
This is a repository copy of Characterizing OpenMP SynchronizationImplementations on 
ARMv8 Multi-Cores.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/180101/

Version: Accepted Version

Proceedings Paper:
Wang, P, Gao, W, Fang, J et al. (2 more authors) (2022) Characterizing OpenMP 
SynchronizationImplementations on ARMv8 Multi-Cores. In: 2021 IEEE 23rd Int Conf on 
High Performance Computing & Communications; 7th Int Conf on Data Science & 
Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & 
Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys). 2021 IEEE 23rd Int 
Conf on High Performance Computing & Communications; 7th Int Conf on Data Science &
Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & 
Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), 20-22 Dec 2021, 
Haikou, Hainan, China. IEEE , pp. 669-676. ISBN 978-1-6654-9458-8 

https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00111

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Characterizing OpenMP Synchronization

Implementations on ARMv8 Multi-Cores

Pengyu Wang§, Wanrong Gao§, Jianbin Fang∗, Chun Huang∗

College of Computer Science

National University of Defense Technology

{pengyu wang, gaowanrong, j.fang, chunhuang}@nudt.edu.cn

Zheng Wang

School of Computing

University of Leeds

z.wang5@leeds.ac.uk

Abstract—Synchronization operations like barriers are fre-
quently seen in parallel OpenMP programs, where an inefficient
implementation can severely limit the application performance.
While synchronization optimization has been heavily studied
on traditional x86 architectures, there is no consensus on how
synchronization can be best implemented on the ARMv8 multi-
core CPUs. This paper presents a study of OpenMP synchroniza-
tion implementation on two representative ARMv8 multi-core
architectures, Phytium 2000+ and ThunderX2, by considering
various OpenMP synchronization mechanisms offered by two
mainstreamed OpenMP compilers, GCC and LLVM. Our evalu-
ation compares the performance, overhead and scalability of both
compiler implementations. We show that there is no “one-fits-for-
all” synchronization mechanism, and the efficiency of a scheme
varies across hardware architectures and thread parallelism. We
then share our insights and discuss how OpenMP synchronization
operations can be better optimized on emerging ARMv8 multi-
cores, offering quantified results for future research directions.

Index Terms—OpenMP, Scalability, Synchronization, Perfor-
mance

I. INTRODUCTION

Synchronization primitives are an essential part of parallel

programming languages like OpenMP [1]. To avoid race

conditions and ensure correct execution, concurrently running

threads have to meet at specific synchronization points. Such

synchronization operations are often implemented using locks

or shared variables, for which all parallel processes sit idle to

wait for the slowest peer.

An inefficient synchronization implementation can severely

limit the application performance due to its overhead [2]. This

is because contention for obtaining the lock or shared value

and waiting delays can substantially degrade the performance

of parallel applications. Synchronization can also harm the

performance by increasing the bus traffic [3] or creating

memory “hot-spots” [4]. This problem worsens on modern

multi-cores where the growing number of processors means

the synchronization interval decreases when a larger number

of competing threads running on the system.

Synchronizations are required in a range of widely

used parallel programming patterns, including fork-join,

exclusive accessing and producer-consumers.

§Equal contribution
*Corresponding author

Most OpenMP parallel constructors’ implementation typically

inserts one or more synchronization points to avoid race

conditions among parallel running threads. In OpenMP, a

barrier like synchronization is used for fork-join type

of parallelism, including parallel and reduction region.

Similarly, a mutex lock can be used to ensure exclusive re-

source access in OpenMP. This synchronization mechanism is

often used together with a critical and atomic OpenMP

directives.

The synchronization implementation varies depending on

the OpenMP library vendors. For example, the GNU libgomp

OpenMP library used by GCC chooses to use a centralized

algorithm to implement the barrier, while LLVM adopts

a tree-based algorithm. Most of these implementations were

tuned on traditional x86 architectures and conventional multi-

processors [5], but it remains unclear whether the existing

implementations are still efficient on the emerging ARMv8

multi-cores. Given that ARMv8 based CPUs have become

a strong contender in the high-performance computing mar-

ket, it is interesting to know whether the implementation

choices of mainstream OpenMP compilers remain effective

on ARMv8 multi-cores. Having such information will inform

future OpenMP implementation in particular and synchroniza-

tion optimization in general on ARM HPC systems.

