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Abstract—For dual three-phase machines, vector space 

decomposition allows the control of fundamental and main 

harmonic components in αβ and xy subspaces, respectively. 

However, the modulation of voltage references in the two 

subspaces using the space vector pulse width modulation (SVPWM) 

is not independent but coupled. In that, voltage references of two 

subspaces cannot be modulated simultaneously beyond the 

modulation restraints, thereby distorting the voltage regulation 

and causing harmonics or even system misbehavior. Meanwhile, 

the fundamental voltage in αβ subspace responsible for 
electromagnetic torque generation should be prioritized and 

secured. Thus, this paper proposes a systematic analysis of 

modulation restraints of three representative SVPWM techniques, 

i.e. the linear modulation range of xy subspace under an assured 

modulation index of the fundamental voltage. Voltage references 

of xy subspace within this range can be modulated successfully 

without affecting the assured modulation index and the margin left 

for harmonic control in xy subspace is then acknowledged. This 

can be used to limit the output of current controllers not to exceed 

the voltage modulation restraint, thereby avoiding the modulation 

failure. Finally, the experimental results validate the linear 

modulation range and demonstrate the modulation behaviors 

within and out of the linear modulation range.  

 

Index Terms— Dual three-phase machines, modulation 

restraint, space vector pulse width modulation, vector space 

decomposition.  

NOMENCLATURE 

θe Electrical angular position. 𝜔𝑒  Electrical angular speed. 

Rs Stator resistance. 

TPWM PWM period. 

Te Electromagnetic torque. 

Vdc DC-link voltage. 

DR, DS, DT, DU, DV, DW Duty cycles of phases. 

iR, iS, iT, iU, iV, iW Phase currents. 

uR, uS, uT, uU, uV, uW Phase voltages. 

𝑢𝛼, 𝑢𝛽; 𝑖𝛼, 𝑖𝛽;  𝐿𝛼𝑒, 𝐿𝛽𝑒; 𝜓𝛼, 𝜓𝛽 

Voltages, currents, inductances, and 

flux linkages in αβ subspace. 𝑢𝑥, 𝑢𝑦; 𝑖𝑥, 𝑖𝑦;  𝐿𝑥, 𝐿𝑦; 𝜓𝑥, 𝜓𝑦 

Voltages, currents, inductances, and 

flux linkages in xy subspace. 𝜓𝑓𝑑 Rotor flux linkage 𝑽𝜶𝜷(∗) = [𝑢𝛼(∗) 𝑢𝛽(∗)]T,  𝑽𝒙𝒚(∗) = [𝑢𝑥(∗) 𝑢𝑦(∗)]T 

Modulated (Reference) voltage 

vectors in αβ, xy subspaces. |𝑽𝜶𝜷(∗)|, |𝑽𝒙𝒚(∗)| Lengths of 𝑽𝜶𝜷(∗) and  𝑽𝒙𝒚(∗) 𝑃 Number of pole pairs 

 

I. INTRODUCTION 

 

UAL three-phase (3-ph) machines have seen an increasing 

trend of applications in industries[1]-[6], because of 

advantages such as high torque density, high-power low-current 

capability, etc. There is one more set of 3-ph windings with 

respect to single 3-ph machines and therefore two sets of 3-ph 

windings can be controlled separately, viewed as two 3-ph 

machines [7]-[8]. However, the challenge of this control 

structure is the coupling issue of mutual inductance between 

phases from two sets, respectively. To achieve a completely 

decoupled machine model, vector space decomposition (VSD) 

[9] is developed for dual 3-ph machines, in which two sets of 3-

ph windings are modelled into two-dimensional orthogonal αβ 
and xy subspaces. The outstanding benefit of VSD is the mutual 

inductance between phases from two sets, respectively, can be 

decoupled. Furthermore, the fundamental component and 

harmonics with 12k±1 (k=1,2,3·· ·) order are decoupled into αβ 
subspace, while harmonics with 6k±1 (k=1,3,5·· ·) order are 

mapped into xy subspace. This will allow components with 

different orders to be controlled separately. 

The fundamental components in αβ subspace need to be well 
regulated to satisfy the torque requirement and the amplitudes 

of the 12k±1 (k=1,2,3·· ·) harmonics are normally much lower. 

Meantime, the harmonics in xy subspace deserve good 

suppression as well to improve machine performances, such as 

low THD, small torque ripple, etc. Due to inverter nonlinearities 

and emf distortion, the 5th and 7th order harmonics are excited 

and then decoupled in xy subspace [10]-[11]. Additionally, 

impedance asymmetries would lead to fundamental order 

currents in xy subspace as well [11]. To balance phase currents, 

they should be suppressed. Thus, the control of xy subspace is 

of importance.  
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Due to the advantages mentioned above, many advanced 

control strategies are developed based on VSD [9],[12]-[20], in 

which, the space vector pulse width modulation (SVPWM) is 

implemented to modulate voltage references of αβ and xy 
subspaces into the switching pattern providing gate signals of 

power devices. A simplified drive structure is shown in Fig. 1. 

The dual 3-ph machine has two sets of 3-ph windings (Set 1 and 

Set 2) with 30° angle displacement. From Fig. 1, no matter what 

control strategies are implemented, the SVPWM technique 

should transfer voltage references into the switching pattern 

correctly, thereby controlling the machine.  

 
Fig. 1  Simplified drive structure of dual 3-ph machine under VSD.  

 

However, one challenge is how to select active voltage 

vectors from a total number of 64 vectors to conduct the 

modulation during each PWM period. It should be noted that the 

selection principle determines the modulation restraint and 

computation burden. From the literature, there are mainly three 

categories of SVPWM techniques for dual 3-ph machines 

regarding the voltage vector selection principle. In [9], [12]-[15], 

four of twelve longest voltage vectors in αβ subspace are 

selected in each PWM period to modulate the αβ subspace 
voltage reference with the average zero voltage achieved in xy 

subspace, resulting in no closed-loop current control capability 

in xy subspace. Another SVPWM technique is to modulate the 

voltage references in two separate 3-ph frames using classical 

SVPWM developed for 3-ph machines [16]-[19]. The voltage 

references of two subspaces need to be transformed to voltage 

references in two 3-ph frames. Besides, synthetic vectors can be 

implemented to modulate the voltage references in two 

subspaces, respectively, without the coupling of dwell times 

[20]. Each PWM period is divided into two parts, responsible 

for modulations in two subspaces, respectively. Therefore, the 

division plays a significant role in determining the modulations 

of voltage references in two subspaces. However, the switching 

sequence generation is much complicated and the multiple 

switching issue could increase the switching losses.  

The major concern of applying these SVPWM techniques is 

whether voltage references of two subspaces can be modulated 

simultaneously and successfully, due to the reason that the 

modulations of two subspaces are coupled by dwell times of 

voltage vectors. The coupling of modulations in two subspaces, 

or generally the modulation restraints of these SVPWM 

techniques, are not discussed in the literature. In the control loop, 

the voltage references in both αβ and xy subspaces should be 
modulated into pulses and then be delivered to phase terminals, 

thereby controlling the dual 3-ph machine. Theoretically, 

neither of the two voltages references can be sacrificed, since 

the αβ voltage reference (fundamental voltage reference) 

controls the output of the electromagnetic torque and the xy 

voltage reference is in charge of harmonic regulation. However, 

the literature [9], [12]-[20] focuses on the development of 

SVPWM techniques, in other words, the generation of pulses 

according to the reference, rather than the modulation restraint 

of the two voltage references. It is not considered in the 

literature that voltage references of two subspaces beyond the 

modulation restraint cannot be modulated, thereby distorting the 

voltage regulation and causing harmonics or even system 

misbehavior.  

Therefore, this paper aims to analyze the modulation restraint 

of SVPWM techniques under VSD to assure that the voltage 

references, which are conventionally outputs of current 

controllers, will not exceed the modulation restraint, thereby 

avoiding the modulation failure. The main contribution is to 

propose a systematic and practical analysis of the modulation 

restraint, i.e. the linear modulation range of xy subspace under 

an assured modulation index of the fundamental voltage. Unless 

voltage references of xy subspace are out of this range, they can 

be modulated successfully under an assured modulation index 

of the fundamental voltage. The reason to secure the modulation 

index is that the electromagnetic torque generation mainly 

relying on the fundamental current (essentially voltage) 

decoupled in αβ subspace should be prioritized. In any control 

system, the output of current controllers in xy subspace should 

not exceed this range, otherwise, the modulation failure could 

happen. From another aspect, a balanced performance can be 

made between the fundamental control in αβ subspace and the 

main harmonic control in xy subspace. If the harmonic control 

in xy subspace requires a large voltage, the fundamental voltage 

reference in αβ subspace should be reduced accordingly. 

The remainder of this paper is organized as follows. The 

mathematical model of dual 3-ph permanent magnet 

synchronous machine (PMSM) used in experiments and the 

voltage vectors of inverters mapped into two subspaces which 

are vector candidates in SVPWM techniques are briefly 

introduced in Section II. The modulation restraints of three 

practical and representative SVPWM techniques are illustrated 

in Section III. These three SVPWM techniques include the 

SVPWM technique using four active vectors [9], [12]-[15], 

SVPWM in two separate 3-ph frames [16]-[19] and an enhanced 

SPVWM technique using synthetic vectors developed from [20]. 

In the enhanced SPVWM technique using synthetic vectors, the 

PWM period split is optimized by a dwell time calculation 

considering voltage references in two subspaces together. 

Compared with [20], the enhanced one is much more available 

and accessible for microcontrollers due to no complicated 

switching sequence arrangement and no multiple switching in 

each sapling period. Finally, the experiment results of open-loop 
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voltage injection and closed-loop current compensation are 

presented in Section IV to validate the modulation restraint.  

 

II. MATHEMATICAL MODEL OF DUAL 3-PH PMSM AND 

VOLTAGE VECTORS  

 

A. Mathematical Model  

Assuming sinusoidal winding distribution and neglecting 

core losses, magnetic saturation and asymmetric impedances, 

the mathematical model of dual 3-ph PMSM in VSD [9] can be 

expressed as (1)-(3). 

