting (max-

imizing point source sensitivity) while values of R =
−2 approximate uniform weighting (maximizing resolu-

tion). Intermediate R values offer a tradeoff between

these two extremes. Because the performance curve is

nonlinear (Figure 3.23, Briggs 1995), significant resolu-

tion gains can be achieved at minimal loss in point source
sensitivity (e.g., mJy), though loss in surface brightness

sensitivity is more significant (see Figure 6, third col-
umn), especially when expressed in units with constant

solid angle (e.g., mJy arcsec−2 or brightness tempera-

ture [K]).

The effective value of the robustly gridded visibility is

Vgrid,i,j =

L
∑

l=1

wlVdata,l

1 + wcell,i,jf2

/

N†

∑

k=1

wk

1 + wcell,i,jf2
(25)

Maximum likelihood images—If the visibility function V
were sampled at all u, v locations where it had significant

power, then Vgrid would have a direct relationship to the

sky brightness via the inverse Fourier transform. Unfor-

tunately, this is never achieved for actual sub-mm inter-

ferometric observations of astrophysical sources, and the

impact of the transfer function (W (u, v), Equation 8)

must be considered when producing images from visibil-

ity samples.
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Figure 6. A representation of how the visibility tapering profile T (u, v) (left column) and density weighting scheme influence
the dirty beam resolution, point source sensitivity, PSF profile and JvM correction factor ǫ. The same dirty beam profile is shown
in the second, third, and fourth columns: the three dimensional view best represents beam structure, the two dimensional view
best conveys beam ellipticity (white ellipse represents FWHM), and the one dimensional view best represents the divergence
from a Gaussian CLEAN beam. Each row represents a different combination of tapering profile and robust value. The first
three rows are untapered, while the final two rows are tapered to circular FWHM resolutions of 0.′′15 and 0.′′30, respectively
(the final ≤ 5% adjustment is carried out using the imsmooth task, which is not shown).
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Nevertheless, because visibility model fitting (§1) is
a common and highly useful procedure for parame-

ter inference—especially for annular protoplanetary disk

structures—it is worthwhile to consider how uniform,

natural, and robust images relate back to V. By ref-
erencing the effective visibility under each weighting

scheme (Equations 20, 22, & 25), we see that only uni-
form weighting converges to the expectation value of the

visibility function in that cell (Briggs 1995), while nat-

ural and robust weighting instead result in an effective

visibility that is tied to the number and quality of visibil-

ity measurements within that cell. Therefore if the dirty

image were used as a sky plane model I(l,m), only the

uniform dirty image would maximize the data likelihood

function (Equation 3).

Of course, there are legitimate reasons to use other

weighting schemes, such as the need to maximize sensi-

tivity with natural weighting for a detection experiment.

And in practice, given its non-linear tradeoff curve, the

most scientifically useful weighting scheme for the de-
tection and characterization of faint protoplanetary disk
features is often an intermediate robust value, like the
robust=0.5 we used as the default setting for untapered

MAPS products.

The CLEANing process and maximum likelihood—The

dirty image is constructed under the assumption that
all unsampled spatial frequency components are set to

zero power. As the CLEANing process deconvolves the
dirty image and image plane components are added to
the CLEAN model, the corresponding visibility plane

model Vmodel is effectively interpolated from the gridded

locations to otherwise unsampled (u, v) values. Because

the image plane representation is directly equivalent

to the inverse Fourier transform of the visibility plane

model, the accuracy of the interpolated values relative to

truth mirrors the quality of the deconvolution process.