This paper studies OpenMP synchronization implementa-

tions on two representative ARMv8 multi-core processors,

Phytium 2000+ and ThunderX2. We investigate the per-

formance behaviours of both barrier-related synchronization

constructs (including explicit barrier constructs and im-

plicit barrier synchronization in work-sharing regions like

parallel for and reduction) and mutex-based syn-

chronization constructs (critical and atomic directives).

We use EPCC benchmark [6] to quantify the barrier overhead

of LLVM and GCC compilers. Our evaluation suggests that in

addition to the main synchronization overhead, other overhead

resulting from the multi-threading management and reduction

operations can also have a significant impact on the application

performance.

We empirically demonstrate that there is no “one-size-fits-

all” synchronization implementation because the efficiency of

OpenMP synchronization varies depending on the underlying

hardware and the number of parallel threads. Our work evalu-

ates two representatives of the barrier-related synchronization



implementations, building upon the tree-based [7] and the

centralized algorithm [8], as well as mutex-based synchro-

nization. Our results expose the scalability and performance

bottlenecks of different synchronization constructs on two

distinct ARMv8 multi-cores. This study thus offers quantified

results for optimizing synchronization algorithms on ARMv8

multi-core systems in particular and future ARM HPC systems

in general.

II. SETUP

This section introduces the architecture features of

Phytium 2000+ and ThunderX2, and then describes the ex-

perimental configurations and benchmarks.

A. Hardware Platforms

Phytium 2000+ integrates 64 ARMv8 compatible process-

ing cores running at 2.2GHz. Each core has a private L1 cache

of 32KB for data and instructions, respectively. Figure 1(a)

shows that the cores are partitioned into eight panels to

form a non-uniform memory access structure. There are two

clusters in each panel. Each cluster contains four

processing cores, a 2MB shared L2 cache and one directory

control unit (DCU) used to maintain the directory-based cache

coherency. The DCUs can access any memory control unit

(MCU) according to the corresponding configurations. The

panels are routed and communicated through the on-chip

network interface. The communication latency and bandwidth

vary according to the distances of different panels. The

floating-point pipeline can combine and execute dual-channel

floating-point SIMD instructions to achieve peak performance

of 4 double-precision floating-point operations per cycle.

Incorporating a two-socket Vulcan system, ThunderX2 in-

tegrates 64 ARMv8 compatible cores (32 cores in a single

socket). Each core is equipped with a 32KB L1 data cache,

a 32KB L1 instruction cache and a 256KB L2 cache and

operates at 2.2GHz in the normal mode, 2.5GHz in the Turbo

mode. Figure 1(b) shows that 32 cores in a Vulcan socket share

a distributed 32MB L3 cache. The two sockets are connected

with a Cavium’s coherent processor interconnect (CCPI2) and

compose a 2-way SMP node. ThunderX2 also uses the CCPI2

to achieve cache coherence across the two sockets. ThunderX2

also supports 128-bit SIMD instructions.

B. Experimental Configurations

We use the EPCC benchmarks [6] to measure the overhead

of the OpenMP constructs. It works by comparing the execu-

tion time of a serial code with the execution time of the code

in the parallel zone with specific directives.

To minimize the noise of system environment, we modified

the source code of the EPCC benchmarks. On the one hand,

only one single construct is specified to measure its sole

overhead.

On the other hand, various iterations for different directives

are set to ensure the accuracy of overhead measurements.

We use the environment variable OMP_NUM_THREADS to

specify the number of threads, and GOMP_CPU_AFFINITY

to pin each thread to a specified hardware core. Note we

use the COMPACT policy in this work, i.e., binding threads

according to the core number. In this way can we analyze

the performance behaviours from the perspective of processor

architectures in a straightforward manner. We use GCC v8.3.0

and LLVM v10.0.1 on both platforms.

III. RESULTS

This section shows the performance of various synchro-

nization constructs (i.e., barrier-related and mutex-based). We

enable the comparative analysis combined with different com-

piler implementations and processor architectures.

A. Barrier-related Synchronization

The most commonly used barrier-related synchronization

construct is the barrier itself. We analyze the explicit

barrier and implicit barrier embedded in work-sharing regions

(single and for). We also discuss the overhead of work-

sharing constructs through the comparison of parallel

(parallel for). In addition, we measure the overhead of

reduction, which resembles the barrier synchronization.