[𝑢𝛼𝑢𝛽𝑢𝑥𝑢𝑦] = [𝑅𝑠 00 𝑅𝑠     0   00   00    00    0     𝑅𝑠 00 𝑅𝑠] [  
 𝑖𝛼𝑖𝛽𝑖𝑥𝑖𝑦]  
 + [  

  �̇�𝛼�̇�𝛽�̇�𝑥�̇�𝑦]  
  
 (1) 

[  
 𝜓𝛼𝜓𝛽𝜓𝑥𝜓𝑦]  

 = [  
 𝐿𝛼𝑒 00 𝐿𝛽𝑒     0   00   0  0    0  0    0      𝐿𝑥 00 𝐿𝑦]  

 
[  
 𝑖𝛼𝑖𝛽𝑖𝑥𝑖𝑦]  
 + [cos(𝜃𝑒)sin(𝜃𝑒)00 ]𝜓𝑓𝑑 (2) 

𝑇𝑒 = 3𝑃(𝜓𝛼𝑖𝛽 − 𝜓𝛽𝑖𝛼) (3) 

It can be seen from (3) that the electromagnetic torque is 

mainly determined by variables in αβ subspace. However, 

variables in xy subspace need to be controlled to improve 

performances such as THD reduction, torque ripple suppression, 

phase current balancing, etc. The control of two subspaces relies 

on the SVPWM using voltage vectors. 

 

B. Voltage Vectors  

As shown in Fig. 1, the two-level voltage sourced inverter 

(VSI) is employed. It creates 64 inverter states, corresponding 

to 64 voltage vectors, mapped into αβ subspace and xy 
subspace, shown in Fig. 2. The voltage vector numbers in Fig. 2 

are defined as the decimal number values converted from the 

six-bit binary numbers composed of (𝑆𝑊𝑆𝑉𝑆𝑈𝑆𝑇𝑆𝑆𝑆𝑅), where 𝑆𝑤 , .. , 𝑆𝑅  denote the switching states of inverter legs 𝑊, . . , 𝑅, 

respectively, and are either ‘1’ (the upper power device is 
turning on) or ‘0’ (the bottom power device is turning on).  

The length of voltage vectors and their dwell times play a key 

role in the modulation procedure. As can be seen in Fig. 2, 

voltage vectors are divided into 4 dodecagons (N1, N2, N3, N4) 

regarding the voltage vector lengths, expressed as  

{   
  
   𝐿𝑁1 = √6 − √26 ∙ 𝑉𝑑𝑐𝐿𝑁2 = 13 ∙ 𝑉𝑑𝑐𝐿𝑁3 = √23 ∙ 𝑉𝑑𝑐𝐿𝑁4 = √6 + √26 ∙ 𝑉𝑑𝑐

. (4) 

At each PWM period, several voltage vectors should be 

adopted to achieve the modulations of voltage references 

(outputs of current controllers) in both subspaces in SVPWM 

techniques, thereby controlling the machine.  

 

III. MODULATION RESTRAINT ANALYSIS OF SVPWM 

TECHNIQUES 

 

In this section, the procedure of deriving the linear 

modulation range reflecting the modulation restraint is 

explained in detail for three practical SVPWM techniques. The 

vector selection principles of these three SVPWM techniques 

are representative, which are the vector selection in two sets of 

3-ph reference frames, the direct selection of four active voltage 

vectors, and the synthetic vector theory, respectively. 

 
(a)                                                      (b) 

Fig. 2  Voltage vector maps. (a) αβ subspace. (b) xy subspace. 
 

A. SVPWM with Two Separate 3-ph Modulation Frames 

The diagram of SVPWM with two separate 3-ph modulation 

frames (SVPWM-D3) [16]-[19] is shown in Fig. 3.Voltage 

references 𝑽𝜶𝜷∗  and 𝑽𝒙𝒚∗  are transformed to 𝑢𝑅∗ , 𝑢𝑆∗, 𝑢𝑇∗ , 𝑢𝑈∗ , 𝑢𝑉∗ , 𝑢𝑊∗  by (5) firstly.  

[  
   
𝑢𝑅∗𝑢𝑆∗𝑢𝑇∗𝑢𝑈∗𝑢𝑉∗𝑢𝑊∗ ]  
   =

[  
   
   
  1 0    1−12 √32 −12−12 −√32 −12    

   0−√32√32  
√32  12 −√32  −√32 12   √32    0 −1     0       

1212−1     ]  
   
   
  

[  
 𝑢𝛼∗𝑢𝛽∗𝑢𝑥∗𝑢𝑦∗ ]  

 
 (5) 

 

 
Fig. 3  Diagram of SVPWM-D3.  

 

Then, 3-ph Clarke transform is used to derive the voltage 

references of Set 1 (𝑢𝛼1∗  and 𝑢𝛽1∗ ) in α1-β1 reference frame and 
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voltage references of Set 2 (𝑢𝛼2∗  and 𝑢𝛽2∗ ) in α2-β2  reference 

frame from 𝑢𝑅∗ , 𝑢𝑆∗ , 𝑢𝑇∗ , 𝑢𝑈∗ , 𝑢𝑉∗ , 𝑢𝑊∗ . Then, the relationship 

between 𝑢𝛼∗ , 𝑢𝛽∗ , 𝑢𝑥∗ , 𝑢𝑦∗  and 𝑢𝛼1∗ , 𝑢𝛽1∗ , 𝑢𝛼2∗ , 𝑢𝛽2∗  is established as  

{   
   𝑢𝛼1∗ = 𝑢𝛼∗ + 𝑢𝑥∗𝑢𝛽1∗ = 𝑢𝛽∗ − 𝑢𝑦∗𝑢𝛼2∗ = √32 𝑢𝛼∗ + 12𝑢𝛽∗ − √32 𝑢𝑥∗ + 12𝑢𝑦∗𝑢𝛽2∗ = −12𝑢𝛼∗ + √32 𝑢𝛽∗ + 12𝑢𝑥∗ + √32 𝑢𝑦∗

. (6) 

The modulations of voltage references in two separate 3-ph 

modulation frames and modulation restrictions are presented in 

Fig. 4. 𝑽𝜶𝟏𝜷𝟏∗ = [𝑢𝛼1∗ 𝑢𝛽1∗ ]T  in α1 - β1  reference frame and 𝑽𝜶𝟐𝜷𝟐∗ = [𝑢𝛼2∗ 𝑢𝛽2∗ ]T in α2-β2 reference frame are modulated 

through conventional 3-ph SVPWM in two separate 3-ph 

modulation frames, respectively.  

 

 
(a)           (b) 

Fig. 4  Modulation restrictions in two separate 3-ph modulation frames. (a) Set 

1. (b) Set 2. 

 

From Fig. 4, 𝑽𝜶𝟏𝜷𝟏∗  and 𝑽𝜶𝟐𝜷𝟐∗  exceeding the modulation 

restrictions denoted by the dotted hexagon cannot be achieved. 

The restriction lines are denoted by C1.1, · · ·, C1.6 in Set 1 and 

C2.1, ·· · , C2.6 in Set 2, as indicated in Fig. 4. The modulation 

range of xy subspace in the per-unit scale with respect to 𝑉𝑑𝑐 
under a given 𝑽𝜶𝜷∗  can be derived according to these 

restrictions. Using 𝑽𝜶𝜷∗ = [√38 𝑉𝑑𝑐 18𝑉𝑑𝑐]T  as an example, the 

derivation of the modulation range of xy subspace is presented 

below. The restriction line C1.1 can be expressed by 𝑽𝜶𝟏𝜷𝟏∗  and 

shown as −√3 ∙ 𝑢𝛼1∗ − 𝑢𝛽1∗ + 2√33 ∙ 𝑉𝑑𝑐 ≥ 0. (7) 

Substitute (6) and 𝑢𝛼∗ = √38 𝑉𝑑𝑐 , 𝑢𝛽∗ = 18𝑉𝑑𝑐  into (7), the 

modulation restriction line in xy subspace corresponding to 

C1.1 in Fig. 4 can be expressed as  −√3 ∙ 𝑢𝑥∗ + 𝑢𝑦∗ + 4√3 − 36 ∙ 𝑉𝑑𝑐 ≥ 0, (8) 

and shown in Fig. 5(a) (marked as C1.1 accordingly). In the 

same way, all the modulation restriction lines in xy subspace 

regarding Fig. 4(a) can be obtained and shown in Fig. 5(a). 

Then, the distances from the point of origin to lines of C1.1, · · · , 

C1.6 denoted by dC1.1,· · · ,dC1.6 can be calculated. The distance 

dC1.1 is presented in Fig. 5(a) as an example. The restriction lines 

regarding Fig. 4(b) in xy subspace is presented in Fig. 5(b). 

Similarly, the distances from the point of origin to lines of C2.1, 

· · · , C2.6 denoted by dC2.1,· · · ,dC2.6 can be calculated. Then, the 

modulation range of xy subspace is derived by combining Fig. 

5(a) and (b), as shown in the shadowed area of Fig. 5(c). The 

circle indicates the linear modulation range under 𝑽𝜶𝜷∗ =[√38 𝑉𝑑𝑐 18𝑉𝑑𝑐]T and the magnitude (radius) denoted by 𝐿𝐿𝑀𝑅 is 

calculated as 𝐿𝐿𝑀𝑅 = Min{𝑑𝐶1.1, … , 𝑑𝐶1.6, 𝑑𝐶2.1, … , 𝑑𝐶2.6} =0.327 ∙ 𝑉𝑑𝑐. 

 
(a)                                                  (b) 

 
(c) 

Fig. 5  Linear modulation range in xy subspace for SVPWM-D3 under 𝑽𝜶𝜷∗ =[√38 𝑉𝑑𝑐 18𝑉𝑑𝑐]T. (a) Modulation restrictions regarding Fig. 4(a). (b) Modulation 

restrictions regarding Fig. 4(b). (c) Linear modulation range of xy subspace 

combining (a) and (b). 

 

Since the modulation index of the fundamental voltage can 

generally represent the voltage demand for torque generation 

and speed control, the linear modulation range under an assured 

modulation index can be more practical for real applications. 