Using a basis set appropriate to the source morphol-

ogy (e.g., choosing multi-scale CLEAN over Högbom

CLEAN for extended emission) can result in more accu-

rate Fourier interpolations/image reconstructions, par-

ticularly at higher spatial frequencies/finer resolutions.
Each iteration of the CLEAN algorithm also brings

Vmodel closer to maximizing the likelihood function

(Schwarz 1978). However, Vmodel will only achieve the

maximum possible likelihood value when Vmodel,k =

Vdata,k ∀k ∈ 1, . . . , N , which can happen in the ab-
sence of noise or in the case that the entire image is

fully cleaned to a 0 Jy threshold (the Fourier equiv-
alent of overfitting). Most practical applications will
stop CLEANing when a noise threshold is reached in

the residual map.

Because imaging is an ill-defined inverse process,
there exist an infinite number of maximum (or ap-

proximately maximum) likelihood images (and therefore

models) consistent with the data: these have Vmodel,k ≈
Vdata,k ∀k ∈ 1, . . . , N but may take on any value of

Vmodel at unsampled spatial frequencies u, v. Because
beam characteristics will affect the order in and scales

at which flux is deconvolved from the dirty image, for

any spatially resolved source the deconvolution algo-

rithm will likely converge to different CLEAN models

under different visibility weighting schemes.

6.2. Tapering

Visibility tapering profiles can be used to “force”

beams of arbitrary dimensions (Briggs 1995). For

MAPS, we produced fiducial data products using ta-

pered visibilities to boost image-plane sensitivity to low

surface brightness features (at the expense of resolu-

tion) and provide a common circular beam that is useful
for comparing molecular species across the Band 3 and
Band 6 observations (for a listing of all fiducial beam

sizes, see Table 5 of Oberg et al. 2021).

Beam tapers can be described by a multiplicative pro-

file in the uv-plane T (u, v) or equivalently by convolu-
tion with a kernel in the image-plane t(l,m). If we wish

to taper our original dirty beam, whose main lobe is
approximately an elliptical Gaussian, to a dirty beam
whose main lobe is approximately a circular Gaussian,

the appropriate functional form of the taper is an el-

liptical Gaussian. In analogy with the CLEAN beam

(§2), this profile is described by a position angle (φT )

and beam dimensions. In the uv-plane, these FWHMs

are Θa, Θb in units of kλ. In the image plane, these are
θa, θb, in units of arcsec. The Gaussian FWHMs are

related13 such that

Θa=10−3

(

602 × 180 arcsec

π radians

)

4 ln 2

πθa
(27)

Θb=10−3

(

602 × 180 arcsec

π radians

)

4 ln 2

πθb
. (28)

We follow a convention such that Θa > Θb, which im-

plies that θa < θb. The multiplicative uv-plane profile

13 We derived the FWHM relationships following the Fourier dual
relationships for Gaussians, which are more simply phrased in
terms of σ values: σu,v = 1/(2πσl,m) (e.g., Bracewell 2000). It
appears there is an inconsistency in the CASA 6.1 implementa-
tion of uvtaper in tclean where the incorrect FWHM relation-
ship

Θ = 10−3

(

602 × 180 arcsec

π radians

)

1

θ
(26)

is used to calculate the uvtaper profile, which equates to a scale
factor difference of ≈ 1.13. We emulated this behaviour such that
the final images were tapered to the correct target resolution.
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is

T (u, v) = exp

(

−1

2

[

(

u′

σu′

)2

+

(

v′

σv′

)2
])

(29)

with

u′ = u cosφT − v sinφT (30)

v′ = u sinφT + v cosφT (31)

and

σu′ = σu = Θb/(2
√
2 ln 2) (32)

σv′ = σv = Θa/(2
√
2 ln 2). (33)

In the image-plane, the convolutional profile is

t(l,m) = exp

(

−1

2

[

(

l′

σl′

)2

+

(

m′

σm′

)2
])

(34)

with

l′= l cosφT − l sinφT (35)

m′=m sinφT +m cosφT (36)

and

σl′=σl = θb/(2
√
2 ln 2) (37)

σm′ =σm = θa/(2
√
2 ln 2). (38)

Both the uv tapering and image convolutional profiles

are normalized to peak values of 1. Although it is pos-

sible to analytically calculate tapering parameters given

a desired beam size (Appendix C of Briggs 1995), we

found that there is considerable “mechanical backlash”

in CASA v6.1.0’s beam fitting subroutines due to the

pixelized representation of the dirty beam. This means

that a smooth, monotonic relationship between tapered

dirty beam size and fitted CLEAN beam size does not

exist; in practice we found that direct forward model-

ing yielded a more consistent set of tapering parameters.

