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Abstract— This paper firstly proposes a generalized 

decomposition model for dual three-phase (3-ph) permanent 
magnet synchronous machines (PMSMs) with 0°, 30°, and 60° 
angle displacements between two sets of windings, allowing 
machines controlled in two-dimensional orthogonal αβ and xy 
subspaces. This model can decouple mutual inductances coupling 
phases from two sets, respectively. However, there often exist 
asymmetric impedances, due to inherent asymmetric machine 
parameters, cables with unequal lengths, manufacture tolerances, 
etc., in dual 3-ph PMSMs inevitably causing unbalanced phase 
currents and deteriorating the decoupling performance of the 
generalized machine model. Therefore, the generalized 
decomposition model incorporating asymmetric impedances is 
further developed, in which additional terms incurred by 
asymmetric impedances lead to the cross-coupling of αβ subspace 
and xy subspace. Through this model, the compensation capability 
of asymmetries is derived at a given DC link voltage. Then, a 
compensation strategy is illustrated to suppress unbalanced phase 
currents together with current harmonics caused by 
nonlinearities. Finally, experimental results testify the current 
balancing performance and simulation results further validate the 
machine model and the compensation capability. 

 
Index Terms— Asymmetric impedances, Dual three-phase 

permanent magnet synchronous machine, Generalized 
decomposition model. 
 

I. INTRODUCTION 
ual three-phase (3-ph) permanent magnet synchronous 

machines (PMSMs) are increasingly popular in industrial 
applications, such as electric ship propulsion, electrical 
vehicles, wind generators, aerospace, etc. [1]-[3], due to 
additional degrees of freedom [4], high-power low-current 
capability, high torque density, and other benefits. It is 
acknowledged angle displacement (AD) between two sets of 
windings is one of the key factors, determining the machine 

performance [5]-[6]. Among various ADs, 0°, 30°, and 60° ADs 
are widely used, as shown in Fig. 1. The machine design 
schematics of these three main types of dual 3-ph machines can 
be found in [6]-[8] (0°-AD), [5], [9]-[13] (30°-AD) and [13]-
[14] (60°-AD), respectively.  

For the 0°-AD machine, due to the character of no angle 
displacement between two sets of 3-ph windings, the hardware 
or software can be identical for control of the two sets of 3-ph 
windings, which makes the system more interchangeable and 
increases the system redundancy. This could be desirable for an 
industrial product such as that in a megawatt wind turbine 
generator. Meanwhile, the 0°-AD machine is illustrated to have 
advantages to reduce the short-circuit current at fault operations 
[7]. On the other hand, the topology of the 0°-AD machine 
allows tests of the machine or converter up to the full load 
without requiring additional facilities by arranging the two sets 
operating at motor and generator modes, respectively [8]. For 
30°-AD machines, they can offer a lower torque ripple [5], [12], 
and fewer MMF harmonic components [5], compared with 60°-
AD machines. However, the amplitudes of these harmonic 
components should be analyzed in specific applications [5]. On 
the other hand, the slot/pole combinations and winding types 
play significant roles in the performances of 30°/60°-AD 
machines [5]. There is also an application of 60°-AD machines 
for the electrical power steering system [14]. In summary, 0°, 
30°, and 60° angle displacements are common choices for dual 
3-ph PMSMs and the angle displacement can be chosen 
according to the specific application requirements.  

For the dual 3-ph PMSMs with two neutral points not 
connected shown in Fig. 1, the two sets of windings can be 
controlled separately [15]-[17]. However, these two sets are not 
independent due to mutual inductances coupling phases from 
two sets, respectively, which means one dual 3-ph PMSM 
cannot be simply viewed as a combination of two single 3-ph 
PMSMs. Therefore, vector space decomposition (VSD) is 
introduced in [18] for 30°-AD dual 3-ph PMSMs which can 
solve the coupling issue of mutual inductances mentioned 
previously. In VSD, components of different orders are 
decoupled into two orthogonal subspaces, which facilitates the 
regulation of fundamental and harmonic order components 
separately [19]. Similarly, 60°-AD dual 3-ph PMSMs can be 
considered as symmetrical six-phase machines and the 
decoupling matrix shown in [20] can decouple the mutual 
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inductances. However, the solution for 0°-AD dual 3-ph 
PMSMs is still not addressed in the literature. Therefore, a 
decomposition approach of 0°-AD dual 3-ph PMSMs is 
required. 

  
(a)   (b)   (c) 

Fig. 1  Machine topology of dual 3-ph PMSMs. (a) 0°-AD. (b) 30°-AD. (c) 60°-
AD. 

On the other hand, the decomposition machine models for 
30°-AD and 60°-AD dual 3-ph PMSMs mentioned in [18], [20] 
are established on the premise of symmetrical impedances 
(ideal condition), thereby resulting a totally decoupled two 
subspaces (αβ and xy subspaces) facilitating the control design. 
However, the existing asymmetric impedances can lead to 
coupling terms between αβ and xy subspaces. The asymmetric 
impedances can be classified into three main categories, i.e. 
partially coupled mutual inductances, asymmetric resistances, 
and asymmetric self-inductances. The partially coupled mutual 
inductances in dual 3-ph PMSMs can be caused by inherent 
machine parameters, for example, by designing the modular 
stator structure [10]). Normally, asymmetric resistances and 
self-inductances can be caused by cables with unequal lengths 
connecting phase terminals of the machine to the converter 
[21], different phase winding temperatures [22], manufacturing 
tolerances, etc. Meanwhile, the large asymmetric resistances 
and self-inductances would occur when there is a short circuit 
in turns of stator windings [23].  

Therefore, the asymmetric impedances could commonly 
exist in drive systems of dual 3-ph PMSMs. Without 
compensation, there would be unbalanced phase currents [21], 
[24]-[27], leading to the increase of torque ripple and machine 
losses [28]. To compensate the unbalanced phase currents in the 
control scheme based on the decomposition model, the 
influences of asymmetric impedances on the decomposition 
machine models deserve a systematic investigation that benefits 
the development of compensation strategies and the derivation 
of the compensation capability. The compensation capability is 
of importance because it indicates whether the system is able to 
compensate the asymmetric impedances. 

The modeling approaches of asymmetric impedances for 3-
ph machines/inverters are addressed in publications [29]-[30]. 
For 3-ph systems, a generalized model of the PWM rectifier 
system separating the positive and negative sequences can 
describe the influences of an unbalanced network [29]. 
Proportions of positive and negative sequences reflected the 
unbalanced severity. Similarly, in [30] a unified mathematical 
model containing positive and negative synchronously rotating 
frames can describe a voltage-sourced converter-based drive 
system under an unbalanced grid supply and unbalanced input 
impedances. In terms of dual 3-ph machines, literature mainly 
covers 30°-AD machines [24]-[25], [31]-[32]. In [31] an 
analytical model of a dual 3-ph induction machine with one 

phase open is illustrated with additional terms caused by the 
open-loop phase. In [24], different values of the stator 
resistances and stator leakage inductances of two stator 
branches in dual 3-ph induction machines are presented in the 
developed machine model by two coefficients. However, the 
asymmetric impedances for phases within one branch are not 
involved. In [25], the fundamental current in xy subspace 
caused by unbalanced parameters can be specified into positive 
and negative sequences without mentioning the detailed 
machine model affected by asymmetric impedances.  

As mentioned, the main result of asymmetric impedances is 
unbalanced phase currents. Approaches to balance phase 
currents can be generally classified into external hardware 
addition [21], [26] and software current balancing [30], [25], 
[27], [32]-[33]. Unbalanced phase currents can be suppressed 
through a calculated circuit containing resistances and 
inductances [26]. Apart from additional hardware, current 
regulation approaches, such as PI [25], proportional-resonant 
(PR) controllers [30], proportional-integral-resonant controllers 
(PIR) [32], model predictive control [33], are testified a good 
performance to balance phase currents caused by asymmetric 
impedances or loads. Furthermore, typical current controllers 
(PI, PR, and PIR) are compared theoretically in the aspect of 
performance of current balancing in [27]. However, whether the 
drive system or the DC link has the capability to provide the 
voltage to compensate the unbalanced currents caused by 
asymmetric impedances should be assured before 
compensation. To achieve this, the analysis of the influences of 
asymmetric impedances on the decomposition model showing 
additional coupling terms, more explicit and detailed than 
positive/negative sequences mentioned in the literature [25], 
[29]-[30], is required. Meanwhile, all three main categories, i.e. 
partially coupled mutual inductances, asymmetric resistances, 
and asymmetric self-inductances, should be covered. 