Neglecting low-amplitude high-frequency harmonics in αβ 
subspace, the modulation index of the fundamental voltage in 

αβ subspace, is defined as  𝑚 = |𝑽𝜶𝜷∗  |𝑉𝑑𝑐2 . (9) 

Following the same analysis procedure described in Fig. 5, 

the magnitude of the linear modulation range under 𝑽𝜶𝜷∗  with 

the magnitude of 0.25 ∙ 𝑉𝑑𝑐 can be derived and shown in Fig. 6, 

in which 𝜃𝑉  is the vector angle against α-axis (Fig. 7 (a)) 
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ranging from 0 to 2π. It shows that 𝐿𝐿𝑀𝑅  varies against 𝜃𝑉 

within the range of 0.327 ∙ 𝑉𝑑𝑐  to 0.336 ∙ 𝑉𝑑𝑐 . Thus, the 

minimum value of 𝐿𝐿𝑀𝑅 with 𝜃𝑉 ranging from 0 to 2π (𝐿𝐿𝑀𝑅 =0.327 ∙ 𝑉𝑑𝑐) is defined as the magnitude of the linear modulation 

range under 𝑚 =  0.25 ∙ 𝑉𝑑𝑐/(0.5 ∙ 𝑉𝑑𝑐)  = 0.5. The difference 

between linear modulation ranges under a specific 𝑽𝜶𝜷∗  and an 

assured modulation index is explained in Fig. 7. In Fig. 7(a), the 

modulation of any 𝑽𝒙𝒚∗  with the magnitude no longer than 𝐿𝐿𝑀𝑅 

would not affect that of the specific 𝑽𝜶𝜷∗ . However in Fig. 7(b), 

the modulation of any 𝑽𝒙𝒚∗  with the magnitude no longer than 𝐿𝐿𝑀𝑅  would not affect the modulation of any 𝑽𝜶𝜷∗  with the 

magnitude of 
𝑉𝑑𝑐2 ∙ 𝑚.  

 
Fig. 6  𝐿𝐿𝑀𝑅  against 𝜃𝑉  ranging from 0 to 2π under |𝑽𝜶𝜷∗  | = 0.25 ∙ 𝑉𝑑𝑐  for 

SVPWM-D3. 

 

 
(a) 

 
(b) 

Fig. 7  Schematic diagrams of linear modulation range. (a) Under a specific 𝑽𝜶𝜷∗ . 

(b) Under an assured modulation index. 

 

Till now, the procedures to derive 𝐿𝐿𝑀𝑅  under the assured 

modulation index have been explained completely. Follow these 

procedures, 𝐿𝐿𝑀𝑅 under the assured modulation index 𝑚 within 

the range of [0, 
2 √3] can be calculated and then plotted in Fig. 8 

in which 𝐿𝐿𝑀𝑅 is scaled with a base of 
𝑉𝑑𝑐2 . It is found from Fig. 

8 that 𝐿𝐿𝑀𝑅 and 𝑚 are in linear relationship and can be written 

as 

𝐿𝐿𝑀𝑅 = 𝑉𝑑𝑐2 ∙ (−𝑚 + 2 √3). (10) 

From Fig. 8 and (10), there is no linear modulation range under 𝑚 larger than 
2 √3 for the SVPWM-D3 technique.  

 
Fig. 8  𝐿𝐿𝑀𝑅 under different modulation indices for SVPWM-D3. 

 

B. SVPWM with Four Active Voltage Vectors 

The SVPWM technique using four active voltage vectors 

(SVPWM-4L) [9], [12]-[15] is widely implemented but not 

researched concerning the modulation restraint. Four active 

voltage vectors are determined to modulate voltage references 

during each PWM period. The voltage vector selection principle 

is presented in Fig. 9. The αβ subspace is divided into 12 sectors 

using voltage vectors from Dodecagon N4 as boundaries. The 

twelve voltage vectors from Dodecagon N4 in αβ subspace are 

candidate vectors that can provide a large modulation range in 

αβ subspace. 

In Fig. 9, if 𝑽𝜶𝜷∗  is located between 𝑽𝟏𝟏  and 𝑽𝟗  in αβ 
subspace, four active voltage vectors 𝑽𝟐𝟕, 𝑽𝟏𝟏, 𝑽𝟗 and 𝑽𝟒𝟏 are 

selected to modulate 𝑽𝜶𝜷∗  and 𝑽𝒙𝒚∗  in two subspaces, 

respectively. In such a case, twelve sectors and four active 

voltage vectors determined by the location of 𝑽𝜶𝜷∗  are shown in 

Table I. 

 
                                (a)                                              (b) 

Fig. 9  Sector division and voltage vector selection principle for SVPWM-4L. 

(a) αβ subspace. (b) xy subspace. 

 

The modulation procedure is described in (11) and zero 

voltage vectors are applied to fill in the gap of each PWM 

period.  
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[𝑇𝑆𝐴𝑇𝑆𝐵𝑇𝑆𝐶𝑇𝑆𝐷] = 𝑇𝑃𝑊𝑀 [  
 𝑉𝑆𝐴𝛼 𝑉𝑆𝐵𝛼𝑉𝑆𝐴𝛽 𝑉𝑆𝐵𝛽 𝑉𝑆𝐶𝛼 𝑉𝑆𝐷𝛼𝑉𝑆𝐶𝛽 𝑉𝑆𝐷𝛽𝑉𝑆𝐴𝑥 𝑉𝑆𝐵𝑥𝑉𝑆𝐴𝑦 𝑉𝑆𝐵𝑦 𝑉𝑆𝐶𝑥 𝑉𝑆𝐷𝑥𝑉𝑆𝐶𝑦 𝑉𝑆𝐷𝑦]  

 −1
[  
 𝑢𝛼∗𝑢𝛽∗𝑢𝑥∗𝑢𝑦∗ ]  

 , (11) 

in which, 𝑉𝑆𝐴𝛼 , 𝑉𝑆𝐵𝛼 , 𝑉𝑆𝐶𝛼 , 𝑉𝑆𝐷𝛼  denote projections of 𝑽𝑺𝑨 , 𝑽𝑺𝑩, 𝑽𝑺𝑪, 𝑽𝑺𝑫 on α-axis. For projections on β-axis, x-axis, and 

y-axis, similar denotations apply. 𝑇𝑆𝐴, 𝑇𝑆𝐵 , 𝑇𝑆𝐶  and 𝑇𝑆𝐷  denote 

dwell times of 𝑽𝑺𝑨, 𝑽𝑺𝑩, 𝑽𝑺𝑪, 𝑽𝑺𝑫, respectively. 
TABLE I 

SECTOR DIVISION AND VOLTAGE VECTOR SELECTION FOR SVPWM-4L 

Sector 𝑽𝑺𝑨 𝑽𝑺𝑩 𝑽𝑺𝑪 𝑽𝑺𝑫 

I 27 11 9 41 

II 26 27 11 9 

III 18 26 27 11 

IV 22 18 26 27 

V 54 22 18 26 

VI 52 54 22 18 

VII 36 52 54 22 

VIII 37 36 52 54 

IX 45 37 36 52 

X 41 45 37 36 

XI 9 41 45 37 

XII 11 9 41 45 

 

However, it cannot ensure there is always a solution to (11). 

Dwell times have restrictions shown in (12) which should be 

satisfied and 𝑇𝑍 is the dwell time of zero voltage vectors. 

{  
  𝑇𝑆𝐴 ≥ 0  𝑇𝑆𝐵 ≥ 0 𝑇𝑆𝐶 ≥ 0 𝑇𝑆𝐷 ≥ 0 𝑇𝑧 = 𝑇𝑃𝑊𝑀 − (𝑇𝑆𝐴 + 𝑇𝑆𝐵 + 𝑇𝑆𝐶 + 𝑇𝑆𝐷) ≥ 0 (12) 

Substitute (11) into (12), the modulation range of xy subspace 

related to 𝑢𝛼∗  and 𝑢𝛽∗  can be derived. Similarly, 𝑽𝜶𝜷∗ =[√38 𝑉𝑑𝑐 18𝑉𝑑𝑐]T is set as an example and 𝑽𝟐𝟕, 𝑽𝟏𝟏, 𝑽𝟗 and 𝑽𝟒𝟏 

are selected under this case. Then, the modulation range of xy 

subspace is shown in Fig. 10 in the per-unit scale with respect 

to 𝑉𝑑𝑐 . From Fig. 10, each line presents one dwell time 

restriction in (12). The shadowed area is the modulation range 

of xy subspace under 𝑽𝜶𝜷∗ = [√38 𝑉𝑑𝑐 18𝑉𝑑𝑐]T . The distances 

from the point of origin to lines of 𝑇𝑆𝐴, 𝑇𝑆𝐵, 𝑇𝑆𝐶 , 𝑇𝑆𝐷 and 𝑇𝑍 in 

(12), are denoted as 𝑑𝑆𝐴 , 𝑑𝑆𝐵 , 𝑑𝑆𝐶 , 𝑑𝑆𝐷  and 𝑑𝑍 . The distance 𝑑𝑆𝐴 is presented in Fig. 10 as an example. Similarly, the circle 

indicates the linear modulation range and the magnitude (𝐿𝐿𝑀𝑅), 

i.e. the radius, is the minimum value among 𝑑𝑆𝐴, 𝑑𝑆𝐵, 𝑑𝑆𝐶 , 𝑑𝑆𝐷 

and 𝑑𝑍, which is 𝐿𝐿𝑀𝑅 = Min{𝑑𝑆𝐴, 𝑑𝑆𝐵 , 𝑑𝑆𝐶 , 𝑑𝑆𝐷 , 𝑑𝑍} = 0.017 ∙𝑉𝑑𝑐 under this case. 

Then, the linear modulation range of xy subspace under 𝑽𝜶𝜷∗  

with the magnitude of 0.25 ∙ 𝑉𝑑𝑐 and vector angle ranging from 

0 to 2π can be derived, shown in Fig. 11. From Fig. 11, 𝐿𝐿𝑀𝑅 is 

relatively small and varies from 0 to 0.017 ∙ 𝑉𝑑𝑐 . Thus, the 

linear modulation range under 𝑚 = 0.5 has the magnitude of  𝐿𝐿𝑀𝑅 = 0  for SVPWM-4L. Moreover, the magnitude of the 

linear modulation range under 𝑚 ∈ [0, 2√3] is analyzed to be 

zero. 