We emulated CASA’s dirty beam formulation routine14

to compare the fitted CLEAN beam (with FWHMs θ′a
and θ′b) to a CLEAN beam with the desired parameters

(θa, θb, φ). We desired a circularized beam such that

θa = θb = θT , with sizes θT = {0.′′15, 0.′′2, 0.′′3} for Band

6 observations and θT = {0.′′3, 0.′′5} for Band 3 observa-

tions.

Because density weighting also affects beam shape,

there are many combinations of robust values and
tapering profiles that deliver the same circularized

14 https://github.com/ryanaloomis/beams and weighting

CLEAN beam profile. To preserve point source sensitiv-
ity without introducing large sidelobes, we calculated ta-

pering profiles using a starting value of robust=0.5. We

used scipy.optimize.minimize (Virtanen et al. 2020)

to find the best-fitting set of beam tapering parameters
that minimized the fit metric

f(Θa,Θb, φT ) = (θt − θ′a)
2 + (θt − θ′b)

2. (39)

If no solution could be found that delivered a beam
within 95% - 100% of the target resolution, we iter-
ated by reducing the robust value by 0.25 (towards

a uniformly weighted beam) and tried the fitting pro-
cedure again. For most Band 6 observations (including
those shown in Figure 6), we were able to successfully

find tapered beams using robust=0.5 values. For sev-

eral of the Band 3 observations, however, lower robust

values were required to achieve pre-tapered beams with

θa ≤ 0.′′3. An example of the visibility tapering pro-

files needed to achieve θT = {0.′′15, 0.′′3} are shown in
the fourth and fifth rows of Figure 6, respectively. As

a final step (not shown in Figure 6), the images were

smoothed the remaining < 5% to their target resolution

using the CASA imsmooth task. By carrying out the

bulk of the tapering in the uv-plane (instead of entirely
on the final image), the CLEAN algorithm is able to

build a more accurate CLEAN model during the decon-
volution process and thus improve final image fidelity.

While our tapering profiles were successful in stan-

dardizing beam sizes across the MAPS data products, it
is important to realize that even tapered dirty beams
whose main lobes deliver circular Gaussian CLEAN
beams still have an extended asymmetric shelf. For ex-

ample, consider the 2D PSF representation of the 0.′′15
tapered beam in the fourth row, third column of Fig-

ure 6. This means that any astrophysical flux still re-

maining in the residual map will retain the asymmetric

features of the dirty beam.

7. SIGNAL TO NOISE IN MAPS PRODUCTS

The MAPS spectral setup (Oberg et al. 2021, Table 4)
covered more than 40 molecular transitions of interest,

many of which are at or near the detection threshold
in the five protoplanetary disks we targeted. Given the
diverse scientific goals of the MAPS LP, we employed
several algorithms to detect and characterize the emis-

sion. In this section we discuss the general principles

behind the quantification of signal to noise ratio (S/N)

and how these apply to several core data products from

the large program.
Colloquially, S/N is usually quoted as a one-

dimensional quantity in multiples of a σ value corre-

sponding to a fractional probability of the Gaussian dis-
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tribution, e.g., 2σ or 95% (regardless of whether the pos-
terior distribution itself is actually Gaussian). Model as-

sumptions are key to contextualizing any S/N statistic,

since it is these (often hidden) assumptions that define

the likelihood function, prior distributions, and thus the

posterior distribution of the parameter(s) of interest.