This paper is further developed from [34]. In [34], a 
generalized decomposition model for 0°, 30°, and 60°-AD dual 
3-ph PMSMs can solve the mutual inductance coupling issue of 
phases from two sets, respectively, but asymmetric impedances 
are not considered. After a brief introduction of the generalized 
decomposition model in Section II, additional coupling terms 
in this generalized decomposition model caused by asymmetric 
impedances are analyzed in detail in Section III. The 
compensation capability of asymmetries restricted by DC link 
voltage in the drive system can be derived from the developed 
model considering asymmetric impedances. Afterwards, an 
approach to compensate impedance asymmetries is illustrated 
in Section IV, followed by experimental validation on a direct-
drive wind power test rig in Section V. Furthermore, the model 
considering impedance asymmetries and the compensation 
capability is validated through simulation in Section VI. 

II. GENERALIZED DECOMPOSITION MODEL OF 0°, 30°, AND 
60°-AD DUAL 3-PH PMSMS  

In this section, the original machine model of 0°, 30°, and 
60°-AD dual 3-ph PMSM in the stationary reference frame is 
shown first. Then, the generalized decomposition model is 
developed from the original machine model.  
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A. Machine Model in Stationary Reference Frame 
Assuming that there are no iron saturation effects and iron 

losses, the original machine model in stationary reference frame 
for 0°, 30°, and 60°-AD dual 3-ph PMSMs can be expressed as  

ቐ𝒖𝒔 = 𝑹𝒔𝒊𝒔 + 𝑑𝝍𝒔𝑑𝑡𝝍𝒔 = 𝑳𝒔𝒊𝒔 + 𝜸𝒔𝜓௙ௗ , (1)

in which 

⎩⎪⎪
⎪⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎪⎧𝒖𝒔 = [𝑢஺ 𝑢௎ 𝑢஻     𝑢௏ 𝑢஼ 𝑢ௐ]୘ 𝒊𝒔 = [𝑖஺ 𝑖௎ 𝑖஻      𝑖௏ 𝑖஼ 𝑖ௐ]୘𝝍𝒔 = [𝜓஺ 𝜓௎ 𝜓஻      𝜓௏ 𝜓஼ 𝜓ௐ]୘𝑹𝒔 = di𝑎𝑔[𝑅஺ 𝑅௎ 𝑅஻     𝑅௏ 𝑅஼ 𝑅ௐ]𝜸𝒔 = [cos 𝜃௘ cos(𝜃௘ − 𝜃஺௎) cos(𝜃௘ − 𝜃஺஻)      cos(𝜃௘ − 𝜃஺௏) cos(𝜃௘ − 𝜃஺஼) cos(𝜃௘ − 𝜃஺ௐ)]୘𝑳𝒔 = 𝐿ఙ𝑰𝟔

+
⎣⎢⎢
⎢⎢⎡

𝑀஺஺ 𝑀஺௎ 𝑀஺஻𝑀஺௎ 𝑀௎௎ 𝑀஻௎𝑀஺஻ 𝑀஻௎ 𝑀஻஻      𝑀஺௏ 𝑀஺஼ 𝑀஺ௐ𝑀௎௏ 𝑀஼௎ 𝑀௎ௐ𝑀஻௏ 𝑀஻஼ 𝑀஻ௐ 𝑀஺௏ 𝑀௎௏ 𝑀஻௏𝑀஺஼ 𝑀஼௎ 𝑀஻஼𝑀஺ௐ 𝑀௎ௐ 𝑀஻ௐ    𝑀௏௏ 𝑀஼௏ 𝑀௏ௐ𝑀஼௏ 𝑀஼஼ 𝑀஼ௐ𝑀௏ௐ 𝑀஼ௐ 𝑀ௐௐ⎦⎥⎥
⎥⎥⎤

 

, (2)

where 𝜓௙ௗ  — rotor flux linkage; 𝑢஺, 𝑢஻, 𝑢஼, 𝑢௎, 𝑢௏, 𝑢ௐ — phase voltages;  𝑖஺, 𝑖஻, 𝑖஼ , 𝑖௎, 𝑖௏ , 𝑖ௐ — phase currents; 𝜓஺, 𝜓஻, 𝜓஼ , 𝜓௎, 𝜓௏ , 𝜓ௐ — flux linkages;  𝑅஺, 𝑅஻, 𝑅஼, 𝑅௎, 𝑅௏, 𝑅ௐ— phase resistances;  𝜃௘ — electrical angle; 𝜃஺ே  (N=B, C, U, V, W) — electrical angle displacement 
between Phase A and Phase N;  𝐿ఙ  — leakage inductance; 𝑀௄௅ (K, L = A, B, C, U, V, W) — mutual inductance between 
Phase K and Phase L. If K and L are the same, it denotes the 
self-inductance. 

B. Generalized Decomposition Model 
If two sets of 3-ph windings are modelled and controlled 

separately, mutual inductances between phases from two sets, 
respectively, such as 𝑀஺௎, 𝑀஺௏ in (1) are neglected, leading to 
imprecision. However, these mutual inductances are decoupled 
in the generalized decomposition machine model. Another 
benefit is to regulate the fundamental component and main 
harmonics separately in two subspaces. Thus, the αβ subspace 
producing electromagnetic torque and harmonics-related xy 
subspace can be separately regulated.  

It is assumed that all resistances and self-inductances are 
symmetrical and mutual inductances are fully coupled. To 
simplify the decomposition and the analysis of influences of 
asymmetric impedances on the decomposition model, the high-
order harmonics of the magnetic field in the air gap 
conventionally with relatively small amplitudes are neglected 
and the dominant fundamental component is considered 
exclusively. Then, impedances in (2) can be simplified by  

൝𝑅௦ = 𝑅஺ = 𝑅஻ = 𝑅஼ = 𝑅௎ = 𝑅௏ = 𝑅ௐ𝑀ଵ = 𝑀஺஺ = 𝑀஻஻ = 𝑀஼஼ = 𝑀௎௎ = 𝑀௏௏ = 𝑀ௐௐ𝑀௄௅ = 𝑀ଵ ∙ cos(𝜃௄௅) (𝐾, 𝐿 = 𝐴, 𝐵, 𝐶, 𝑈, 𝑉, 𝑊; 𝐾 ≠ 𝐿), (3)

in which, 𝑅௦ and 𝑀ଵ are the nominal value of resistances and 
self-inductances, respectively; 𝜃௄௅ denotes the electrical angle 
shift between Phase K and Phase L.  

From (3), it is noted that mutual inductance 𝑀௄௅ is dependent 
on the AD of machines. Then, the decomposition matrices for 
0°, 30°, and 60°-AD dual 3-ph PMSMs are classified as 𝑫𝒗 = ቊ𝑫𝒗𝟎,𝟔𝟎, (0°/60° AD)𝑫𝒗𝟑𝟎, (30° AD ) . (4)

in which, 𝑫𝒗𝟑𝟎 is for 30°-AD dual 3-ph PMSMs, known as the 
vector space decomposition matrix [18], is shown as  

𝑫𝒗𝟑𝟎 = 13
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎡1 √32 − 120 12 √321 − √32 − 12

     −
√32 − 12 012 − √32 −1√32 − 12 00     12  − √32      1    0 1   0    1   0       12       √32   −10      1   01      0   1     ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎥⎤

; (5)

𝑫𝒗𝟎,𝟔𝟎  is originally for 60°-AD dual 3-ph PMSMs [20] and 
expressed as 

𝑫𝒗𝟎,𝟔𝟎 = 13
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡1 12 − 120 √32 √321 − 12 − 12

        −1 − 12 120 − √32 − √321 − 12 − 120 √32 − √32  1 1 1   1 −1   1          0   √32  − √321   1   1−1   1  −1     ⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎤
. (6)

However, for 0°-AD dual 3-ph PMSMs, a conversion is 
implemented to achieve an equivalent 60°-AD machine 
topology. A 0°-AD dual 3-ph PMSM with phase shifts of 
voltages and currents for Phase U, V, W can be viewed as a 60°-
AD dual 3-ph PMSM, which is detailed in Fig. 2. Currents of 
Phase U, V, W in 0°-AD dual 3-ph PMSMs are converted to 
equivalent currents of the set UᇱVᇱWᇱ  in the topology of the 
60°-AD machines by 

ቐ𝑖௎ᇲ = −𝑖ௐ𝑖௏ᇲ = −𝑖௎𝑖ௐᇲ = −𝑖௏ , (7)

where 𝑖௎ᇲ , 𝑖௏ᇲ, 𝑖ௐᇲ are equivalent currents of Phase Uᇱ, Vᇱ and Wᇱ, respectively, as shown in the transformed 60°-AD topology 
after conversion. After current regulation, equivalent voltages 



IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS 

are generated, they are converted back to voltages for 0°-AD 
dual 3-ph PMSMs by 

ቐ𝑢௎∗ = −𝑢௏ᇲ∗𝑢௏∗ = −𝑢ௐᇲ∗𝑢ௐ∗ = −𝑢௎ᇲ∗ , (8)

in which, 𝑢௎ᇲ∗ , 𝑢௏ᇲ∗ , 𝑢ௐᇲ∗  are equivalent voltage references (60°-
AD machine topology) in the control loop. Then, 𝑫𝒗𝟎,𝟔𝟎 is then 
extended to 0°-AD dual 3-ph PMSMs and the decomposition of 
mutual inductances for 0°-AD dual 3-ph PMSMs is achieved 
indirectly. 