 
Fig. 10  Modulation range in xy subspace for SVPWM-4L under 𝑽𝜶𝜷∗ =[√38 𝑉𝑑𝑐 18𝑉𝑑𝑐]T.  

 

C. Enhanced SVPWM with Synthetic Vectors 

Synthetic vectors composed of two voltage vectors can be 

implemented to achieve a decoupled modulation of voltage 

references in two subspaces indirectly [20]. In this SVPWM 

technique [20], the modulations in two subspaces do not affect 

each other.  

 
Fig. 11 𝐿𝐿𝑀𝑅  against 𝜃𝑉  ranging from 0 to 2π under |𝑽𝜶𝜷∗  | = 0.25 ∙ 𝑉𝑑𝑐  for 

SVPWM-4L.  

 

The enhanced SVPWM with synthetic vectors (SVPWM-SV) 

is further developed from [20] with optimization of sector 

division and switching pattern generation. In SVPWM-SV [20], 

each PWM period 𝑇𝑃𝑊𝑀 is split into two parts, denoted as 𝑇𝛼𝛽 

and 𝑇𝑥𝑦  which are calculated according to the lengths of 𝑽𝜶𝜷∗  

and 𝑽𝒙𝒚∗ , shown as  

{  
  𝑇𝛼𝛽 = |𝑽𝜶𝜷∗ ||𝑽𝜶𝜷∗ | + |𝑽𝒙𝒚∗ | ∙ 𝑇𝑃𝑊𝑀𝑇𝑥𝑦 = |𝑽𝒙𝒚∗ ||𝑽𝜶𝜷∗ | + |𝑽𝒙𝒚∗ | ∙ 𝑇𝑃𝑊𝑀 . (13) 

In the period of 𝑇𝛼𝛽, 𝑽𝜶𝜷∗  is modulated through two synthetic 

vectors and the average zero voltage in xy subspace is achieved, 

as shown in Fig. 12, where 𝑽𝜶𝜷∗  locates at Sector I and synthetic 

vectors 𝑽𝑺𝑽𝟏 , 𝑽𝑺𝑽𝟐  are formed by 𝑽𝟏𝟏 , 𝑽𝟐𝟓  and 𝑽𝟗 , 𝑽𝟒𝟑 , 

respectively, used to modulate 𝑽𝜶𝜷∗ . The sector division is the 

same as SVPWM-4L. Following the same rule, the synthetic 

vectors implemented for 𝑽𝜶𝜷∗  locating at all sectors are 

presented in Table II, in which 𝑽𝑺𝑨_𝜶𝜷 , 𝑽𝑺𝑪_𝜶𝜷  are 𝑁4 voltage 
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vectors and 𝑽𝑺𝑩_𝜶𝜷 , 𝑽𝑺𝑫_𝜶𝜷  are 𝑁3  voltage vectors in αβ 
subspace.  

Then, the procedure to obtain the synthetic vectors is 

illustrated. It can be seen that 𝑽𝑺𝑨_𝜶𝜷  and 𝑽𝑺𝑩_𝜶𝜷  (𝑽𝑺𝑪_𝜶𝜷  and 𝑽𝑺𝑫_𝜶𝜷) are in phase in αβ subspace, but are out of phase in xy 
subspace. Therefore, through the proposed allocation of dwell 

times, the average zero voltage in xy subspace is achieved by 

 
(a)                                                      (b) 

Fig. 12  Sector division and synthetic vector composition in αβ subspace for 

SVPWM-SV. (a) αβ subspace. (b) xy subspace. 
 

TABLE II 

SECTOR DIVISION AND VOLTAGE VECTOR SELECTION FOR SYNTHETIC 

VECTORS IN αβ SUBSPACE 

Sector 
𝑽𝑺𝑽𝟏 𝑽𝑺𝑽𝟐 𝑽𝑺𝑨_𝜶𝜷 𝑽𝑺𝑩_𝜶𝜷 𝑽𝑺𝑪_𝜶𝜷 𝑽𝑺𝑫_𝜶𝜷 

I 11 25 9 43 

II 27 10 11 25 

III 26 19 27 10 

IV 18 30 26 19 

V 22 50 18 30 

VI 54 20 22 50 

VII 52 38 54 20 

VIII 36 53 52 38 

IX 37 44 36 53 

X 45 33 37 44 

XI 41 13 45 33 

XII 9 43 41 13 

 {𝐿𝑁3 ∙ 𝑇𝑆𝐵_𝛼𝛽 − 𝐿𝑁1 ∙ 𝑇𝑆𝐴_𝛼𝛽 = 0𝑇𝑆𝐴_𝛼𝛽 + 𝑇𝑆𝐵_𝛼𝛽 = 𝑇𝑆𝑉1 , (14) 

{𝐿𝑁3 ∙ 𝑇𝑆𝐷_𝛼𝛽 − 𝐿𝑁1 ∙ 𝑇𝑆𝐶_𝛼𝛽 = 0𝑇𝑆𝐶_𝛼𝛽 + 𝑇𝑆𝐷_𝛼𝛽 = 𝑇𝑆𝑉2 , (15) 

in which, 𝑇𝑆𝐴_𝛼𝛽, 𝑇𝑆𝐵_𝛼𝛽, 𝑇𝑆𝐶_𝛼𝛽 and 𝑇𝑆𝐷_𝛼𝛽 denote dwell times 

of 𝑽𝑺𝑨_𝜶𝜷 , 𝑽𝑺𝑩_𝜶𝜷 , 𝑽𝑺𝑪_𝜶𝜷  and 𝑽𝑺𝑫_𝜶𝜷 , respectively; 𝐿𝑁1 , 𝐿𝑁3 

are shown in (4); 𝑇𝑆𝑉1 and 𝑇𝑆𝑉2 denote dwell times of 𝑽𝑺𝑽𝟏 and 𝑽𝑺𝑽𝟐 , respectively. Then, 𝑇𝑆𝐴_𝛼𝛽 , 𝑇𝑆𝐵_𝛼𝛽 , 𝑇𝑆𝐶_𝛼𝛽  and 𝑇𝑆𝐷_𝛼𝛽 

calculated from (14) and (15) can be expressed as 

{  
  𝑇𝑆𝐴_𝛼𝛽 = 2√2√6 + √2 ∙ 𝑇𝑆𝑉1𝑇𝑆𝐵_𝛼𝛽 = √6 − √2√6 + √2 ∙ 𝑇𝑆𝑉1, (16) 

{  
  𝑇𝑆𝐶_𝛼𝛽 = 2√2√6 + √2 ∙ 𝑇𝑆𝑉2𝑇𝑆𝐷_𝛼𝛽 = √6 − √2√6 + √2 ∙ 𝑇𝑆𝑉2. (17) 

According to (16) and (17), the length of the synthetic vectors 𝑽𝑺𝑽𝟏 and 𝑽𝑺𝑽𝟐 in αβ and xy subspaces can be expressed as 

{  
  |𝑽𝑺𝑽𝟏|𝛼𝛽 = 𝐿𝑁4 ∙ 𝑇𝑆𝐴_𝛼𝛽 + 𝐿𝑁3 ∙ 𝑇𝑆𝐵_𝛼𝛽𝑇𝑃𝑊𝑀            = 3√2 − √63 ∙ 𝑉𝑑𝑐 ∙ 𝑇𝑆𝑉1𝑇𝑃𝑊𝑀|𝑽𝑺𝑽𝟏|𝑥𝑦 = 0 , (18) 

{  
  |𝑽𝑺𝑽𝟐|𝛼𝛽 = 𝐿𝑁4 ∙ 𝑇𝑆𝐶_𝛼𝛽 + 𝐿𝑁3 ∙ 𝑇𝑆𝐷_𝛼𝛽𝑇𝑃𝑊𝑀            = 3√2 − √63 ∙ 𝑉𝑑𝑐 ∙ 𝑇𝑆𝑉2𝑇𝑃𝑊𝑀|𝑽𝑺𝑽𝟐|𝑥𝑦 = 0

, (19) 

where |𝑽𝑺𝑽𝟏|𝛼𝛽 and |𝑽𝑺𝑽𝟏|𝑥𝑦 denotes the lengths of 𝑽𝑺𝑽𝟏 in αβ 
and xy subspaces, respectively; |𝑽𝑺𝑽𝟐|𝛼𝛽 and |𝑽𝑺𝑽𝟐|𝑥𝑦 denotes 

the lengths of 𝑽𝑺𝑽𝟐 in αβ and xy subspaces, respectively. Then, 

substituting (18) and (19) into (16) and (17), respectively, (16) 

and (17) can be rewritten as 

[   
 𝑇𝑆𝐴_𝛼𝛽𝑇𝑆𝐵_𝛼𝛽𝑇𝑆𝐶_𝛼𝛽𝑇𝑆𝐷_𝛼𝛽]   

 = 𝑇𝑃𝑊𝑀𝑉𝑑𝑐 ∙
[  
   
   
 √62    0√3√6 + √2    0     
       0 √62       0    √3√6 + √2]  

   
   
 
[|𝑽𝑺𝑽𝟏|𝛼𝛽|𝑽𝑺𝑽𝟐|𝛼𝛽]. (20) 

Of note, the synthetic vector 𝑽𝑺𝑽𝟏 is in phase with 𝑽𝑺𝑨_𝜶𝜷 and 𝑽𝑺𝑩_𝜶𝜷 in αβ subspace. Similarly, the synthetic vector 𝑽𝑺𝑽𝟐 is in 

phase with 𝑽𝑺𝑪_𝜶𝜷  and 𝑽𝑺𝑫_𝜶𝜷  in αβ subspace as well. From 

(18) and (19), the average zero voltage in xy subspace will be 

maintained when 𝑽𝑺𝑽𝟏  and 𝑽𝑺𝑽𝟐  are used to modulate 𝑽𝜶𝜷∗ . 