Signal to noise in detection experiments—Detection ex-

periments are usually discussed in terms of a one-

dimensional posterior probability distribution of the am-

plitude a of the source p(a | data). The detection S/N is

the probability that the inferred amplitude of the source

is greater than 0, p(a > 0 | data). In truth, the full poste-
rior distribution is likely multivariate because the model

usually has hidden parameters b, c, etc. In the best sit-
uations, the uncertainty pertaining to other model pa-

rameters is marginalized out

p(a | data) =
∫

p(a, b, c | data) db dc. (40)

However, for computational or implementation reasons,

it may be difficult to explore the probability distri-

butions of these other parameters, and the S/N is

estimated using the conditional posterior distribution

p(a | b, c, data) with all other model parameters held

fixed. This may overestimate the detection S/N when

the model varies significantly under reasonable choices

for the other parameters.

Consider the scenario of detecting a point source

against a blank background with Gaussian noise. We

assume a simple model: δ-function with known posi-

tion but unknown amplitude. Assuming the beam is

well characterized, the amplitude posterior is defined

by a Gaussian centered on the value of flux measured

at the location of the point source. The width of the

posterior Gaussian corresponds to the thermal RMS of

the image. The fraction of the posterior correspond-

ing to fluxes greater than 0 defines the S/N detection

probability (e.g., 2σ or 95%). Most realistic scenarios

quickly diverge from this idealized scenario to involve

more complex models (for example, if the location of

the δ-function is not known, then l and m position must

be marginalized over and the significance of any partic-

ular candidate is diminished).

7.1. Spatially resolved emission

When considering spatially resolved emission, it is im-
portant to consider the model assumptions that under-

gird the interpretation of S/N. If the model is misspec-
ified (e.g., a point source when the emission is in fact
diffuse) then the S/N calculation, conditional on those

assumptions, may not reflect the S/N calculation one

actually desires. The more closely a model matches re-
ality, generally speaking, the higher significance a detec-
tion that can be achieved. If the model is overly flexible,

however, then unknown parameters of the search space

(e.g., spatial location, rest frequency) must be marginal-

ized over and the S/N of the detection will suffer. One

way to gain intuition for model sensitivity is to attempt
to fit the data with a range of different model assump-
tions and effectively explore some of the hidden param-
eters, albeit in a limited manner.

The matched filter—The application of a matched fil-

ter to detect spatially resolved but weak line emission

from a protoplanetary disk in Keplerian rotation nicely

demonstrates some of the model complexity trade-offs

(e.g., Loomis et al. 2018). In such a framework, a tem-

plate (such as uniform surface brightness inside some

Keplerian pixel mask, e.g., Table 1) is assumed, Fourier
transformed, and cross-correlated against all available

frequency channels. The template amplitude is the sole

free parameter of the model. Since the matched filter is

linear, the interpretation of the filter response relative

to a signal-free region (σ) is directly equivalent to the

point source detection scenario discussed above, and car-

ries many of the same caveats (Ruffio et al. 2017; Loomis

et al. 2018).

Detection significance will be maximized when the

template is an accurate representation of reality; in most

real-world applications an imperfect template will re-

duce the significance of a detection. This is demon-

strated to some degree in Figure 7 with the matched
filter applied to the HC3N J = 11 − 10 transition in

MWC 480, using templates generated from Keplerian

masks with different outer radii (100 au, 200 au, and

400 au). The line is detected with all 3 templates; how-

ever, the significance is maximized using the template

with the smallest radial extent (100 au), which best

matches the emission morphology of this weak, compact

line. Since even the 100 au template is misspecified to

some degree (real disk emission does not appear uniform

within some Keplerian mask, but rather radially varies

in intensity), the matched filter detections most likely

represent lower limits to the maximal S/N detection that

could be achieved with an ideal template. More details

on the matched filter procedure applied to MAPS data

are provided in Ilee et al. (2021).