 
Fig. 2  Conversion of 0°-AD dual 3-ph PMSMs to 60°-AD machine topology 
in control loop. 

Applying 𝑫𝒗 to (1), voltages, currents, and flux linkages in 
three two-dimensional orthogonal subspaces (αβ, xy, and o1o2 
subspaces) are generated and shown in (9). 

ቐ[𝑢ఈ 𝑢ఉ 𝑢௫     𝑢௬ 𝑢௢ଵ 𝑢௢ଶ]୘ = 𝑫𝒗𝒖𝒔[𝑖ఈ 𝑖ఉ 𝑖௫      𝑖௬ 𝑖௢ଵ 𝑖௢ଶ]୘ = 𝑫𝒗𝒊𝒔[𝜓ఈ 𝜓ఉ 𝜓௫      𝜓௬ 𝜓௢ଵ 𝜓௢ଶ]୘ = 𝑫𝒗𝝍𝒔 (9)

Since the projection of current vectors in o1o2 subspace is 
inherently zero, the o1o2 subspace is not taken into 
consideration. The generalized decomposition model derived 
from (9) is explained as 

൦𝑢ఈ𝑢ఉ𝑢௫𝑢௬൪ = ൦𝑅௦ 00 𝑅௦     0   00   00    00    0     𝑅௦ 00 𝑅௦
൪ ⎣⎢⎢

⎡𝑖ఈ𝑖ఉ𝑖௫𝑖௬⎦⎥⎥
⎤ + ⎣⎢⎢

⎢⎡𝜓̇ఈ𝜓̇ఉ𝜓̇௫𝜓̇௬⎦⎥⎥
⎥⎤ (10)

⎣⎢⎢
⎡𝜓ఈ𝜓ఉ𝜓௫𝜓௬⎦⎥⎥

⎤ = ൦𝐿ఙ + 3𝑀ଵ 00 𝐿ఙ + 3𝑀ଵ   0  00   0          0                0        0                 0         𝐿ఙ 00 𝐿ఙ
൪ ⎣⎢⎢

⎡𝑖ఈ𝑖ఉ𝑖௫𝑖௬⎦⎥⎥
⎤

              + ൦cos(𝜃௘)sin(𝜃௘)00 ൪ 𝜓௙ௗ .  (11)

From (10) and (11), there are no coupling terms in αβ and xy 
subspaces.  

III. INFLUENCES OF ASYMMETRIC IMPEDANCES ON 
GENERALIZED DECOMPOSITION MODEL 

The generalized decomposition model in Section II is 
established on the premise of no asymmetric impedances. In 
this section, the research of asymmetric impedances affecting 
this generalized model is divided into three categories, which 
are asymmetric resistances, asymmetric self-inductances, and 
partially coupled mutual inductances. Then, according to the 
analytical model of asymmetric impedances, the compensation 
capability at a given DC link voltage is explained. 

A. Asymmetric Resistances 
Assuming the asymmetric resistance in each phase is ∆𝑅஺, ∆𝑅஻ , ∆𝑅஼ , ∆𝑅௎ , ∆𝑅௏  and ∆𝑅ௐ , respectively, 𝑹𝒔  in (2) is 

changed as 𝑹𝒔 = 𝑑𝑖𝑎𝑔[𝑅௦ + ∆𝑅஺ 𝑅௦ + ∆𝑅௎ 𝑅௦ + ∆𝑅஻           𝑅௦ + ∆𝑅௏ 𝑅௦ + ∆𝑅஼ 𝑅௦ + ∆𝑅ௐ].  (12)

Then, the generalized decomposition model shown in (10) is 
modified as  

൦𝑢ఈ𝑢ఉ𝑢௫𝑢௬൪ = ൦𝑅௦ 00 𝑅௦     0   00   00    00    0     𝑅௦ 00 𝑅௦
൪ ⎣⎢⎢

⎡𝑖ఈ𝑖ఉ𝑖௫𝑖௬⎦⎥⎥
⎤ + 𝑹𝒂𝒔 ⎣⎢⎢

⎡𝑖ఈ𝑖ఉ𝑖௫𝑖௬⎦⎥⎥
⎤ + ⎣⎢⎢

⎢⎡𝜓̇ఈ𝜓̇ఉ𝜓̇௫𝜓̇௬⎦⎥⎥
⎥⎤, (13)

in which 𝑹𝒂𝒔 = ቊ𝑹𝒂𝒔𝟎,𝟔𝟎 (0°/60° AD)𝑹𝒂𝒔𝟑𝟎 (30° AD) , (14)

𝑹𝒂𝒔𝟎,𝟔𝟎 = ⎣⎢⎢
⎡𝑅଴,଺଴஺ଵ   𝑅଴,଺଴஺ଷ𝑅଴,଺଴஺ଷ   𝑅଴,଺଴஺ଶ     𝑅଴,଺଴஺ହ   𝑅଴,଺଴஺ସ−𝑅଴,଺଴஺ସ   𝑅଴,଺଴஺଺𝑅଴,଺଴஺ହ −𝑅଴,଺଴஺ସ𝑅଴,଺଴஺ସ 𝑅଴,଺଴஺଺    𝑅଴,଺଴஺ଵ −𝑅଴,଺଴஺ଷ−𝑅଴,଺଴஺ଷ   𝑅଴,଺଴஺ଶ ⎦⎥⎥

⎤, (15)

⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪
⎪⎧𝑅଴,଺଴஺ଵ = ∆𝑅𝐴3 + ∆𝑅𝐵12 + ∆𝑅𝐶12 + ∆𝑅𝑈12 + ∆𝑅𝑉3 + ∆𝑅𝑊12𝑅଴,଺଴஺ଶ = ∆𝑅஻4 + ∆𝑅஼4 + ∆𝑅௎4 + ∆𝑅ௐ4𝑅଴,଺଴஺ଷ = √3(−∆𝑅஻ + ∆𝑅஼ + ∆𝑅௎ − ∆𝑅ௐ)12𝑅଴,଺଴஺ସ = √3(∆𝑅஻ − ∆𝑅஼ + ∆𝑅௎ − ∆𝑅ௐ)12𝑅଴,଺଴஺ହ = ∆𝑅𝐴3 + ∆𝑅𝐵12 + ∆𝑅𝐶12 − ∆𝑅𝑈12 − ∆𝑅𝑉3 − ∆𝑅𝑊12𝑅଴,଺଴஺଺ = − ∆𝑅𝐵4 − ∆𝑅𝐶4 + ∆𝑅𝑈4 + ∆𝑅𝑊4

, (16)