Then, the modulation of 𝑽𝜶𝜷∗ .can be described as  

[|𝑽𝑺𝑽𝟏|𝛼𝛽|𝑽𝑺𝑽𝟐|𝛼𝛽] = [cos (𝜇 + 𝜋6) cos(𝜇)sin (𝜇 + 𝜋6) sin(𝜇)]
−1 [𝑢𝛼∗𝑢𝛽∗ ], (21) 

in which, 𝜇 = 𝜋6 ∙ 𝑛 − 𝜋12  (𝑛 = 1,2, … ,12) . 𝑛  is corresponding 

to the sector number in αβ subspace and for example, if 𝑽𝜶𝜷∗  is 

in Sector I, 𝑛 =1. Then, substituting (21) into (20), the dwell 

times of voltage vectors in the first part 𝑇𝛼𝛽  can be obtained 

according to 𝑽𝜶𝜷∗ . Meanwhile, the dwell times of zero voltage 

vectors can be calculated as  

2726
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IEEE POWER ELECTRONICS REGULAR PAPER/LETTER/CORRESPONDENCE 𝑇0_𝛼𝛽 = 𝑇63_𝛼𝛽           = 𝑇𝛼𝛽 − 𝑇𝑆𝐴_𝛼𝛽 − 𝑇𝑆𝐵_𝛼𝛽 − 𝑇𝑆𝐶_𝛼𝛽 − 𝑇𝑆𝐷_𝛼𝛽2 , (22) 

where 𝑇0_𝛼𝛽 and 𝑇63_𝛼𝛽 denote the dwell times of 𝑽𝟎 and 𝑽𝟔𝟑 in 

the period of 𝑇𝛼𝛽, respectively.  

In the period of 𝑇𝑥𝑦, 𝑽𝒙𝒚∗  is modulated through two synthetic 

vectors and the average zero voltage in αβ subspace is 
maintained, as shown in Fig. 13, where 𝑽𝒙𝒚∗  locates at Sector I 

and two synthetic vectors 𝑽𝑺𝑽𝟑, 𝑽𝑺𝑽𝟒 formed by 𝑽𝟐𝟏, 𝑽𝟐𝟓 and 𝑽𝟏𝟕 , 𝑽𝟓𝟑 , respectively, used to modulate 𝑽𝒙𝒚∗ . Following the 

same rule, the synthetic vectors implemented for 𝑽𝒙𝒚∗  locating at 

all sectors are presented in Table III, in which 𝑽𝑺𝑨_𝒙𝒚, 𝑽𝑺𝑪_𝒙𝒚 are 𝑁4 voltage vectors and 𝑽𝑺𝑩_𝒙𝒚, 𝑽𝑺𝑫_𝒙𝒚 are 𝑁3 voltage vectors in 

xy subspace. The procedures to obtain the length of 𝑽𝑺𝑽𝟑, 𝑽𝑺𝑽𝟒 

in xy subspace and their dwell times are the same as those for 𝑽𝑺𝑽𝟏 , 𝑽𝑺𝑽𝟐  in αβ subspace shown in (14)-(19), but are 

conducted in xy subspace. Then, the lengths of 𝑽𝑺𝑽𝟑 and 𝑽𝑺𝑽𝟒 

are shown as  

{|𝑽𝑺𝑽𝟑|𝛼𝛽 = 0|𝑽𝑺𝑽𝟑|𝑥𝑦 = 3√2 − √63 ∙ 𝑉𝑑𝑐 ∙ 𝑇𝑆𝑉3𝑇𝑃𝑊𝑀 , (23) 

{|𝑽𝑺𝑽𝟒|𝛼𝛽 = 0|𝑽𝑺𝑽𝟒|𝑥𝑦 = 3√2 − √63 ∙ 𝑉𝑑𝑐 ∙ 𝑇𝑆𝑉4𝑇𝑃𝑊𝑀 , (24) 

in which, |𝑽𝑺𝑽𝟑|𝑥𝑦 and |𝑽𝑺𝑽𝟒|𝑥𝑦 denote the lengths of 𝑽𝑺𝑽𝟑 and 𝑽𝑺𝑽𝟒  in xy subspace, respectively; |𝑽𝑺𝑽𝟑|𝛼𝛽  and |𝑽𝑺𝑽𝟒|𝛼𝛽 

denote the lengths of 𝑽𝑺𝑽𝟑  and 𝑽𝑺𝑽𝟒  in αβ subspace, 
respectively, which are zero; 𝑇𝑆𝑉3  and 𝑇𝑆𝑉4  denote the dwell 

times of 𝑽𝑺𝑽𝟑 and 𝑽𝑺𝑽𝟒, respectively. 

Similarly, the modulation of 𝑽𝒙𝒚∗  can be described as 

[|𝑽𝑺𝑽𝟑|𝑥𝑦|𝑽𝑺𝑽𝟒|𝑥𝑦] = [cos (𝜎 + 𝜋6) cos(𝜎)sin (𝜎 + 𝜋6) sin(𝜎)]
−1 [𝑢𝑥∗𝑢𝑦∗ ], (25) 

in which; 𝜎 = 𝜋6 ∙ 𝑞 − 𝜋12  (𝑞 = 1,2, … ,12) . 𝑞  is corresponding 

to the sector number in xy subspace and for example, if 𝑽𝒙𝒚∗  is 

in Sector I, 𝑞 =1. Similarly, the dwell times of voltage vectors 

in the period of 𝑇𝑥𝑦 can be expressed as  

[  
 𝑇𝑆𝐴_𝑥𝑦𝑇𝑆𝐵_𝑥𝑦𝑇𝑆𝐶_𝑥𝑦𝑇𝑆𝐷_𝑥𝑦]  

 = 𝑇𝑃𝑊𝑀𝑉𝑑𝑐 ∙
[  
   
   
 √62    0√3√6 + √2    0     
       0 √62       0    √3√6 + √2]  

   
   
 
[|𝑽𝑺𝑽𝟑|𝑥𝑦|𝑽𝑺𝑽𝟒|𝑥𝑦], (26) 

𝑇0_𝑥𝑦 = 𝑇63_𝑥𝑦           = 𝑇𝑥𝑦 − 𝑇𝑆𝐴_𝑥𝑦 − 𝑇𝑆𝐵_𝑥𝑦 − 𝑇𝑆𝐶_𝑥𝑦 − 𝑇𝑆𝐷_𝑥𝑦2  (27) 

where 𝑇𝑆𝐴_𝑥𝑦 , 𝑇𝑆𝐵_𝑥𝑦 , 𝑇𝑆𝐶_𝑥𝑦  and 𝑇𝑆𝐷_𝑥𝑦  denote the dwell times 

of 𝑽𝑺𝑨_𝒙𝒚 , 𝑽𝑺𝑩_𝒙𝒚 , 𝑽𝑺𝑪_𝒙𝒚  and 𝑽𝑺𝑫_𝒙𝒚 , respectively; 𝑇0_𝑥𝑦  and 𝑇63_𝑥𝑦  denote the dwell times of 𝑽𝟎  and 𝑽𝟔𝟑  in the period of 𝑇𝑥𝑦, respectively.  

 
(a)                                                      (b) 

Fig. 13  Sector division and synthetic vector composition in xy subspace for 

SVPWM-SV. (a) αβ subspace. (b) xy subspace. 
 

TABLE III 

SECTOR DIVISION AND VOLTAGE VECTOR SELECTION FOR SYNTHETIC 

VECTORS IN xy SUBSPACE 

Sector 
𝑽𝑺𝑽𝟑 𝑽𝑺𝑽𝟒 𝑽𝑺𝑨_𝒙𝒚 𝑽𝑺𝑩_𝒙𝒚 𝑽𝑺𝑪_𝒙𝒚 𝑽𝑺𝑫_𝒙𝒚 

I 21 25 17 53 

II 29 20 21 25 

III 28 13 29 20 

IV 12 30 28 13 

V 14 44 12 30 

VI 46 10 14 44 

VII 42 38 46 10 

VIII 34 43 42 38 

IX 35 50 34 43 

X 51 33 35 50 

XI 49 19 51 33 

XII 17 53 49 19 

 

Then the final step is to arrange the switching sequence 

according to dwell times calculated as (20), (22), (26), and (27). 

For instance, the switching sequence for 𝑽𝜶𝜷∗ =[√38 𝑉𝑑𝑐 18𝑉𝑑𝑐]T  and 𝑽𝒙𝒚∗ = [√316 𝑉𝑑𝑐 116𝑉𝑑𝑐]T  are presented in 

Fig. 14. 

The flowchart of the SVPWM-SV technique can be 

summarized in Fig. 15. The PWM period split makes the 

SVPWM-SV technique complicated. On the other hand, it can 

be seen from Fig. 14 that phases experience multiple switching 

during each PWM period leading to high switching loss. 

Meanwhile, the complicated switching sequence arrangement 

with too many voltage vectors poses a significant challenge for 

microcontrollers. Therefore, the SVPWM-SV in [20] can be 

improved to become more practical and accessible. 

In the enhanced SVPWM-SV technique, there is no PWM 

period split and the modulations of 𝑽𝜶𝜷∗  and 𝑽𝒙𝒚∗  are firstly 

achieved by using (21) and (25). Then, the dwell times of 𝑽𝑺𝑨_𝜶𝜷 , 𝑽𝑺𝑩_𝜶𝜷 , 𝑽𝑺𝑪_𝜶𝜷 , 𝑽𝑺𝑫_𝜶𝜷 , 𝑽𝑺𝑨_𝒙𝒚 , 𝑽𝑺𝑩_𝒙𝒚 , 𝑽𝑺𝑪_𝒙𝒚  and 
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IEEE POWER ELECTRONICS REGULAR PAPER/LETTER/CORRESPONDENCE 𝑽𝑺𝑫_𝒙𝒚 can be calculated according to (20) and (26). The dwell 

times of zero voltage vectors 𝑽𝟎  and 𝑽𝟔𝟑 , denoted by 𝑇0  and 𝑇63, respectively in the period of 𝑇𝑃𝑊𝑀  can be expressed as  𝑇0 = 𝑇63 = 𝑇𝑃𝑊𝑀2 − 𝑇𝑆𝐴_𝛼𝛽 + 𝑇𝑆𝐵_𝛼𝛽 + 𝑇𝑆𝐶_𝛼𝛽 + 𝑇𝑆𝐷_𝛼𝛽2                      − 𝑇𝑆𝐴_𝑥𝑦 + 𝑇𝑆𝐵_𝑥𝑦 + 𝑇𝑆𝐶_𝑥𝑦 + 𝑇𝑆𝐷_𝑥𝑦2 . (28) 

 
Fig. 14 PWM period split and switching sequence generation for 𝑽𝜶𝜷∗ =[√38 𝑉𝑑𝑐 18𝑉𝑑𝑐]T  and 𝑽𝒙𝒚∗ = [√316𝑉𝑑𝑐 116𝑉𝑑𝑐]T in SVPWM-SV [20]. 