1) Barrier: We measure the barrier performance imple-

mented in GCC and LLVM, respectively in Figure 2. We

observe that the barrier overhead based on GCC grows linearly

over the number of parallel threads.

By contrast, the overhead based on LLVM exhibits a

logarithmic growth, which shows much better scalability.

We also find that the different growth trends do not vary

across processors. The different overhead behaviour between

Phytium 2000+ and ThunderX2 is the parameters of linear and

logarithm growth, which is determined by their architecture.

We explain the performance difference by analyzing the

runtime implementation of barrier in GCC and LLVM.

The sense-reversing centralized algorithm is used in libgomp

of GCC to implement barrier synchronization [8], which

essentially belongs to a linear algorithm. When taking a closer

look at the implementation, we note that the algorithm uses

two global shared variables, “counter” and “global sense”, to

control synchronization. Each thread atomically decrements

the counter to announce its arrival when it enters the barrier.

Furthermore, it will spin for release if it is not the last arrival

thread. When all threads reach the barrier, the last one reverses

“global sense” to wake up other threads. During the synchro-

nization process, the atomic operation of multiple threads is

to be executed in order, and the overhead is accumulated.

Therefore, as the number of threads increases, the overhead

of the barrier grows linearly.

Multiple barrier algorithms are implemented in libomp

of LLVM [7], e.g., the linear barrier, the tree barrier, the

hyper barrier, and the hierarchical barrier. Among them, the

hyper algorithm is used by default. It constructs a hypercube-

embedded tree to implement synchronization. Threads are

divided into several groups. Once all the threads in the group

reach the barrier, the parent thread of each group performs

the next round of group synchronization until only one thread

is left. It is actually a traversal of the tree. Each thread is



(a) Phytium 2000+ (b) ThunderX2

Fig. 1. An architectural overview of Phytium 2000+ and ThunderX2.

assigned to a leaf node. In the hypercube-embedded tree, every

four threads are divided into a group, and the thread with

the smallest number is set to the parent thread. Figure 3(a)

shows the tree structure with 16 threads. Synchronization at

each layer of the tree is performed in a parallel fashion.

Theoretically, the overhead is proportional to the number of

layers of the tree, thereby rendering a logarithmic growth.

When comparing the two processors, we see that the curve

slope of ThunderX2 is much larger and the overhead is almost

three times as large as that of Phytium 2000+ with 64 threads

(42.479 µs versus 14.823 µs), which reflects the potential

drawback of centralized barrier on the Vulcan socket. In a

UMA Vulcan socket, the core accesses the flag value in

the shared L3 cache causing severely busy waiting, which

increasing the access latency. Thanks to the efficient DCU

and the on-chip interconnection, the synchronization overhead

on Phytium 2000+ is relatively small. The performance of

LLVM’s implementations on the two multi-core CPUs be-

haves similarly (see Figure 2(b)). Both overhead increase

logarithmically, and the maximum numbers are similar. This is

because the hyper-embedded tree can adapt to the underlying

architectures.

2) Implicit Barrier: We measure the performance of the

OpenMP directives including the implicit barrier synchroniza-

tion. Such directives can be partitioned into two categories:

one relates to the management of parallel work regions such

as parallel and parallel for, and the other does not,

such as single and for.

a) Single and For: Figure 4 shows the overhead of

single and for implemented in GCC and LLVM on

Phytium 2000+ and ThunderX2. We also compare their over-

head with that of barrier. It is easy to find that their

overhead is similar no matter which compiler and platform are

used. There is an implicit synchronization point at the end of

the work-sharing region of single and for. The overhead

of these two directives is mainly from this synchronization.

While single has extra overhead of controlling the single-

thread entry of a parallel region with atomic operations, the

overhead difference between single and barrier is evi-

dent in Figure 4(b). This is because the atomic operations on

ThunderX2 are more expensive than that on Phytium 2000+.

b) Parallel: The parallel directive has an implicit

synchronization point in its working-share region. So its

performance shows exactly the same trend as that of the

barrier as shown in Figure 5. Nevertheless, it also has ad-

ditional overhead for thread management. The master creates

all required threads in the GCC implementation once starting a

parallel region with the pthread_create API. In contrast,

the LLVM compiler maintains a working thread pool to avoid

repetitive thread creation and destruction.

On Phytium 2000+, the GCC thread management overhead

does not change in the range of 8 to 64 threads, remaining

around 1.8 µs. Since each panel manages its memory module.