𝑹𝒂𝒔𝟑𝟎 = ൦𝑅ଷ଴஺ଵ   𝑅ଷ଴஺ଷ𝑅ଷ଴஺ଷ   𝑅ଷ଴஺ଶ     𝑅ଷ଴஺ହ   𝑅ଷ଴஺ସ−𝑅ଷ଴஺ସ   𝑅ଷ଴஺଺𝑅ଷ଴஺ହ −𝑅ଷ଴஺ସ𝑅ଷ଴஺ସ 𝑅ଷ଴஺଺    𝑅ଷ଴஺ଵ −𝑅ଷ଴஺ଷ−𝑅ଷ଴஺ଷ  𝑅ଷ଴஺ଶ
൪, (17)
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⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪
⎪⎧𝑅ଷ଴஺ଵ = ∆𝑅஺3 + ∆𝑅஻12 + ∆𝑅஼12 + ∆𝑅௎4 + ∆𝑅௏4𝑅ଷ଴஺ = ∆𝑅஻4 + ∆𝑅஼4 + ∆𝑅௎12 + ∆𝑅௏12 + ∆𝑅ௐ3𝑅ଷ଴஺ଷ = √3(−∆𝑅஻ + ∆𝑅஼ + ∆𝑅௎ − ∆𝑅௏)12𝑅ଷ଴஺ସ = √3(∆𝑅஻ − ∆𝑅஼ + ∆𝑅௎ − ∆𝑅௏)12𝑅ଷ଴஺ହ = ∆𝑅஺3 + ∆𝑅஻12 + ∆𝑅஼12 − ∆𝑅௎4 − ∆𝑅௏4𝑅ଷ଴஺଺ = − ∆𝑅஻4 − ∆𝑅஼4 + ∆𝑅௎12 + ∆𝑅௏12 + ∆𝑅ௐ3

. (18)

From (14)-(18), 𝑹𝒂𝒔 results in the coupling of αβ subspace 
and xy subspace, so that the two subspaces are not completely 
decoupled anymore. It is acknowledged that the fundamental 
components in 𝑖ఈ  and 𝑖ఉ  are the main contribution to torque 
generation. Therefore, the coupling of 𝑖ఈ  and 𝑖ఉ  into xy 
subspace could induce fundamental components in 𝑖௫  and 𝑖௬ 
without compensation. Then, cancelling them contributes to 
phase current balancing.  

B. Asymmetric Self-inductances 
Considering the asymmetric self-inductances, denoted by ∆𝐿஺, ∆𝐿஻, ∆𝐿஼, ∆𝐿௎, ∆𝐿௏ and ∆𝐿ௐ, 𝑳𝒔 in (2) is changed as  

𝑳𝒔 = 𝐿ఙ𝑰𝟔 +
⎣⎢⎢
⎢⎢⎡
∆𝐿஺ 0 00 ∆𝐿௎ 00 0 ∆𝐿஻

0     0      00     0      00     0      00     0     00     0     00   0    0 ∆𝐿௏ 0 00 ∆𝐿஼ 00 0 ∆𝐿ௐ⎦⎥⎥
⎥⎥⎤

          +
⎣⎢⎢
⎢⎢⎡

𝑀ଵ 𝑀஺௎ 𝑀஺஻𝑀஺௎ 𝑀ଵ 𝑀஻௎𝑀஺஻ 𝑀஻௎   𝑀ଵ      𝑀஺௏ 𝑀஺஼ 𝑀஺ௐ𝑀௎௏ 𝑀஼௎ 𝑀௎ௐ𝑀஻௏ 𝑀஻஼ 𝑀஻ௐ𝑀஺௏ 𝑀௎௏ 𝑀஻௏𝑀஺஼ 𝑀஼௎ 𝑀஻஼𝑀஺ௐ 𝑀௎ௐ 𝑀஻ௐ    𝑀ଵ 𝑀஼௏ 𝑀௏ௐ𝑀஼௏ 𝑀ଵ 𝑀஼ௐ𝑀௏ௐ 𝑀஼ௐ 𝑀ଵ ⎦⎥⎥
⎥⎥⎤ ,

 (19)

where fully coupled mutual inductances are still assumed. Then, 
(11) is modified as 

⎣⎢⎢
⎡𝜓ఈ𝜓ఉ𝜓௫𝜓௬⎦⎥⎥

⎤ = ൦𝐿ఙ + 3𝑀ଵ 00 𝐿ఙ + 3𝑀ଵ   0  00   0          0                0        0                 0         𝐿ఙ 00 𝐿ఙ
൪ ⎣⎢⎢

⎡𝑖ఈ𝑖ఉ𝑖௫𝑖௬⎦⎥⎥
⎤

               +𝑳𝒂𝒔 ⎣⎢⎢
⎡𝑖ఈ𝑖ఉ𝑖௫𝑖௬⎦⎥⎥

⎤ + ൦cos(𝜃௘)sin(𝜃௘)00 ൪ 𝜓௙ௗ ,  (20)

in which 𝑳𝒂𝒔 = ቊ𝑳𝒂𝒔𝟎,𝟔𝟎 (0°/60° AD)𝑳𝒂𝒔𝟑𝟎 (30° AD) , (21)

 

𝑳𝒂𝒔𝟎,𝟔𝟎 = ⎣⎢⎢
⎡𝐿଴,଺଴஺ଵ   𝐿଴,଺଴஺ଷ𝐿଴,଺଴஺ଷ   𝐿଴,଺଴஺ଶ     𝐿଴,଺଴஺ହ   𝐿଴,଺଴஺ସ−𝐿଴,଺଴஺ସ   𝐿଴,଺଴஺଺𝐿଴,଺଴஺ହ −𝐿଴,଺଴஺ସ𝐿଴,଺଴஺ସ 𝐿଴,଺଴஺଺    𝐿଴,଺଴஺ଵ −𝐿଴,଺଴஺ଷ−𝐿଴,଺଴஺ଷ   𝐿଴,଺଴஺ଶ ⎦⎥⎥

⎤, (22)

⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪
⎪⎧𝐿଴,଺଴஺ଵ = ∆𝐿𝐴3 + ∆𝐿𝐵12 + ∆𝐿𝐶12 + ∆𝐿𝑈12 + ∆𝐿𝑉3 + ∆𝐿𝑊12𝐿଴,଺଴஺ଶ = ∆𝐿஻4 + ∆𝐿஼4 + ∆𝐿௎4 + ∆𝐿ௐ4𝐿଴,଺଴஺ଷ = √3(−∆𝐿஻ + ∆𝐿஼ + ∆𝐿௎ − ∆𝐿ௐ)12𝐿଴,଺଴஺ସ = √3(∆𝐿஻ − ∆𝐿஼ + ∆𝐿௎ − ∆𝐿ௐ)12𝐿଴,଺଴஺ହ = ∆𝐿𝐴3 + ∆𝐿𝐵12 + ∆𝐿𝐶12 − ∆𝐿𝑈12 − ∆𝐿𝑉3 − ∆𝐿𝑊12𝐿଴,଺଴஺଺ = − ∆𝐿𝐵4 − ∆𝐿𝐶4 + ∆𝐿𝑈4 + ∆𝐿𝑊4

, (23)

𝑳𝒂𝒔𝟑𝟎 = ൦𝐿ଷ଴஺ଵ   𝐿ଷ଴஺ଷ𝐿ଷ଴஺ଷ   𝐿ଷ଴஺ଶ     𝐿ଷ଴஺ହ   𝐿ଷ଴஺ସ−𝐿ଷ଴஺ସ   𝐿ଷ଴஺଺𝐿ଷ଴஺ −𝐿ଷ଴஺ସ𝐿ଷ଴஺ସ 𝐿ଷ଴஺଺    𝐿ଷ଴஺ଵ −𝐿ଷ଴஺ଷ−𝐿ଷ଴஺ଷ  𝐿ଷ଴஺ଶ
൪, (24)

⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪
⎪⎧𝐿ଷ଴஺ଵ = ∆𝐿஺3 + ∆𝐿஻12 + ∆𝐿஼12 + ∆𝐿௎4 + ∆𝐿௏4𝐿ଷ଴஺ଶ = ∆𝐿஻4 + ∆𝐿஼4 + ∆𝐿௎12 + ∆𝐿௏12 + ∆𝐿ௐ3𝐿ଷ଴஺ଷ = √3(−∆𝐿஻ + ∆𝐿஼ + ∆𝐿௎ − ∆𝐿௏)12𝐿ଷ଴஺ସ = √3(∆𝐿஻ − ∆𝐿஼ + ∆𝐿௎ − ∆𝐿௏)12𝐿ଷ଴஺ହ = ∆𝐿஺3 + ∆𝐿஻12 + ∆𝐿஼12 − ∆𝐿௎4 − ∆𝐿௏4𝐿ଷ଴஺଺ = − ∆𝐿஻4 − ∆𝐿஼4 + ∆𝐿௎12 + ∆𝐿௏12 + ∆𝐿ௐ3

 (25)

From (21)-(25), the influence of asymmetric self-inductances 
on the flux linkage equation is similar to that of asymmetric 
self-resistances on the voltage equation shown in (14)-(18). 
However, the influences appear in voltage equations eventually. 