 

 
Fig. 15  Flowchart of SVPWM-SV [20]. 

 

The next step is to calculate the duty cycle of each phase 

according to (20), (26), and (28). Still using the example 𝑽𝜶𝜷∗ =[√38 𝑉𝑑𝑐 18𝑉𝑑𝑐]T  and 𝑽𝒙𝒚∗ = [√316 𝑉𝑑𝑐 116𝑉𝑑𝑐]T , duty cycles of 

phases can be calculated as (29). Then, the switching sequence 

is generated from (29) and the turn-on time of each phase is 

allocated in the middle of the switching pattern, as shown in Fig. 

16. There will be no multiple switching in each phase and no 

complicated switching sequence arrangement, compared with 

the SVPWM-SV in [20] shown as Fig. 14. Of note, the switch 

sequence in Fig. 14 and Fig. 16 are different, but both of them 

can modulate 𝑽𝜶𝜷∗ = [√38 𝑉𝑑𝑐 18𝑉𝑑𝑐]T  and 𝑽𝒙𝒚∗ =[√316 𝑉𝑑𝑐 116𝑉𝑑𝑐]T. Additionally, the generation of the switching 

sequence in in Fig. 16 is much simpler for microcontrollers. 

{  
   
  
   
  𝐷𝑅 = 𝑇𝑃𝑊𝑀 − 𝑇0𝑇𝑃𝑊𝑀𝐷𝑆 = 𝑇𝑆𝐴_𝛼𝛽 + 𝑇𝑆𝐷_𝛼𝛽 + 𝑇63𝑇𝑃𝑊𝑀  𝐷𝑇 = 𝑇𝑆𝐴−𝑥𝑦 + 𝑇𝑆𝐷_𝑥𝑦 + 𝑇63 𝑇𝑃𝑊𝑀  𝐷𝑈 = 𝑇𝑆𝐴_𝛼𝛽 + 𝑇𝑆𝐵_𝛼𝛽 + 𝑇𝑆𝐶_𝛼𝛽 + 𝑇𝑆𝐷_𝛼𝛽 + 𝑇𝑆𝐵_𝑥𝑦 + 𝑇63 𝑇𝑃𝑊𝑀  𝐷𝑉 = 𝑇𝑆𝐴_𝑥𝑦 + 𝑇𝑆𝐵_𝑥𝑦 + 𝑇𝑆𝐶_𝑥𝑦 + 𝑇𝑆𝐷_𝑥𝑦 + 𝑇𝑆𝐵_𝛼𝛽 + 𝑇63𝑇𝑃𝑊𝑀𝐷𝑊 = 𝑇𝑆𝐷_𝛼𝛽 + 𝑇𝑆𝐷_𝑥𝑦 + 𝑇63  𝑇𝑃𝑊𝑀

.(29) 

 

Fig. 16  Switching sequence generated from (29) for 𝑽𝜶𝜷∗ = [√38 𝑉𝑑𝑐 18𝑉𝑑𝑐]T  
and 𝑽𝒙𝒚∗ = [√316𝑉𝑑𝑐 116𝑉𝑑𝑐]T in enhanced SVPWM-SV. 

 

The steps of the enhanced SVPWM-SV technique can be 

summarized in Fig. 17. Comparing Fig. 15 and Fig. 17, the steps 

of the enhanced SVPWM-SV technique are simpler. The 

outstanding benefits are no PWM period split and no multiple 

switching per phase. 

Since the enhanced SVPWM-SV can modulate voltage 

references in αβ and xy subspaces separately without being 

coupled by dwell times of voltage vectors, the derivation of 

linear modulation range is more straightforward than SVPWM-

4L and SVPWM-D3. The modulation in αβ subspace (Sector I 
as an example) can be described as Fig. 18, in which γ is the 

angle between 𝑽𝜶𝜷∗  and 𝑽𝑺𝑽𝟐 . Then, 𝑇𝑆𝑉1  and 𝑇𝑆𝑉2  against 𝑚 

can be derived using (30).  |𝑽𝜶𝜷∗  |sin (56 𝜋) = |𝑽𝑺𝑽𝟏|𝛼𝛽sin (γ) = |𝑽𝑺𝑽𝟐|𝛼𝛽sin (16 𝜋 − γ). (30) 

Substituting (9), (18), (19) into (30), 𝑇𝑆𝑉1 + 𝑇𝑆𝑉2 reflecting the 

period consumed to modulate 𝑽𝜶𝜷∗  in one PWM period can be 

expressed as 
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𝑇𝑆𝑉1 + 𝑇𝑆𝑉2 = 3𝑇𝑃𝑊𝑀 ∙ 𝑚3√2 − √6 ∙ (sin(γ) + sin (16𝜋 − γ)), (31) 

in which γ ∈ [0, 16𝜋] . Then, the maximum value of (31) is √32 𝑇𝑃𝑊𝑀 ∙ 𝑚. Since the modulations of αβ and xy subspaces are 
decoupled, following the same procedure, the maximum value 

of 𝑇𝑆𝑉3 + 𝑇𝑆𝑉4 is 
√32 𝑇𝑃𝑊𝑀 ∙ |𝑽𝒙𝒚∗  |𝑉𝑑𝑐2 . Due to the restriction of dwell 

times, 𝑇𝑆𝑉1 + 𝑇𝑆𝑉2 + 𝑇𝑆𝑉3 + 𝑇𝑆𝑉4 ≤ 𝑇𝑃𝑊𝑀 , 𝐿𝐿𝑀𝑅  can be 

expressed as  𝐿𝐿𝑀𝑅 = 𝑉𝑑𝑐2 ∙ (−𝑚 + 2 √3). (32) 

It can be seen from (10) and (32) that SVPWM-D3 and the 

enhanced SVPWM-SV have the same modulation restraint. 

 
Fig. 17  Flowchart of enhanced SVPWM-SV. 

 

 
Fig. 18  Modulation in αβ subspace for enhanced SVPWM-SV (Sector I as an 

example).  

 

D. Summary 

The plot of 𝐿𝐿𝑀𝑅 under 𝑚 for SVPWM-D3, SVPWM-4L and 

the enhanced SVPWM-SV can be summarized in Fig. 19(a). It 

should be noted that there is no linear modulation range in xy 

subspace under 𝑚 larger than 
2 √3 for all SVPWM techniques. 

For SVPWM-4L, 𝐿𝐿𝑀𝑅  is zero under all modulation indices, 

while 𝐿𝐿𝑀𝑅  against 𝑚  is the same for SVPWM-D3 and the 

enhanced SVPWM-SV. The schematic diagram of the linear 

modulation range of SVPWM-D3 and the enhanced SVPWM-

SV presented in xy subspace is shown in Fig. 19(b). The 

magnitude of the linear modulation range reaches 
𝑉𝑑𝑐 √3  (max) 

under 𝑚 = 0 and it shrinks to zero under 𝑚 = 2√3. 

  
(a)           (b) 

Fig. 19  Linear modulation range comparison. (a) 𝐿𝐿𝑀𝑅  under different 

modulation indices. (b) Schematic diagram of linear modulation range in xy 

subspace for SVPWM-D3 and enhanced SVPWM-SV. 

 

Since the value of 𝑚  can be estimated through the torque 

requirement or fundamental current amplitude under the 

operation speed, the linear modulation range of SVPWM-D3 

and the enhanced SVPWM-SV can be derived from (1), (2), (9), 

and (32) under such working conditions to ensure the control of 

xy subspace would not affect the current control in αβ subspace. 

An example of the linear modulation range derivation under a 

given fundamental current is illustrated in Section IV.  

However, there are some restrictions in this modulation 

restraint analysis. Firstly, only fundamental voltage modulation 

reflected by the modulation index is considered in αβ subspace, 

however the 12k±1 (k=1,2,3·· ·) order harmonics with much 

small amplitudes are neglected. If their amplitudes are large 

enough to consider (normally rare), the linear modulation range 

in xy subspace will shrink. Secondly, there is an achievable 

nonlinear modulation range in xy subspace in each PWM period 

in addition to the calculated linear modulation range under the 

correspondence modulation index. For example, the shadowed 

area in Fig. 5(c) is the total modulation range including the 

nonlinear modulation range. However, the nonlinear 

modulation range will generate additional low-frequency 

harmonics in the system which will interact with injected xy 

voltages, thereby distorting the voltage regulation and might 

even lead to system misbehavior. Therefore, the linear 

modulation range is used as the effective restraint in this 

analysis. 

 

IV. EXPERIMENTAL VALIDATION OF MODULATION RESTRAINT 

 

Firstly in this section, an open-loop experiment tests the 

modulation restraints of three SVPWM techniques through 

voltage injection, in which 𝑽𝒙𝒚∗  can be within and out of the 

linear modulation range of xy subspace under a given 𝑚. Then, 

a closed-loop current compensation using the PIR(PI+Resonant) 

controllers under the condition of a series 3.3Ω resistor in Phase 
R is conducted to show the deterioration of current control with 

SVPWM-D3 and the enhanced SVPWM-SV out of their 

modulation restraints. The purpose of the series 3.3Ω resistor is 
to create a large voltage requirement in xy subspace.  