Threads mapped onto different panels can be created concur-

rently. However, the thread mapped onto the same panel should

be created sequentially. Therefore, the management overhead

grows in the range of 1 to 8 threads. While on ThunderX2,

the two Vulcan sockets constitute the 2-way SMP architecture

and all the 64 cores share the memory. Consequently, the

GCC management overhead grows with the number of threads

increasing (see Figure 5(b)). With 64 threads, the overhead of

parallel is twice as much as that of barrier. In Contrast

to GCC’s management overhead, the overhead in the LLVM

implementation (see 5) is smaller.

On ThunderX2, the GCC implementation yields lower over-

head when using a few threads. When the number of threads

is more than six, the LLVM implementations outperform GCC

(see Figure 5(b)).

3) Reduction: The OpenMP reduction directive’s overhead

contains implicit synchronization, thread-management and re-

duction operations. Figure 6 depicts the reduction overhead

on Phytium 2000+ and ThunderX2. As the number of threads

increases, the growth trends of reduction overhead are sim-

ilar to that of the barrier directive on Phytium 2000+ (see

Figure 6(a)). For the same thread counts, the overhead of

reduction is about 2.5 microseconds larger than that of barrier.

We also observe that the overhead gap between reduction and

barrier increases over the number of threads for LLVM. When

using a few threads, GCC yields a smaller reduction overhead,

but LLVM performs better when using more threads.

We dive into the source code of GCC and LLVM to explain

the performance behaviours. For GCC’s implementation, slave

threads will store the private reduction variable in a shared

array indexed by thread id when synchronizing. Until all

threads finished their computation, the master thread starts to

traverse the array to accomplish reduction. Our code analysis



0 8 16 24 32 40 48 56 64
num_threads

0

10

20

30

40

ov
er
he

ad
s(
μs
)

Phytium-2000+
ThunderX2

(a) GCC

0 8 16 24 32 40 48 56 64
num_threads

0

1

2

3

4

ov
er
he

ad
s(
μs
)

Phytium-2000+
ThunderX2

(b) LLVM

Fig. 2. The comparison of barrier overhead based two compiler implementation on Phytium 2000+ and ThunderX2.

(a) Barrier (b) Reduction

Fig. 3. The hypercube-embedded tree used in barrier (fan-in=4) and reduction (fan-in=2) of the LLVM implementation with 16 threads.

0 8 16 24 32 40 48 56 64
num_threads

0
2
4
6
8

10
12
14

ov
er
he
ad
s(
μs
)

LLVM_Barrier
LLVM_Single
LLVM_For
GCC_Barrier
GCC_Single
GCC_For

(a) Phytium 2000+

0 8 16 24 32 40 48 56 64
num_threads

0

10

20

30

40

ov
er
he
ad
s(
μs
)

LLVM_Barrier
LLVM_Single
LLVM_For
GCC_Barrier
GCC_Single
GCC_For

(b) ThunderX2

Fig. 4. The performance of single & for compared to barrier.

0 8 16 24 32 40 48 56 64
num_threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

ov
er
he
ad
s(
μs
)

LLVM_Barrier
LLVM_Parallel
GCC_Barrier
GCC_Parallel

(a) Phytium 2000+

0 8 16 24 32 40 48 56 64
num_threads

0

20

40

60

80

ov
er
he

ad
s(
μs
)

LLVM_Barrier
LLVM_Parallel
GCC_Barrier
GCC_Parallel

(b) ThunderX2

Fig. 5. The performance of parallel compared to barrier.



0 8 16 24 32 40 48 56 64
num_threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

ov
er
he

ad
s(
μs
)

LLVM_reduction
GCC_reduction
LLVM_barrier
GCC_barrier

(a) Phytium 2000+

0 8 16 24 32 40 48 56 64
num_threads

0

20

40

60

80

ov
er
he
ad
s(
μs
)

LLVM_reduction
GCC_reduction
LLVM_barrier
GCC_barrier

(b) ThunderX2

Fig. 6. The performance of reduction and comparison with barrier.