C. Partially Coupled Mutual Inductances 
Given that mutual inductances 𝑀௄௅ (𝐾, 𝐿 =𝐴, 𝐵, 𝐶, 𝑈, 𝑉, 𝑊; 𝐾 ≠ 𝐿) coupling phases with the same spatial 

angle shift are the same, 𝑳𝒔 in (2) is changed as (26). In (26), 
M30, M60, M90, M120, M150, and M180 denote mutual inductances 
between phases with 30°, 60°, 90°, 120°, 150°, and 180° spatial 
angle shift, respectively. The third expression 𝑀௄௅ = 𝑀ଵ ∙cos(𝜃௄௅) (𝐾, 𝐿 = 𝐴, 𝐵, 𝐶, 𝑈, 𝑉, 𝑊; 𝐾 ≠ 𝐿)  in (3) is not 
practical anymore, since mutual inductances are not fully 
coupled. Then, (11) is modified as (27). 

In (27) and (28), for 30°-AD dual 3-ph PMSMs, the term 𝐿ସ 
in (27) results in the coupling of αβ subspace and xy subspace. 
The coupling of 𝑖ఉ  into x-axis and the coupling of 𝑖ఈ into y-axis 
lead to additional fundamental flux linkages in xy subspace. 
The fundamental components in 𝑖௫  and 𝑖௬  are then excited 
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without compensation in xy subspace. For 60°-AD dual 3-ph 
PMSM topology, the mutual inductances between αβ and xy 
subspaces are cancelled.  𝑳𝒔 = 𝐿ఙ𝑰𝟔

         +

⎩⎪⎪
⎪⎪⎪
⎪⎨
⎪⎪⎪
⎪⎪⎪
⎧(0°/60° AD)

⎣⎢⎢
⎢⎢⎡

𝑀ଵ 𝑀଺଴ 𝑀ଵଶ଴𝑀଺଴ 𝑀ଵ 𝑀଺଴𝑀ଵଶ଴ 𝑀଺଴ 𝑀ଵ
𝑀ଵ଼଴ 𝑀ଵଶ଴ 𝑀଺଴𝑀ଵଶ଴ 𝑀ଵ଼଴ 𝑀ଵଶ଴𝑀଺଴ 𝑀ଵଶ଴ 𝑀ଵ଼଴𝑀ଵ଼଴ 𝑀ଵଶ଴ 𝑀଺଴𝑀ଵଶ଴ 𝑀ଵ଼଴ 𝑀ଵଶ଴𝑀଺଴ 𝑀ଵଶ଴ 𝑀ଵ଼଴

𝑀ଵ 𝑀଺଴ 𝑀ଵଶ଴𝑀଺଴ 𝑀ଵ 𝑀଺଴𝑀ଵଶ଴ 𝑀଺଴ 𝑀ଵ ⎦⎥⎥
⎥⎥⎤ 

(30° AD)

⎣⎢⎢
⎢⎢⎡

𝑀ଵ 𝑀ଷ଴ 𝑀ଵଶ଴𝑀ଷ଴ 𝑀ଵ 𝑀ଽ଴𝑀ଵଶ଴ 𝑀ଽ଴ 𝑀ଵ
𝑀ଵହ଴ 𝑀ଵଶ଴ 𝑀ଽ଴𝑀ଵଶ଴ 𝑀ଵହ଴ 𝑀ଵଶ଴𝑀ଷ଴ 𝑀ଵଶ଴ 𝑀ଵହ଴𝑀ଵହ଴ 𝑀ଵଶ଴ 𝑀ଷ଴𝑀ଵଶ଴ 𝑀ଵହ଴ 𝑀ଵଶ଴𝑀ଽ଴ 𝑀ଵଶ଴ 𝑀ଵହ଴

𝑀ଵ 𝑀ଽ଴ 𝑀ଵଶ଴𝑀ଽ଴ 𝑀ଵ 𝑀ଷ଴𝑀ଵଶ଴ 𝑀ଷ଴ 𝑀ଵ ⎦⎥⎥
⎥⎥⎤ 

 (26)

The winding layout of 60°-AD machines (Fig. 1) is 
symmetric spatially. In other words, the angle displacement 
between two adjacent phases is always 60°, resulting in three 
different values of mutual inductances (𝑀଺଴, 𝑀ଵଶ଴ and 𝑀ଵ଼଴). 
However, for 30°-AD machines, the angle displacement 
between two adjacent phases can be 30° or 90° (It means an 
asymmetric layout spatially) resulting in four different values 
of mutual inductances ( 𝑀ଷ଴ , 𝑀ଽ଴ , 𝑀ଵଶ଴  and 𝑀ଵହ଴ ). The 
symmetric layout of 60°-AD machines benefits the cancellation 
of the mutual inductances between αβ and xy subspaces after 
the transform. 

⎣⎢⎢
⎡𝜓ఈ𝜓ఉ𝜓௫𝜓௬ ⎦⎥⎥

⎤ = ൦𝐿ఙ 00 𝐿ఙ    0 00 0 0 00 0      𝐿ఙ 00 𝐿ఙ
൪ ⎣⎢⎢

⎡𝑖ఈ𝑖ఉ𝑖௫𝑖௬⎦⎥⎥
⎤ + ൦cos(𝜃௘)sin(𝜃௘)00 ൪ 𝜓௙ௗ

              +
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧൦𝐿ଵ 00 𝐿ଵ    0 00 00 00 0      𝐿ଶ 00 𝐿ଶ

൪ ⎣⎢⎢
⎡𝑖ఈ𝑖ఉ𝑖௫𝑖௬⎦⎥⎥

⎤ (0°/60° AD)
൦𝐿ଷ 00 𝐿ଷ      0 𝐿ସ𝐿ସ 00 𝐿ସ𝐿ସ 0       𝐿ହ 00 𝐿ହ

൪ ⎣⎢⎢
⎡𝑖ఈ𝑖ఉ𝑖௫𝑖௬⎦⎥⎥

⎤ (30° AD) , (27)

in which 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝐿ଵ = 𝑀ଵ + 𝑀଺଴ − 𝑀ଵଶ଴ − 𝑀ଵ଼଴𝐿ଶ = 𝑀ଵ − 𝑀଺଴ − 𝑀ଵଶ଴ + 𝑀ଵ଼଴𝐿ଷ = 𝑀ଵ + √32 𝑀ଷ଴ − 𝑀ଵଶ଴ − √32 𝑀ଵହ଴𝐿ସ = 12 𝑀ଷ଴ − 𝑀ଽ଴ + 12 𝑀ଵହ଴𝐿ହ = 𝑀ଵ − √32 𝑀ଷ଴ − 𝑀ଵଶ଴ + √32 𝑀ଵହ଴

. (28)

D. Derivation of Compensation Capability 
The compensation capability of impedance asymmetries can 

be derived through this model. At a certain torque or current 
requirement, whether the drive system can compensate the 
unbalanced currents caused by asymmetric impedances is 
acquired. From another aspect, in order to assure the 
achievement of compensation at a given condition of 
impedance asymmetries, the maximum torque value or current 
amplitudes can be estimated. If the machine operates beyond 
the estimated maximum value, the asymmetries fail to be 
balanced due to the limit of DC link voltage.  