The low-speed direct-drive wind power test rig to conduct the 

experiments of the voltage injection and current control is 

Modulation of and using synthetic 

vectors according to (21) and (25)

Dwell time calculation of , , , , 

, , and according to (20) and (26)

Dwell time calculation of and 

( and ) according to (28)

Start

Switching pattern arrangement (Fig. 16 

together with (29) demonstrates an example)

End

β-axis

α-axis

11

25

43
9

Ⅰ

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

L
L

M
R

/(
V

d
c
/2

) 

m

SVPWM-4L

SVPWM-D3/Enhanced

SVPWM-SV

y-axis

x-axis

m=1

m=0.4

m=0.6

m=0.8

m=0.2

m=0

under

(SVPWM-D3/

Enhanced SVPWM-SV)



IEEE POWER ELECTRONICS REGULAR PAPER/LETTER/CORRESPONDENCE 

shown in Fig. 20. The test dual 3-ph PMSM with parameters 

shown in Table IV can be driven by a 3-ph PMSM load machine 

to rotate at a fixed speed.  

 
TABLE IV 

PARAMETERS OF TEST DUAL 3-PH PMSM 

Parameters Value 

Rated power 3.7kW 

Rated speed 170r/min 

Rated torque 209Nm 

Stator self-inductance 17.21mH 

Stator resistance 3.3Ω 

PM Flux 1.03Wb 

Number of pole pairs 16 

 

 
Fig. 20  Test rig setup containing load machine (left) and test dual 3-ph PMSM 

(right). 

 

A. Open-loop Voltage Injection 

The control diagram of the open-loop voltage injection is 

presented in Fig. 21. The dc-link voltage 𝑉𝑑𝑐 is set to 70V and a 

fixed mechanical speed of 10 r/min is provided by the load 

machine. The voltage references 𝑢𝑑∗ , 𝑢𝑞∗ , 𝑢𝑥∗ , 𝑢𝑦∗  (𝑽𝜶𝜷∗ , 𝑽𝒙𝒚∗ ) are 

injected as an open-loop control to check whether SVPWM-4L, 

SVPWM-D3, and the enhanced SVPWM-SV can provide a 

required modulation of harmonic voltage injection in xy 

subspace under a given 𝑚. 

 
Fig. 21  Control diagram of open-loop voltage injection. 

 

Of note, 𝑢𝑑∗  and 𝑢𝑞∗  denote voltage references in αβ subspace 
after Park transform, which are set to 𝑢𝑑∗ = 0 , 𝑢𝑞∗ = 28V , 

achieving 𝑽𝜶𝜷∗  rotating with a magnitude of 28V and resulting 

in 𝑚 = 0.8 and 𝐿𝐿𝑀𝑅 = 12.41 V according to (9), (10) and (32) 

for both SVPWM-D3 and the enhanced SVPWM-SV. For 𝑢𝑥∗  

and 𝑢𝑦∗ , the 5th harmonic with an amplitude of 𝐴𝑖𝑛𝑗 is used to 

test the linear modulation range shown in Fig. 19(a). Of note, 

other order harmonics can be injected as well since the 

amplitude matters.  

For SVPWM-4L, the voltage trajectories with 𝐴𝑖𝑛𝑗 = 0 and 

5V are shown in Fig. 22 and Fig. 23, respectively. Since 

SVPWM-4L has no linear modulation range, the voltage 

trajectories in both αβ and xy subspaces cannot follow the 

voltage references with 𝐴𝑖𝑛𝑗 = 5 V , shown in Fig. 23, 

confirmed the previous analysis. Meanwhile, the 

overmodulation based on (12) is activated. Any negative value 

among 𝑇𝑆𝐴 , 𝑇𝑆𝐵 , 𝑇𝑆𝐶  and 𝑇𝑆𝐷  would be set to zero. If 𝑇𝑧 < 0, 𝑇𝑆𝐴, 𝑇𝑆𝐵, 𝑇𝑆𝐶  and 𝑇𝑆𝐷 will reduce proportionally until 𝑇𝑧 = 0.  

Then, for SVPWM-D3 and the enhanced SVPWM-SV, the 

voltage trajectories with 𝐴𝑖𝑛𝑗 =  12.41V and 20V are shown in 

Fig. 24, Fig. 25 and Fig. 26, Fig. 27, respectively. For 𝐴𝑖𝑛𝑗 = 12.41V, both SVPWM-D3 and the enhanced SVPWM-SV can 

provide a good tracking performance of voltage references but 

fail at 𝐴𝑖𝑛𝑗 =  20V , which is out of the linear modulation range 

and leads to the overmodulation. For SVPWM-D3, the 

overmodulation for 3-ph SVPWM is activated in two sets, 

respectively. The modulation of any voltage references (𝑽𝜶𝟏𝜷𝟏∗  

and 𝑽𝜶𝟐𝜷𝟐∗ ) exceeding the dotted hexagon (described in Fig. 4) 

will be shortened to the edge of the dotted hexagon with the 

same direction. The resulting voltage vector will not be the same 

as its reference in aspects of length and direction in each 

subspace. For the enhanced SVPWM-SV, the overmodulation 

is based on (28). If 𝑇0 = 𝑇63 < 0, 𝑇𝑆𝑉1, 𝑇𝑆𝑉2, 𝑇𝑆𝑉3 and 𝑇𝑆𝑉4 will 

reduce proportionally until 𝑇𝑧 = 0. Due to the synthetic vectors, 

the resulting voltage vector after the overmodulation is shorter 

than its reference in each subspace, but they are in the same 

direction. As can be seen in Fig. 25 and Fig. 27, for one 

sampling point, 𝑽𝜶𝜷∗ = [26.8 −8.14]T (
𝒖𝜷∗𝒖𝜶∗ = −0.304), 𝑽𝒙𝒚∗ =[−19.9 −1.93]T  (

𝒖𝒚∗𝒖𝒙∗ = 0.0971), the resulting voltages after 

the overmodulation procedure are 𝑽𝜶𝜷 = [23.6 −7.40]T 

(
𝑢𝜷𝑢𝜶 = −0.314 ), 𝑽𝒙𝒚 = [−16.8 −1.32]T  (

𝑢𝒚𝑢𝒙 = 0.0782 ) and 𝑽𝜶𝜷 = [23.0 −6.97]T  (
𝑢𝜷𝑢𝜶 = −0.304 ), 𝑽𝒙𝒚 =[−17.1 −1.66]T  (

𝑢𝒚𝑢𝒙 = 0.0971 ) for SVPWM-D3 and the 

enhanced SVPWM-SV, respectively. It can be seen that the 

resulting voltage vector is shorter than its reference in each 

subspace for the two SVPWM techniques. However, the 

directions for the resulting voltage vector and its reference are 

different for SVPWM-D3. 

  
(a) (b) 

Fig. 22  Voltage trajectories with 𝐴𝑖𝑛𝑗 = 0 for SVPWM-4L. (a) αβ subspace. 
(b) xy subspace. 
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(a) (b) 

Fig. 23  Voltage trajectories with 𝐴𝑖𝑛𝑗 = 5V for SVPWM-4L. (a) αβ subspace. 
(b) xy subspace. 

 

  
(a) (b) 

Fig. 24  Voltage trajectories with 𝐴𝑖𝑛𝑗 = 12.41V  for SVPWM-D3. (a) αβ 
subspace. (b) xy subspace. 

 

  
(a) (b) 

Fig. 25  Voltage trajectories with 𝐴𝑖𝑛𝑗 = 20V for SVPWM-D3. (a) αβ subspace. 
(b) xy subspace. 

 

  
(a) (b) 

Fig. 26  Voltage trajectories with 𝐴𝑖𝑛𝑗 = 12.41 V for enhanced SVPWM-SV. 

(a) αβ subspace. (b) xy subspace. 
 

B. Closed-loop Current Compensation 

The closed-loop current compensation shown in Fig. 28 could 

be more common and practical in xy subspace regulation, in 

which 𝐺𝑅(𝑠)  denoting the transfer function of the resonant 

controller is illustrated later. As mentioned in the introduction 

section, currents in xy subspace should be suppressed to zero to 

improve the system performances. To create a high demand for 

voltage in xy subspace to test the linear modulation range, a 

series 3.3 Ω resistor causing unbalanced phase currents is 
connected to Phase R. Through adjusting the dc-link voltage, 

the magnitude of voltage reference in xy subspace required for 

balancing phase currents can be out of the linear modulation 

range. Then, the deterioration of current compensation restricted 

by the linear modulation range can be tested. With the additional 

resistor, (1) is changed as 

[𝑢𝛼𝑢𝛽𝑢𝑥𝑢𝑦] = [  
   
43𝑅𝑠 00 𝑅𝑠     13 𝑅𝑠   00   013𝑅𝑠    00    0     43 𝑅𝑠 00 𝑅𝑠]  

   [  
 𝑖𝛼𝑖𝛽𝑖𝑥𝑖𝑦]  
 + [  

  �̇�𝛼�̇�𝛽�̇�𝑥�̇�𝑦]  
  . (33) 

  
(a) (b) 

Fig. 27  Voltage trajectories with 𝐴𝑖𝑛𝑗 = 20V for enhanced SVPWM-SV. (a) αβ 
subspace. (b) xy subspace. 
 

From (33), the additional resistor leads to the cross-coupling 

between α-axis and x-axis, which means a fundamental 

component in 𝑖𝑥  can be caused by 𝑖𝛼  if no compensation, i.e. 𝑢𝑥 = 𝑢𝑦 = 0. Therefore, a large voltage demand is created to 

regulate currents in a good performance, expressed as  

[  
 𝑖𝛼𝑖𝛽𝑖𝑥𝑖𝑦]  
 = [𝑖𝑑cos(𝜃𝑒) − 𝑖𝑞sin(𝜃𝑒)𝑖𝑑sin(𝜃𝑒) + 𝑖𝑞cos(𝜃𝑒)00 ], (34) 

in which, 𝑖𝑑  and 𝑖𝑞  denote the d-axis and q-axis currents, 

respectively, after Park transform in αβ subspace. Setting 𝑖𝑑 to 

zero, the voltage demand for the compensation of the 

fundamental current in xy subspace is 
13𝑅𝑠 ∙ 𝑖𝑞sin(𝜃𝑒) 

calculated from (33) and (34). Of note, the 5th and 7th current 

harmonics decoupled in xy subspace require a compensation 

voltage as well so that the voltage reference in xy subspace 

should cover the mitigation of these current harmonics.  