0 8 16 24 32 40 48 56 64
num_threads

0
10
20
30
40
50
60
70
80

ov
er
he
ad
s(
μs
)

ThunderX2
Phytium-2000+

(a) GCC

0 8 16 24 32 40 48 56 64
num_threads

0

2

4

6

8

10

12

ov
er
he

ad
s(
μs
)

ThunderX2
Phytium-2000+

(b) LLVM

Fig. 7. The comparison of reduction overhead between two processors.

shows that the LLVM compiler implements the reduction

operation in three different ways: critical, atomic and tree. Our

experimental results demonstrate that the hyper-embedded tree

algorithm is actually used during execution. Different from the

explicit barrier, the branch factor in the reduction operation

decreases from 4 to 2, which reshapes the hyper-embedded

tree form (illustrated in Figure 3(b)) and leads to performance

degradation (see Figure 6). Like the parallel directive, the GCC

compiler has a smaller overhead when using a few threads on

ThunderX2. When the number of threads is larger than 10, the

LLVM implementations perform better(see Figure 6(b)).

Figure 7(a) compares the GCC reduction overhead on

Phytium 2000+ and ThunderX2. We use the curve-fitting

approach to model the reduction overhead on Phytium 2000+

and ThunderX2 in Equation 1 and Equation 2 to intuitively

distinguish the growth rate. Obviously, the GCC compiler

yields a smaller overhead on ThunderX2. LLVM’s reduction

overhead on Phytium 2000+ and ThunderX2 are compared in

Figure 7(b). The overhead on ThunderX2 is larger than that

on Phytium 2000+. The two compilers’ implementation both

perform better on Phytium 2000+.

We conclude that when using over 32 threads, the overhead

on the ThunderX2 increase sharply. We believe that this is

because the additional cross-socket memory access overhead.

y = 0.2498x+ 0.7865 (1)

y = 0.0112x
2
+ 0.5917x− 1.5387 (2)

B. Mutex-based Synchronization

In this subsection, we focus on the mutex-based synchro-

nization on Phytium 2000+ and ThunderX2.

1) Critical and Lock: The critical directive is a typical

representative of mutex-based synchronization, which ensures

that only one thread enters the critical section each time. It

is implemented based on the locking and unlocking mech-

anism, mainly involving two functions omp set lock() and

omp unset lock().

In Figure 8(b) and Figure 8(c), the overhead of critical

and lock are compared on Phytium 2000+. Their simi-

lar performance indicates that the dominating overhead of

critical comes from the usage of locking and unlocking.

Figure 8(a) compares the overhead of critical based on

GCC and LLVM. The overhead of the two compilers is almost

the same when the number of threads is fewer than eight.

While the overhead of LLVM is smaller than GCC when the

number of threads over eight.

Figure 9(a) shows the critical overhead implemented

by LLVM and GCC on ThunderX2. When using fewer than 8

threads, the GCC implementation outperforms that the LLVM

implementation. on the contrary, the LLVM implementation

will have a smaller overhead when launching more threads.

The critical implementation in LLVM is identical to

the critical construct description in the OpenMP API

Specification. The thread dispatches corresponding callbacks

when it enters and/or exits from the critical region. When the



0 8 16 24 32 40 48 56 64
num_threads

0.1

0.2

0.3

0.4

0.5
ov
er
he

ad
s(
μs
)

LLVM
GCC

(a) Critical

0 8 16 24 32 40 48 56 64
num_threads

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

ov
er
he

ad
s(
μs

)

Critical
Lock

(b) GCC

0 8 16 24 32 40 48 56 64
num_threads

0.1

0.2

0.3

0.4

0.5

ov
er
he

ad
s(
μs

)

Critical
Lock

(c) LLVM

Fig. 8. The performance of critical and comparison with lock on Phytium 2000+.

0 8 16 24 32 40 48 56 64
num_threads

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

ov
er
he

ad
s(
μs
)

LLVM
GCC

(a) Critical

0 8 16 24 32 40 48 56 64
num_threads

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

ov
er
he

ad
s(
μs

)

Critical
Lock

(b) GCC

0 8 16 24 32 40 48 56 64
num_threads

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

ov
er
he
ad
s(
μs
)

Critical
Lock

(c) LLVM

Fig. 9. The performance of critical and comparison with lock on ThunderX2.

number of threads increases from 1 to 32, the critical

overhead based on LLVM remains stable. This performance

behaviour is left for future investigation, and we speculate that

it relates to the underlying architectures. We demonstrate that

the critical implementation in LLVM is more suitable for

the UMA Vulcan architecture than GCC.