The model considering all asymmetric conditions can be 
summarized from (13), (20), and (27), as  

൦𝑢ఈ𝑢ఉ𝑢௫𝑢௬൪ = ൦𝑅௦ 00 𝑅௦     0   00   00    00    0     𝑅௦ 00 𝑅௦
൪ ⎣⎢⎢

⎡𝑖ఈ𝑖ఉ𝑖௫𝑖௬⎦⎥⎥
⎤ + 𝑹𝒂𝒔 ⎣⎢⎢

⎡𝑖ఈ𝑖ఉ𝑖௫𝑖௬⎦⎥⎥
⎤ + ⎣⎢⎢

⎢⎡𝜓̇ఈ𝜓̇ఉ𝜓̇௫𝜓̇௬⎦⎥⎥
⎥⎤, (29)

⎣⎢⎢
⎡𝜓ఈ𝜓ఉ𝜓௫𝜓௬⎦⎥⎥

⎤ = ൦𝐿ఙ 00 𝐿ఙ   0 00 0 0 00 0      𝐿ఙ 00 𝐿ఙ
൪ ⎣⎢⎢

⎡𝑖ఈ𝑖ఉ𝑖௫𝑖௬⎦⎥⎥
⎤ + ൦cos(𝜃௘)sin(𝜃௘)00 ൪ 𝜓௙ௗ

              +𝑳𝒂𝒔 ⎣⎢⎢
⎡𝑖ఈ𝑖ఉ𝑖௫𝑖௬⎦⎥⎥

⎤ +
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧൦𝐿ଵ 00 𝐿ଵ    0 00 00 00 0      𝐿ଶ 00 𝐿ଶ

൪ ⎣⎢⎢
⎡𝑖ఈ𝑖ఉ𝑖௫𝑖௬⎦⎥⎥

⎤ (0°/60° AD)
൦𝐿ଷ 00 𝐿ଷ      0 𝐿ସ𝐿ସ 00 𝐿ସ𝐿ସ 0       𝐿ହ 00 𝐿ହ

൪ ⎣⎢⎢
⎡𝑖ఈ𝑖ఉ𝑖௫𝑖௬⎦⎥⎥

⎤ (30° AD) . (30)

Conventionally, the voltages in two subspaces are transformed 
back to phase voltages by inverse VSD decoupling matrix and 
then 3-ph SVPWM is conducted in two individual sets of 3-ph 
systems, shown in Fig. 3 [19], [36]. Then, the voltages in αβ 
reference frames in two sets of 3-ph systems can be expressed 
as  

⎩⎪⎪⎨
⎪⎪⎧𝑢ఈଵ = 𝑢ఈ + 𝑢௫𝑢ఉଵ = 𝑢ఉ − 𝑢௬𝑢ఈଶ = 12 𝑢ఈ + √32 𝑢ఉ − 12 𝑢௫ + √32 𝑢௬𝑢ఉଶ = − √32 𝑢ఈ + 12 𝑢ఉ + √32 𝑢௫ + 12 𝑢௬

(0°/60° AD) (31)

⎩⎪⎪⎨
⎪⎪⎧𝑢ఈଵ = 𝑢ఈ + 𝑢௫𝑢ఉଵ = 𝑢ఉ − 𝑢௬𝑢ఈଶ = √32 𝑢ఈ + 12 𝑢ఉ − √32 𝑢௫ + 12 𝑢௬𝑢ఉଶ = − 12 𝑢ఈ + √32 𝑢ఉ + 12 𝑢௫ + √32 𝑢௬

(30° AD) (32)

in which 𝑢ఈଵ , 𝑢ఉଵ  and 𝑢ఈଶ , 𝑢ఉଶ  denotes voltages in αβ 
reference frame of two sets of windings, respectively. Then, the 
switching sequence 𝑆஺ , 𝑆஻ , 𝑆஼  and 𝑆௎ , 𝑆௏ , 𝑆ௐ  are generated 
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separately by the 3-ph SVPWM technique. It is acknowledged 
that the modulation in two sets should be within the linear range, 
shown as  

⎩⎪⎨
⎪⎧ට𝑢ఈଵଶ + 𝑢ఉଵଶ ≤ √33 ∙ 𝑉ௗ௖ට𝑢ఈଶଶ + 𝑢ఉଶଶ ≤ √33 ∙ 𝑉ௗ௖ . (33)

Assuming that phase currents are well regulated and 
balanced, the currents in two subspaces can be presented as  

⎣⎢⎢
⎡𝑖ఈ𝑖ఉ𝑖௫𝑖௬⎦⎥⎥

⎤ = ൦𝑖ௗcos(𝜃௘) − 𝑖௤sin(𝜃௘)𝑖ௗsin(𝜃௘) + 𝑖௤cos(𝜃௘)00 ൪, (34)

in which, 𝑖ௗ  and 𝑖௤  denote currents on d-axis and q-axis, 
respectively. Substitute (29), (30), (31), (32), and (34) into (33) 
at a given electrical angular speed, (33) should be satisfied at 
given 𝑖ௗ and 𝑖௤  with 𝜃௘ ∈ [0, 2𝜋]. Furthermore, at a given 𝑖ௗ or 𝑖ௗ = 0, the maximum amplitude of 𝑖௤  can be derived. Then, the 
maximum torque value restricted by the DC link voltage can be 
estimated, while assuring the compensation of given impedance 
asymmetries.  

 
Fig. 3  SVPWM for dual 3-ph machines. 

IV. COMPENSATION STRATEGY FOR ASYMMETRIC 
IMPEDANCES AND SYSTEM HARMONICS 

In this section, a compensation strategy to balance phase 
currents under impedance asymmetries is explained. A 30°-AD 
dual 3-ph PMSM is used as an example to illustrate the 
compensation strategy. Of note, PIR (PI+ resonant) controllers 
are implemented to suppress unbalanced fundamental 
components and the 5th, 7th harmonic currents caused by 
system harmonics, i.e. distorted EMF and inverter 
nonlinearities. The topology of the compensation strategy is 
explained in Fig. 4. The testing 30°-AD dual 3-ph PMSM is 
operating at a generator mode.  

For the compensation of system harmonics, the 5th and 7th 
order current harmonics decoupled in xy subspace [18] are 
converted into the 6th order current harmonic in the rotating 
reference frame of xy subspace after the implementation of Park 
transform in xy subspace. In Fig. 4, the Park transform is shown 
as 

൦ 𝑖ௗ𝑖௤𝑖௫௥𝑖௬௥൪ = ൦ cos 𝜃௘ sin 𝜃௘− sin 𝜃௘ cos 𝜃௘        0              00              0      0            0      0            0    −cos(𝜃௘) sin(𝜃௘) sin(𝜃௘) cos(𝜃௘)൪ ⎣⎢⎢
⎡𝑖ఈ𝑖ఉ𝑖௫𝑖௬⎦⎥⎥

⎤, (35)

in which, 𝑖௫௥ , 𝑖௬௥  denote 𝑖௫ , 𝑖௬  after the Park transform. 
Similarly, 𝑢௫௥, 𝑢௬௥ denote 𝑢௫, 𝑢௬ after the Park transform in xy 
subspace. Meanwhile, 𝑢ௗ and 𝑢௤ denote voltages on d-axis and 
q-axis, respectively.  

 
Fig. 4  Block diagram of compensation strategy for asymmetric impedances and 
harmonics. 

From the previous analysis, asymmetric impedances lead to 
additional fundamental components in two subspaces due to the 
coupling terms shown in Section III. After Park transform, there 
would be the additional 2nd order harmonics in both subspaces. 
Therefore, resonant controllers are implemented to suppress the 
2nd harmonic in αβ subspace and the 2nd, 6th harmonics in xy 
subspace. The advantage of resonant controllers is to provide a 
large gain at the required frequencies, thereby achieving the 
harmonic compensation performance. The transfer function of 
the resonant controller is  𝐺ோ(𝑠) = 𝐾௥𝑠𝑠ଶ + 𝜔௖𝑠 + (ℎ𝜔௦)ଶ, (36)

where Kr denotes the resonant gain; 𝜔௖ , 𝜔௦  denote cut-off 
frequency and fundamental frequency, respectively. 𝜔௖ 
determines the gain at resonant frequency and bandwidth. The 
Bode diagram of 𝜔௖  with different values at the condition of 𝜔௦ = 16.76 rad/s, h=2, Kr=2750 is shown in Fig. 5. A small 𝜔௖  leads to a large gain and a small bandwidth around the 
resonant frequency. Details of parameter tuning approaches and 
performances can be seen in [32], [35]-[36]. In summary, the 
design of PIR controllers shown in Fig. 4 assures a good 
suppression performance of system harmonics and impedance 
asymmetries.  

V. EXPERIMENTAL VALIDATION OF COMPENSATION 
STRATEGY 

In this section, the experimental performance with the 
compensation strategy is tested under different asymmetric 
conditions deliberately created by series connections of a 
resistor or an inductor. The purpose of the series connections of 
a resistor or an inductor is to create a relatively large 
asymmetric impedance, thereby showing the influences of 
asymmetric impedance and the effectiveness of the 
compensation strategy more apparently. A fractional-slot 42/32 
(slot/pole) 30°-AD dual 3-ph PMSM with partially coupled 
mutual inductances and sinusoidal back-emf is tested. This test 
rig shown in Fig. 6 is constructed to test control strategies for 
direct-drive wind power applications operating at low speeds. 
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The 30°-AD dual 3-ph PMSM is operating at the generator 
mode with a fixed speed provided by a load PMSM machine. 
The DC link voltage is set to 250V and dSPACE is used to 
conduct the whole algorithm. The parameters of this PMSM are 
shown in Table I. Substituting mutual inductance values shown 
in Table I into (28), it converts into 

ቐ𝐿ଷ = 17 + 2.13√3 (mH)𝐿ସ = 0.56 (mH)𝐿ହ = 17 − 2.13√3 (mH). (37)

 
Fig. 5  Bode diagram of GR(s) with 𝜔௖ = 𝜔௦/2, 𝜔௦/5, 𝜔௦/50, respectively, 
with 𝜔௦ = 16.76 rad/s and h=2. 