Shifting and stacking—To aid in the detection and char-

acterization of weak lines, we used the shift and stack
technique (Yen et al. 2016; Teague et al. 2016; Matrà

et al. 2017) on several image cubes. In this process, the
Doppler shift corresponding to the Keplerian rotation of

the protoplanetary disk is removed from each position-
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Figure 7. The response of Keplerian matched filter tem-
plates with outer radii 100 au, 200 au, and 400 au applied to
the MWC 480 HC3N J=11-10 transition measurement set.
The detection significance is higher when the template more
accurately matches the true spatial distribution of the (in-
herently compact) emission.

position-velocity pixel in the data cube and each channel

in the cube is summed across all pixels. This coher-

ently sums emission across the data cube and results

in a higher S/N detection compared to a traditional

spatially-integrated spectrum. For a full description of

the shift and stack technique applied to MAPS data, as

well as the calculation of the uncertainties that result

from the deprojection and aggregation of the data, see
Ilee et al. (2021) and Cataldi et al. (2021).
An important benefit to using multiple techniques to

detect and characterize faint molecular emission is that
confidence builds when independent techniques return
consistent results. In Figure 8 we compare the results

of the matched filter and spectral shift and stack tech-

nique applied to the H13CO+ J = 1−0 transition in the

HD 163296 and MWC 480 disks (for more information
on this and the HCO+ J = 1−0 transitions, see Aikawa

et al. 2021). The H13CO+ emission is faint—it cannot
be recovered by visual inspection of the channel maps

for either disk. Encouragingly, the emission is detected

in HD 163296 using both the matched filter (with Kep-

lerian mask template rout = 400 au radius) and spectral

shift and stack technique, while the line is not detected

in MWC 480 using either technique.

The spectral shifting and stacking technique is use-
ful to measure the disk integrated flux and radial in-

tensity profile (especially for transitions with hyperfine

structure, e.g., Bergner et al. 2021; Cataldi et al. 2021;

Guzmán et al. 2021), while the matched filter is a more

efficient way to search the full MAPS LP for weak tran-

sitions (instead of imaging the entire data set). We ap-
plied the matched filter to all of the spectral windows to
search for any additional lines that were not primary sci-

ence targets and serendipitously detected satellite lines

of c−C3H2 and C2H (Ilee et al. 2021; Guzmán et al.

2021). For a full list of the molecules detected by the

MAPS LP, see Oberg et al. (2021, Tables 2 & 3).

8. SUMMARY

The MAPS large program represented a significant ef-

fort to calibrate and image a large volume of molec-

ular line emission for five protoplanetary disks. In

this work, we described the non-Gaussian dirty beam

that can arise from multi-configuration ALMA obser-

vations, and, after reviewing the CLEANing process,

the challenges it presented for accurate flux recovery of

faint, extended features. We chose to remedy this issue

by implementing the “JvM correction” originally pro-

posed by Jorsater & van Moorsel (1995), which properly

scales the CLEAN residual map into consistent units of

Jy {CLEAN beam}−1. We also described how we gen-
erated custom Keplerian CLEAN masks to guide the

deconvolution process, and discussed some imaging arte-

facts that can result from non-ideal tclean parameters,

such as “stippling.” To aid in the comparison of different

molecular transitions, we also produced image products

using beam profiles tapered to common resolutions of

FWHM 0.′′15, 0.′′2, 0.′′3, and 0.′′5. Finally, we briefly dis-
cussed the interpretation of signal to noise and detection

significance across the MAPS data products.

We centralized our data processing pipeline on the

North American ALMA Science Center (NAASC) com-

puting cluster, located in Charlottesville, VA, USA.

Python scripts documenting the reduction and imaging

procedures are available.15 During times of heavy de-

velopment, we availed ourselves of multiple 16-core ma-
chines for days at a time. Including development and in-
cremental reprocessing efforts, we estimate that we uti-
lized 1 year’s worth of core hours to produce the MAPS

LP image products (i.e., two 16-core machines fully uti-

lized for two weeks). Though still small compared to

the computational demands of protoplanetary disk hy-

drodynamical simulations, for example, this represents
a considerably larger computational demand compared
to most ALMA observations.