2) Atomic: The atomic directive specifies that operation

to the variable must be atomic, which is the minimum mutex-

based synchronization. It provides a smaller critical region

than the critical directive. The two compilers (GCC and

LLVM) use the same mechanism (i.e. the __sync builtins) to

implement the atomic directive. Figure 10(a) compares the

atomic overhead based on two compilers. Their overhead is

approximately the same when using few threads. As the num-

ber of threads increase, GCC gradually expresses superiority.

We compare the performance of critical and atomic

based on two compilers in Figure 10(b) and Figure 10(c). It

can be distinctly observed that the overhead of atomic is

significantly lower than that of critical baesd on the same

compiler. Since the atomic directive can utilize hardware

operations to immensely reduce the implementation overhead.

Figure 11(a) compares the atomic overhead implemented

by GCC and LLVM. They approximately coincide all the

time because the two compilers adopts the same implemen-

tation mechanism. As the number of threads increase from

0 to 32, the overhead of atomic delivers linear growth.

It is because that the time of acquiring the atomic lock

continuously increases in a UMA Vulcan socket. Figure 11(b)

shows the overhead of atomic and critical imple-

mented by GCC compiler. They exhibit similar growth due

to the consistent function calls (gomp_mutex_lock and

gomp_mutex_unlock). But the atomic directive adopts

the cheaper atomic lock than default lock, which reduces the

implementation overhead.

IV. DISCUSSION

This section summarizes our findings on OpenMP imple-

mentations and discusses how the OpenMP synchronizations

can be optimized for future directions.

LLVM OpenMP outperforms GCC’s on ARMv8 proces-

sors for larger thread counts. Overall, the LLVM implemen-

tation is more scalable than GCC on both Phytium 2000+ and

ThunderX2. For the barrier-related synchronization, GCC uses

a centralized barrier which brings “hot-spot” problem while

LLVM adopts a hyper-embedded tree barrier. They show linear

and logarithmic growth in overhead, respectively. The LLVM

implementation yields a smaller overhead when using more

threads than GCC, whereas the GCC compiler excels when

using fewer threads. Thus, a hybrid barrier implementation

for the underlying architecture is required. Furthermore, GCC

incurs more thread management overhead than LLVM. This is

because LLVM maintains a thread pool to avoid repetitively

creating threads when starting a parallel region.

For the mutex-based synchronization, their performance is

similar. We note that the performance of critical on GCC

is even better than LLVM.



0 8 16 24 32 40 48 56 64
num_threads

0.05

0.10

0.15

0.20

0.25

0.30
ov
er
he

ad
s(
μs
)

LLVM
GCC

(a) Atomic

0 8 16 24 32 40 48 56 64
num_threads

0.1

0.2

0.3

0.4

0.5

ov
er
he

ad
s(
μs

)

Critical
Atomic

(b) GCC

0 8 16 24 32 40 48 56 64
num_threads

0.1

0.2

0.3

0.4

0.5

ov
er
he

ad
s(
μs

)

Critical
Atomic

(c) LLVM

Fig. 10. The performance of atomic and comparison with critical on Phytium 2000+.

0 8 16 24 32 40 48 56 64
num_threads

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

ov
er
he

ad
s(
μs
)

LLVM
GCC

(a) Atomic

0 8 16 24 32 40 48 56 64
num_threads

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

ov
er
he

ad
s(
μs

)

Critical
Atomic

(b) GCC

0 8 16 24 32 40 48 56 64
num_threads

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

ov
er
he

ad
s(
μs

)

Critical
Atomic

(c) LLVM

Fig. 11. The performance of atomic and comparison with critical on ThunderX2.

The overhead of OpenMP constructs varies across archi-

tectures. There are many differences between Phytium 2000+

and ThunderX2 in terms of the performance of OpenMP

constructs. It mainly comes from the architectural disparities.

Overall, the overhead on Phytium 2000+ is smaller.

In terms of the centralized barrier, the overhead growth on

ThunderX2 is higher than that on Phytium 2000+. In the mem-

ory hierarchy of a UMA Vulcan socket, the shared L3 cache is

utilized to implement the centralized barrier, which degrades

the performance for busy waiting. On Phytium 2000+, the dis-

tributed directory control and the on-chip interconnection can

provide efficient data accesses. Besides, the communication

across the ThunderX2 sockets via CCPI2 incurs an overhead.