 
Fig. 6  Test rig (left: load machine; right: dual 3-ph PMSM). 

TABLE I 
PARAMETERS OF FRACTIONAL-SLOT 42/32 (SLOT/POLE) 30°-AD DUAL 3-PH 

PMSM 
Parameters Value 

Rated power 3.7 kW 
Rated speed 170 r/min 
Rated torque 209 Nm 
Stator resistance 3.3 Ω 
PM Flux 1.03 Wb 
Number of pole pairs 16 
Self-inductance M1 17.21 mH 
Mutual inductance M30, M90, M120, M150 2.73, 0.04, 0.21, -1.53 mH 
 
As illustrated previously, apparent asymmetric resistances or 

inductances are introduced in this test machine by a 3.3Ω 
resistor or 20mH inductor connected to Phase A in series. For 
the condition of a 3.3Ω resistor connected to Phase A in series, 
(17) can be simplified as  

𝑹𝒂𝒔𝟑𝟎 = ⎣⎢⎢
⎢⎢⎡∆𝑅஺3 00 0   ∆𝑅஺3 00 0 ∆𝑅஺3 00 0  ∆𝑅஺3 00 0⎦⎥⎥

⎥⎥⎤, (38)

in which ∆𝑅஺ =3.3Ω. It is clear that the term ∆𝑅஺/3 causes 
coupling of 𝑖ఈ  into x-axis. Meanwhile, the 20mH inductor 
connected to Phase A in series results in a similar effect in the 
flux linkage equation. (24) can be simplified as  

𝑳𝒂𝒔𝟑𝟎 = ⎣⎢⎢
⎢⎢⎡∆𝐿஺3 00 0   ∆𝐿஺3 00 0 ∆𝐿஺3 00 0  ∆𝐿஺3 00 0⎦⎥⎥

⎥⎥⎤, (39)

in which ∆𝐿஺ =20mH. Then, a fundamental current in 𝑖௫  is 
expected as well through the term ∆𝐿஺/3 , if there is no 
compensation in xy subspace. 

To show the influences of the asymmetric impedances and to 
highlight the importance of the compensation strategy, the 
experiment of the control strategy whose control diagram is 
illustrated in Fig. 7 is conducted firstly. Compared with Fig. 4, 𝑢௫∗ = 0, 𝑢௬∗ = 0 are set in Fig. 7, which means no compensation 
regarding asymmetric impedances or harmonics in xy subspace. 
Meanwhile, only PI regulators in αβ subspace are remained to 
regulate the DC components in the d-q reference frame, thereby 
controlling the electromagnetic torque. This control strategy 
can offer a basic control of dual 3-ph machines. On the other 
hand, the analysis of influences of asymmetric impedances is 
validated through this control strategy. 

Setting 𝑖ௗ∗ = 0 , 𝑖௤∗ = −3A  and the speed of 20 r/min, the 
experimental results of the control strategies illustrated in Fig. 
7 (without compensation) and Fig. 4 (with compensation) are 
compared in Fig. 8 with the original test PMSM in the left 
column, an additional series 3.3Ω resistor in Phase A in the 
middle column and an additional 20mH inductor in the right 
column. The parameters of the PI controller are mainly 
determined according to [37] by optimizing the damping factor 
of the control system, while the gain of the resonant controller 
is set as the same as the integrator gain of PI controllers [36], 
[38]. Then, the PIR controller parameters are listed as Kp=45, 
Ki=2750 for 𝑖ௗ  and 𝑖௤  PI controllers; Kp=12, Ki=2750 for 𝑖௫௥ 
and 𝑖௬௥  PI controllers; Kr=2750, 𝜔௖ = 𝜔௦/50 for all resonant 
controllers.  

 
Fig. 7  Block diagram of control strategy without compensation for asymmetric 
impedances and harmonics. 

The waveforms of phase currents and corresponding 
spectrum analysis of 𝑖஺, 𝑖௎ are presented in Fig. 8(a) and (b), 
respectively. For the results without compensation in the 
original test PMSM (left), there are the 5th and 7th order 
harmonics caused by inverter nonlinearities and an unbalanced 
fundamental component between 𝑖஺ and 𝑖௎. On the other hand, 
the series 3.3Ω resistor in Phase A (middle in Fig. 8(a) and (b)) 
leads to a large imbalance between the fundamental 
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components in 𝑖஺  and 𝑖௎  for the control strategy without 
compensation. Meanwhile, the imbalance led by the series 
20mH inductor (right in Fig. 8(a) and (b)) is not that large. After 
compensation, the fundamental components in 𝑖஺  and 𝑖௎  are 

balanced and the 5th and 7th order harmonics are suppressed to 
nearly zero for all three conditions. Then, the effectiveness of 
phase current balancing is testified.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8  Experimental comparison of control strategies illustrated in Fig. 7 (without compensation) and Fig. 4 (with compensation) under three different asymmetric 
conditions, original test PMSM (left), a series 3.3Ω resistor in Phase A (middle) and a series 20mH inductor in Phase A (right). (a) Waveforms of phase currents; 
(b) Spectrum analysis of currents in Phase A and U; (c) Waveforms of rotating currents in xy subspace; (d) Spectrum analysis of rotating currents in xy subspace. 

 
Fig. 8(c) and (d) show rotating current waveforms of currents 

in xy subspace (𝑖௫௥ , 𝑖௬௥ ) and spectrum analysis under three 
conditions, respectively. For the original test PMSM without 
compensation for asymmetric impedances and harmonics (left), 
the DC component and 6th harmonics appear in 𝑖௫௥ and 𝑖௬௥ . On 
the other hand, the series 3.3Ω resistor in Phase A (middle) 
leads to an additional large DC component, 2nd harmonics in 𝑖௫௥  and 𝑖௬௥ . Similarly, the series 20mH inductor in Phase A 
results in a relatively small DC component and 2nd harmonics 
in 𝑖௫௥ and 𝑖௬௥ , since the value of the additional 20mH inductor 
is in a small order of magnitude. After compensation, the 
fundamental component, 2nd and 6th harmonics are 
significantly suppressed to nearly zero by the compensation 
strategy functioned in xy subspace.  

Fig. 9 presents the difference of the fundamental components 
between 𝑖஺ and 𝑖௎ for the control strategies illustrated in Fig. 7 
(without compensation) and Fig. 4 (with compensation) under 
different speeds with 𝑖௤ =-3A and different loads (𝑖௤ ) at the 
speed of 20 r/min, with a series 3.3Ω resistor in Phase A. The 
compensation strategy can offer a good phase current balancing 

performance at different speeds and loads. 

 
(a)                                                           (b) 

Fig. 9  Difference between Phase A and Phase U currents concerning 
fundamental component under the condition of a series 3.3Ω resistor in Phase 
A. (a) Different speeds at 𝑖௤= -3A. (b) Different 𝑖௤ at the speed of 20 r/min. 

With a series 3.3Ω resistor in Phase A, the dynamic 
performance of torque response for the compensation strategy 
(Fig. 4) with 𝑖௤  changing from -1A to -3A at the speed of 20 
r/min is shown in Fig. 10. Fig. 11 illustrates the dynamic 
performance of speed response for the compensation strategy 
(Fig. 4) with speed changing from 10 to 30 r/min at 𝑖௤=-3A 
under the condition of a series 3.3Ω resistor in Phase A. From 
Fig. 11(b), phase currents experience a smooth transient. 
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(a) 

 
(b) 

Fig. 10  Dynamic performance of torque response for the compensation strategy 
with q-axis current changing from -1A to -3A under the condition of a series 
3.3Ω resistor in Phase A. (a) q-axis current. (b) Phase currents. 

 
(a) 

 
(b) 

Fig. 11  Dynamic performance of speed response for the compensation strategy 
with speed changing from 10 to 30 r/min under the condition of a series 3.3Ω 
resistor in Phase A. (a) Speed. (b) Phase currents. 