9. IMAGING DATA PRODUCTS

Here we enumerate the molecular line imaging data

products produced from the MAPS LP, which are ac-
cessible through a portal to the ALMA archive avail-

15 http://www.alma-maps.info
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Figure 8. A comparison of the matched filter (left column) and spectral shift and stack (right column) detection techniques
applied to the H13CO+ J = 1−0 transition in HD 163296 (top row) and MWC 480 (bottom row). In HD 163296, the transition
is detected by both techniques at similar significance (relative to off-source velocities), but in MWC 480 it is not detected by
either technique, demonstrating consistency between the two methods.

able after peer review. For a detailed description of the
naming conventions for all MAPS LP image products,
see Oberg et al. (§3.5, 2021). For a description of the

continuum-only MAPS image products, see Sierra et al.

(2021).

For each combination of disk (e.g., MWC 480; see
Table 1, Oberg et al. 2021) and transition (e.g., DCN

J = 3 − 2; see Tables 2 & 3, Oberg et al. 2021), the
archive contains two minimal measurement sets pro-

duced with the cvel2 and split tasks with visibilities

pertaining to that disk and transition pair. The first

contains the visibilities including continuum emission,

while the second contains the line visibilities with the

continuum subtracted. During the invocation of cvel2,

we coarsened the spectral channels slightly from their

native spacings (see Table 4 of Oberg et al. (2021)) to a

uniform set of channels spaced 0.5 km s−1 apart in B3

and 0.2 km s−1 in B6.

The archive also contains a set of image products
generated from each measurement set using various

beams. For the Band 3 transitions, these beams are un-
tapered robust=0.5, tapered 0.′′30, and tapered 0.′′50.

For the Band 6 transitions, these beams are untapered

robust=0.5, tapered 0.′′15, tapered 0.′′20, and tapered
0.′′30. For a full description of beam sizes available in

each band, see Table 5, Oberg et al. (2021). For each

beam setting, the following image products are available:

• Keplerian binary CLEAN mask cube

• (unconvolved) CLEAN model cube

• residual cube from CLEANing process (before

JvM correction)

• CLEANed image cube under standard workflow

(Figure 3), with and without primary beam cor-

rection

• CLEANed image cube under JvM correction (Fig-

ure 3), with and without primary beam correction.

The primary beam and “JvM”–corrected cube is

the recommended data cube for most scientific use

cases.

• A Python script to reproduce the data products

from the minimal continuum-subtracted measure-

ment set.
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The following is a typical workflow to produce a set
of image products. We used the tclean task with

multiscale CLEAN and scales=[0, 5, 15, 25] pix-

els, where the pixel size was chosen to correspond to

≈ 1/7th of the beam FWHM. For all lines except CO,
we used Keplerian CLEAN masks matched to the 13CO

J = 2− 1 emission. We iterated the CLEAN algorithm
such that the peak residual emission was below a thresh-

old of 4 × RMS. For untapered beams we used Briggs

weighting of robust=0.5. For tapered beams we for-

ward modeled the CASA beam fitting process to calcu-

late the value of the uvtaper argument that achieves
the target resolution using the largest (most natural)

robust value still ≤ 0.5. Finally, we calculated the JvM

factor ǫ via the ratio of the CLEAN beam volume to the

dirty beam volume, scaled the residual map by ǫ and

summed it with the convolved CLEAN model to pro-

duce the JvM-corrected image cube. We recommend

consulting the Python script accompanying each set of

image products for the specific tclean parameters used
to generate a particular image product.

For more information on the additional value added

data products (VADP) like moment maps, radial pro-

files, and emission surfaces provided for most transitions

across a range of beam sizes see Law et al. (2021a,b).
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