Adaptive optimizations for OpenMP implementations are

required. On ThunderX2, the GCC implementation can yield

better performance when using a few threads, whereas the

LLVM implementations excel for a large number of threads.

Neither GCC nor LLVM has provided such an adaptive

OpenMP implementation based on different underlying archi-

tectures.

Besides, efficient synchronization algorithms such as tour-

nament barrier [2], [5], [9], are shown to be scalable on

the NUMA architectures, which is regarded as a promising

candidate implementation for the ARMv8 processors. In a

nutshell, an adaptive implementation is required for future

OpenMP implementations.

V. RELATED WORK

This section provides a brief introduction to the related work

on measuring the overhead of OpenMP constructs, evaluating

its scalability and synchronization.

Measurement of OpenMP overhead The most comprehen-

sive benchmark for OpenMP constructs is EPCC OpenMP

micro-benchmark suite [6], [10]. Its working principle is to

subtract the execution time of serial code from the execution

time of parallel code containing specific OpenMP directive

to obtain the overhead of corresponding structure. This pa-

per utilized the EPCC benchmark to the experimental datas.

Fürlinger et al. [11] proposed a tool to evaluate the runtime

characteristics of OpenMP applications. The tool defines the

overhead of OpenMP structures into four categories according

to the causes, which are derived from synchronous operations,

unbalanced workloads, limited parallelism and thread manage-

ment. The EPCC benchmark is well designed to capture the

overhead of complex data environment. However, it does not

directly measure the overhead of a single OpenMP directive,

so it is more vulnerable to noise on account of environmental

impact. Iwainsky et al. [12] expanded the EPCC benchmark

to evaluate various categories of overhead implemented by

OpenMP directives such as the minimum cost of last in first

out when the thread reaches the fence, average cost, etc.

Scalability of OpenMP implementation Shirako et al. [13]

propose two new synchronization constructs in the OpenMP

programming model, thread-level phasers and iteration level



phasers to support various synchronization patterns such as

point-to-point synchronizations and sub-group barriers with

neighbor threads. Liao et al. [14] analyzed the performance of

OpenMP structure on UltraSparc IV and Xeon processors to

explore its performance supported by SMP technology. Since

the SMP system and memory hierarchy are not considered

in OpenMP design, the architecture and compilation strategy

need to be reconsidered to predict the parallel speedup. Iwain-

sky et al. [12] applied automated performance modeling to

analyze the scalability in OpenMP structures. They found that

the OpenMP structure actually shows linear or superlinear

growth instead of expected logarithmic or linear growth.

Jammer et al. [15] compared the OpenMP synchronization

implementation and overhead of LLVM and GCC [12]. They

found that the LLVM compiler generally outperformed on

Xeon processors, but the gcc compiler outperformed for a

small number of threads. With regard to ARMv8 architecture,

Michalowicz et al. [16] analyzed the performance of OpenMP

applications with different compilers on the A64FX platform.

But their evaluation was based on practical applications rather

than specific directives.

Synchronization evaluation and optimization Ramachandra

et al. [2] researched the impact of different synchronization

algorithms to the overhead of OpenMP constructs. They found

that for any OpenMP construct, there is no optimal imple-

mentation algorithm due to the different number of threads

and architecture. In addition, there has been much work on

the evaluation of synchronization algorithms [3], [9], [17]–

[20]. Researches have shown that a given synchronization

implementation depends on the number of launched threads,

architecture, parallel applications and specific system work-

loads. Ma et al. [21] suggested removing redundant fences or

implementing DOACROSS parallelism to reduce the overhead

of synchronization in OpenMP programs. For non-uniform

memory access multi-core systems, Zeng et al. [5] proposed

a barrier optimization framework and two synchronization

algorithms based on the framework. The experimental results

on their three NUMA multi-core platforms show that the

synchronization algorithm optimized by the framework is as

good as the most advanced methods even provides better

performance. Huang et al. [22] extended the implementation

of barrier and reduction directives in OpenMP. Contrasted

with the original OpenMP performance, the performance of

the extended directives on SDSM system has been signifi-

cantly optimized. In addition, these two extended directives

are defined at the OpenMP instruction level, through which

programmers can optimize program performance.