VI. SIMULATION VALIDATION OF GENERALIZED 
DECOMPOSITION MODEL 

A. Validation of Model Considering Impedance Asymmetries 
and Practice of Compensation Capability Analysis 

To validate the model considering impedance asymmetries, 
a simulation platform using the same parameters as the 
experimental results is established. In the simulation platform, 
the ideal machine and the ideal inverter are built. In the 
simulation, The PIR controllers in αβ subspace are 
implemented to assure the control performance of currents on 
d-axis and q-axis, while no control is allocated in xy subspace. 
Setting 𝑖ௗ∗ = 0, 𝑖௤∗ = −3A, 𝑢௫∗ = 0, 𝑢௬∗ = 0 and the speed of 20 
r/min, the model is tested under three conditions, partially 

coupled mutual inductances, fully coupled mutual inductances 
and a series 3.3Ω resistor in Phase A, fully coupled mutual 
inductances and a series 20mH inductor in Phase A, 
respectively. The currents in xy subspace are shown in Fig. 12. 

Under the condition of partially coupled mutual inductances, 
the voltage-current equation on x-axis and y-axis in (29) can be 
rewritten as  

൞𝑢௫ = 𝑅௦ ∙ 𝑖௫ + 𝐿ସ ∙ 𝑑𝑖ఉ𝑑𝑡 + (𝐿ହ + 𝐿ఙ) ∙ 𝑑𝑖௫𝑑𝑡𝑢௬ = 𝑅௦ ∙ 𝑖௬ + 𝐿ସ ∙ 𝑑𝑖ఈ𝑑𝑡 + (𝐿ହ + 𝐿ఙ) ∙ 𝑑𝑖௬𝑑𝑡 . (40)

Substitute 𝑖ௗ = 0 , 𝑖௤ = −3A  and 𝑢௫ = 𝑢௬ = 0  into (40), the 
amplitudes of 𝑖௫ and 𝑖௬ are the same, which are 0.017A. It is 
calculated from Fig. 12(a) that the amplitudes of fundamental 
components of 𝑖௫ and 𝑖௬ are 0.015A and 0.017A, respectively. 
Then, the model regarding mutual inductances is verified. 

 
(a) 

 
(b) 

 
(c) 

Fig. 12 Simulation result of current in xy subspace. (a) Partially coupled mutual 
inductances. (b) Fully coupled mutual inductances and a series 3.3Ω resistor in 
Phase A. (c) Fully coupled mutual inductances and a series 20mH inductor in 
Phase A. 

Under the condition of fully coupled mutual inductances and 
a series 3.3Ω resistor in Phase A, the voltage-current equation 
on x-axis in (29) can be rewritten as  𝑢௫ = ∆𝑅஺3 ∙ 𝑖ఈ + (∆𝑅஺3 + 𝑅௦) ∙ 𝑖௫ + 𝐿ఙ 𝑑𝑖௫𝑑𝑡 . (41)

The amplitude of 𝑖௫ can be derived, which is 0.75A, confirmed 
with the amplitude of 𝑖௫ in Fig. 12(b) (around 0.75A).  

Under the condition of fully coupled mutual inductances and 
a series 20mH inductor in Phase A, the voltage-current equation 
on x-axis in (29) can be rewritten as 𝑢௫ = 𝑅௦ ∙ 𝑖௫ + ∆𝐿஺3 ∙ 𝑑𝑖ఈ𝑑𝑡 + (∆𝐿஺3 + 𝐿ఙ) ∙ 𝑑𝑖௫𝑑𝑡 . (42)
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The amplitude of 𝑖௫ can be calculated as 0.20A which is nearly 
the same as the amplitude of 𝑖௫ in Fig. 12(c). Then, the model 
considering impedance asymmetries is validated quantitatively 
in this simulation. 

Furthermore, an example of the compensation capability 
analysis under the condition of a series 3.3Ω resistor in Phase 
A at the speed of 20 r/min is explained. Substitute (34) with 𝑖ௗ = 0 and ideal machine parameters into (40) and (32), the 
boundary conditions in (33) can be plotted as Fig. 13 which 
shows that the system has the compensation capability 
regarding the series 3.3Ω resistor in Phase A, when the q-axis 
current is between -29.8A (lower limit) and 19.1A (upper limit). 
If the q-axis current is out of this range, the drive system cannot 
compensate the series 3.3Ω resistor in Phase A, restricted by the 
DC link voltage. Then, the boundary is tested in simulation. In 
Fig. 14, 𝑖௤=-29.8A is set and currents are well regulated and 
balanced, as shown in Fig. 14(a). From Fig. 14(b), the duty 
cycles are close to the saturation limit, validating the boundary 
described in Fig. 13. When 𝑖௤  is out of the compensation area, 
as set to -32A shown in Fig. 15, the duty cycles are saturated 
and the compensation performance of unbalanced phase 
currents are affected.  

Following the same rules, the lower and upper limits of q-
axis currents can be derived at different speeds, shown in Fig. 
16. Since the speed determines EMF and voltage drops on 
inductances, the compensation area is affected. 

 
Fig. 13  Compensation capability under the condition of a series 3.3Ω resistor 
in Phase A at the speed of 20 r/min. 

 
(a) 

 
(b) 

Fig. 14  Simulation results of 𝑖௤= -29.8A at the speed of 20 r/min under the 
condition of a series 3.3Ω resistor in Phase A. (a) Phase currents. (b) Duty cycle 
of each phase. 

 
(a) 

 
(b) 

Fig. 15  Simulation results of 𝑖௤ = -32A at the speed of 20 r/min under the 
condition of a series 3.3Ω resistor in Phase A. (a) Phase currents. (b) Duty cycle 
of each phase. 

B. Validation of Conversion of 0°-AD Dual 3-ph PMSMs to 
60°-AD Machine Topology in Control Loop 

In this part, the conversion of 0°-AD dual 3-ph PMSM to 
60°-AD machine topology in the control loop described in Fig. 
2 is validated in simulation. The 0°-AD dual 3-ph PMSM with 
fully coupled mutual inductances is built in simulation with the 
parameters listed in Table I. The DC link voltage is set to 250V 
as well. The machine operates with PI current controllers in αβ 
subspace and 𝑖ௗ∗ = 0 , 𝑖௤∗ = −3A, rotating at the speed of 20 
r/min. The conversion performance is shown in Fig. 17. The 
currents sampled from 0°-AD dual 3-ph PMSMs in Fig. 17(a) 
is converted to equivalent current in 60°-AD dual 3-ph PMSMs 
shown in Fig. 17(b). The phase voltages generated from current 
controllers are shown in Fig. 17(c), which are then converted 
back to phase voltages in 0°-AD dual 3-ph PMSM. 

 
Fig. 16  Lower and upper limits of q-axis currents under the condition of a series 
3.3Ω resistor in Phase A at different speeds. 

VII. CONCLUSION 
In this paper, the conversion of currents and voltages makes 

0°-AD dual 3-ph PMSMs controlled in the equivalent machine 
model of 60°-AD dual 3-ph PMSMs. Then, a generalized 
decomposition model of 0°, 30°, and 60°-AD dual 3-ph PMSMs 
is formed, which solves the coupling of mutual inductances 
between phases from two sets, respectively, which are the 
barrier for two-set separate modelling. 

It is noted that asymmetric impedances commonly existing 
in drive applications of dual 3-ph PMSMs cause unbalanced 
phase currents and can be well regulated in the generalized 
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decomposition model. Then, the generalized decomposition 
model is optimized considering impedance asymmetries. 
Through this model, the compensation capability of impedance 
asymmetries restricted by DC link voltage is derived. It 
indicates whether the drive system has the capability to fully 
compensate the impedance asymmetries at a given torque or 
current requirement.  

Furthermore, the compensation strategy using PIR 
controllers can balance phase currents caused by asymmetric 
impedances effectively. The experimental results validate the 
decomposition model and the phase current balancing 
performance of compensation strategy. Additionally, 
complementary simulation results proof the developed model 
and the conversion of 0°-AD dual 3-ph PMSMs. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 17  Simulation results of conversion of 0°-AD dual 3-ph PMSMs to 60°-
AD machine topology with reference to Fig. 2. (a) Phase currents in 0°-AD dual 
3-ph PMSMs. (b) Phase currents in 60°-AD machine topology in control loop. 
(c) Phase voltages in 60°-AD machine topology in control loop. (d) Phase 
voltages of 0°-AD dual 3-ph PMSMs.  
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