VI. CONCLUSION

We have presented a comprehensive study of OpenMP

synchronization implementations on ARMv8 multi-cores. Our

work targets GCC and LLVM by using the EPCC microbench-

mark to evaluate the overhead of OpenMP constructs in

terms of barrier-related and mutex-based synchronization on

Phytium 2000+ and ThunderX2. We observe that the per-

formance of OpenMP constructs varies with regard to syn-

chronization algorithms and thread-management. The LLVM

OpenMP compiler shows better performance than that of GCC

for larger number of threads. Accordingly, for the reduction

operations and parallel region managements, GCC incurs a

larger overhead. Thus, the LLVM OpenMP implementation is

regarded to be more scalable and efficient. When it comes to

the mutex-based synchronization, their implementation over-

head varies with the underlying architectures. For future work,

we believe that a better OpenMP implementation has to

adapt to processor architectures, input workloads and working

contexts. Learning-based methods could be used to select

the right configuration, e.g., the fan-in, the scheduling work

granularity during runtime.

VII. ACKNOWLEDGEMENTS

This work is partially supported by the National Key Re-

search and Development Program of China under Grant No.

2020YFA0709803, the National Natural Science Foundation

of China under Grant Nos. 61972408 and 61872294.

REFERENCES

[1] “The openmp api specification for parallel programming,” OpenMP
Home. https://www.openmp.org/, Tech. Rep.

[2] N. R. et al., “Scalability evaluation of barrier algorithms for openmp,”
in IWOMP 2009.

[3] C. A. Lee, “Barrier synchronization over multistage interconnection
networks,” in SPDP 1990.

[4] G. F. Pfister and V. A. Norton, “”hot spot” contention and combining
in multistage interconnection networks,” in ICPP’85.

[5] Z. M. Yi, F. Chen, and Y. Y. Yao, “A barrier optimization framework
for NUMA multi-core system,” Concurr. Comput. Pract. Exp., vol. 32,
no. 5, 2020.

[6] J. M. Bull and D. O’Neill, “A microbenchmark suite for openmp 2.0,”
SIGARCH Comput. Archit. News, vol. 29, no. 5, pp. 41–48, 2001.

[7] “Llvm: Llvm openmp runtime library,” the LLVM Project, 2018.
https://openmp.llvm.org/Reference.pdf, Tech. Rep.

[8] “Gnu offloading and multi processing runtime library: The gnu
openmp and openacc implementation,” GNU libgomp, 2018.
https://gcc.gnu.org/onlinedocs/gcc-8.2.0/libgomp.pdf, Tech. Rep.

[9] D. Grunwald and S. Vajracharya, “Efficient barriers for distributed
shared memory computers,” in IPPS 1994.

[10] J. M. Bull, “Measuring synchronisation and scheduling overheads in
openmp,” 2002.

[11] K. Fürlinger and M. Gerndt, “Analyzing overheads and scalability
characteristics of openmp applications,” in VECPAR 2006.

[12] C. Iwainsky et al., “How many threads will be too many? on the
scalability of openmp implementations,” in Euro-Par 2015.

[13] J. Shirako, K. Sharma, and V. Sarkar, “Unifying barrier and point-to-
point synchronization in openmp with phasers,” in IWOMP 2011.

[14] C. H. Liao et al., “Evaluating openmp on chip multithreading platforms,”
in IWOMP 2005.

[15] T. Jammer et al., “A comparison of the scalability of openmp imple-
mentations,” in Euro-Par 2020.

[16] B. Michalowicz et al., “Comparing the behavior of openmp imple-
mentations with various applications on two different fujitsu A64FX
platforms,” in PEARC ’21.

[17] A. Rodchenko et al., “Effective barrier synchronization on intel xeon
phi coprocessor,” in Euro-Par 2015.

[18] T. Hoefler et al., “A Survey of Barrier Algorithms for Coarse Grained
Supercomputers,” Chemnitzer Informatik Berichte, vol. 04, no. 03, Dec.
2004.

[19] S. Ramos and T. Hoefler, “Modeling communication in cache-coherent
SMP systems: a case-study with xeon phi,” in HPDC’13.

[20] C. Ball and M. Bull, “Barrier synchronisation in java,” 2008.
[21] H. T. M et al., “Barrier optimization for openmp program,” in

ACIS/SNPD/IWEA/WEACR 2009.
[22] C. Huang and X. J. Yang, “Improve openmp performance by extending

barrier and reduction constructs,” in ISHPC 2003.