Then, how the voltage reference in xy subspace is generated 

to compensate the fundamental, 5th and 7th harmonic 

components is illustrated. The closed-loop current control 

diagram with the purpose of controlling 𝑖𝑥  and 𝑖𝑦  to zero is 

presented in Fig. 28, in which 𝑖𝑥𝑟 , 𝑖𝑦𝑟  and 𝑢𝑥𝑟 , 𝑢𝑦𝑟  denote 

currents and voltages after Park transform in xy subspace. After 

Park transform, 5th and 7th harmonics are converted into 6th 
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[11] and the fundamental component appears as DC component 

and 2nd harmonics. Then, the PIR controllers [11], [21]-[22] are 

implemented to generate the voltage references suppressing 

current harmonics, since the resonant controller can offer a large 

gain at the frequencies of 2𝜔𝑠  and 6𝜔𝑠  ( 𝜔𝑠  denotes 

fundamental frequency). The transfer function of the applied 

resonant controller can be expressed as 𝐺𝑅(𝑠) = 𝐾𝑟𝑠𝑠2 +𝜔𝑐𝑠 + (ℎ𝜔𝑠)2, (35) 

where Kr denotes the resonant gain; ℎ  denotes the order; 𝜔𝑐 
denotes cut-off frequency, which determines the bandwidth 

regarding the resonant frequency [22]. Details of parameter 

tuning can be seen in [21]-[22], since PIR controllers are not 

within the research scope of this paper. In the experiments, the 

parameters are listed in Table V and the output limit of PIR 

controllers is set to 
𝑉𝑑𝑐√3 . 

 
Fig. 28  Control diagram of closed-loop current compensation. 

 
TABLE V 

PARAMETERS OF PIR CONTROLLERS 𝑖𝑑/𝑖𝑞 PIR controllers 𝑖𝑥𝑟/𝑖𝑦𝑟 PIR controllers 

Parameter Value Parameter Value 

 Kp 45  Kp 12 

 Ki 2750  Ki 2750 

 Kr 2750  Kr 2750 

 𝜔𝑐 𝜔𝑠/50  𝜔𝑐 𝜔𝑠/50 

 

The speed of the test machine is driven to 10 r/min by the load 

machine. Substituting (33), (34) into (9) and neglecting 

harmonics with much smaller amplitudes, the linear modulation 

ranges for SVPWM-D3 and the enhanced SVPWM-SV against 𝑖𝑞  under 𝑉𝑑𝑐=50V and 70V are plotted in Fig. 29. It can be seen 

that under the condition of 𝑖𝑞 =2.5A and 𝑉𝑑𝑐=50V (70V), 𝐿𝐿𝑀𝑅 

is 0.59V (12.14V). However, substituting (34) into (33), the 

maximum magnitude of 𝑽𝒙𝒚∗  required to suppress this 

fundamental component without considering the low-amplitude 

5th and 7th harmonics in xy subspace can be estimated around 

2.75V which is larger than 𝐿𝐿𝑀𝑅 for 𝑉𝑑𝑐=50V, but smaller than 𝐿𝐿𝑀𝑅  for 𝑉𝑑𝑐 =70V. There is still a large margin for the 

compensation of 5th and 7th harmonics under 𝑉𝑑𝑐=70V. Thus, 

the suppression in xy subspace can be achieved by SVPWM-D3 

and the enhanced SVPWM-SV under 𝑉𝑑𝑐=70V, but fails under 𝑉𝑑𝑐=50V, thereby demonstrating the deterioration of current 

compensation out of the SPVWM modulation restraints. 

The experimental results using only PI controllers in αβ 
subspace (no compensation in xy subspace, i.e.  𝑢𝑥∗ = 0, 𝑢𝑦∗ =0) under 𝑖𝑑∗ =0, 𝑖𝑞∗ =2.5A and 𝑉𝑑𝑐=70V are presented in Fig. 30 

to show the unbalanced phase currents and the current in xy 

subspace caused by the series 3.3Ω resistor in Phase R. The 

voltage trajectories in αβ and xy subspaces are shown in Fig. 

30(a) and (b), respectively, calculated from the duty cycles 

shown in Fig. 30(c). From Fig. 30(d), the phase currents are 

unbalanced, leading to a large fundamental component in the x-

axis current, shown in Fig. 30(g). The spectrum analysis of 

Phase R and U currents are presented in Fig. 30(e) and the 

fundamental amplitudes of unbalanced Phase R and U currents 

reach 1.98A and 2.95A, respectively. Meanwhile, the 5th and 

7th harmonics caused by inverter nonlinearities are presented as 

well due to no compensation in xy subspace. The spectrum 

analysis of 𝑖𝑥 and 𝑖𝑦 shown in Fig. 30(h) validates (33) and a 

requirement of compensation for the 5th and 7th harmonics in 

xy subspace. 

 
Fig. 29  𝐿𝐿𝑀𝑅 against 𝑖𝑞 for SVPWM-D3 and enhanced SVPWM-SV. 
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(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 30  Experimental results without current compensation in xy subspace using 

SVPWM-D3 under 𝑉𝑑𝑐=70V. (a) Voltage trajectory in αβ subspace. (b) Voltage 
trajectory in xy subspace. (c) Duty cycles. (d) Phase currents. (e) Spectrum 

analysis of Phase R and U currents. (f) Currents in αβ subspace. (g) Currents in 

xy subspace. (h) Spectrum analysis of currents in xy subspace. 

 

Then, the experimental results with current compensation in 

xy subspace using SVPWM-D3 under 𝑉𝑑𝑐=70V are presented 

in Fig. 31. The voltage trajectory in xy subspace, shown in Fig. 

31(b) indicates the voltage reference is within the linear 

modulation range, therefore, SVPWM-D3 can modulate voltage 

references in both subspaces illustrated in Fig. 31(a) and (b). 

Due to the control of xy subspace, currents are well regulated as 

shown in Fig. 31(d), (f) and (g). The spectrum analysis of Phase 

R and U presented in Fig. 31(e) shows that the fundamental 

components are balanced and the 5th/7th harmonics are 

suppressed effectively. From Fig. 31(g), 𝑖𝑥 and 𝑖𝑦 are controlled 

to zero. 

 

  
(a) (b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Fig. 31  Experimental results with compensation in xy subspace using SVPWM-

D3 under 𝑉𝑑𝑐=70V. (a) Voltage trajectory in αβ subspace. (b) Voltage trajectory 
in xy subspace. (c) Duty cycles. (d) Phase currents. (e) Spectrum analysis of 

Phase R and U currents. (f) Currents in αβ subspace. (g) Currents in xy subspace. 

 

On the contrary, 𝑉𝑑𝑐 =50V cannot satisfy the voltage 

requirement of compensation in xy subspace, as in Fig. 32. From 

Fig. 32(b), the reference in xy subspace is out of the linear 

modulation range and leads to the voltage tracking failures in 

both subspaces (Fig. 32(a) and (b)). The saturation of duty 

cycles is shown in Fig. 32(c). Meanwhile, the voltage references 

could conduct misbehavior and reach the output limit of current 

controllers as indicated in Fig. 32(a) and (b). Thus, the currents 

are distorted as shown in Fig. 32(d), (f) and (g). From the 

spectrum analysis of Phase R and U shown in Fig. 32(e), the 

modulation failure (or the overmodulation) reduces the 

amplitudes of fundamental components in Phase R and Phase U 

currents from 2.49A and 2.52A (shown in Fig. 31(e)) to 1.85A 

and 1.88A, respectively, which means the current references 
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IEEE POWER ELECTRONICS REGULAR PAPER/LETTER/CORRESPONDENCE 𝑖𝑑∗ =0, 𝑖𝑞∗ =2.5A are not satisfied and followed. Meanwhile, the 

compensation of the 5th and 7th harmonics is deteriorated. 

  
(a) (b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Fig. 32  Experimental results with current compensation in xy subspace using 

SVPWM-D3 under 𝑉𝑑𝑐=50V. (a) Voltage trajectory in αβ subspace. (b) Voltage 
trajectory in xy subspace. (c) Duty cycles. (d) Phase currents. (e) Spectrum 

analysis of Phase R and U currents. (f) Currents in αβ subspace. (g) Currents in 

xy subspace. 

 

The experimental results with current compensation in xy 

subspace using the enhanced SVPWM-SV under 𝑉𝑑𝑐=70V and 

50V are presented in Fig. 33 and Fig. 34, respectively. Under 𝑉𝑑𝑐 =70V, the voltage required for the compensation in xy 

subspace is within the linear modulation range, illustrated in 

Fig. 33(b). Therefore, the currents can be well regulated, as 

shown in Fig. 33(d), (f), and (g). However, the enhanced 

SVPWM-SV fails to provide the modulation of voltage 

references in xy subspace, which is out of the linear modulation 

range under 𝑉𝑑𝑐=50V, thereby distorting the current balancing, 

presented in Fig. 34. Comparing the spectrum analysis of Phase 

R and Phase under 𝑉𝑑𝑐=70V and 𝑉𝑑𝑐=50V shown in Fig. 33(e) 

and Fig. 34(e), the amplitudes of fundamental components of 

Phase R and U are reduced to 1.77A and 1.80A under 𝑉𝑑𝑐=50V 

from 2.49A and 2.52A under 𝑉𝑑𝑐=70V, respectively. It means 

that the current references 𝑖𝑑∗ =0, 𝑖𝑞∗ =2.5A are not fulfilled 

under 𝑉𝑑𝑐=50V. Also, the 5th/7th harmonic compensation is 

affected by the modulation failure.  

Comparing Fig. 32 and Fig. 34, the enhanced SVPWM-SV 

performs slightly better than SVPWM-D3 with limited dc-link 

voltage. Regarding SVPWM techniques, the overmodulation 

procedure and the nonlinear modulation range are the two main 

factors determining the performance with the voltage reference 

out of the linear modulation range. As shown in the last 

paragraph of Section IV-A, the overmodulation procedures of 

both SVPWM-D3 and the enhanced SVPWM-SV could lead to 

different resulting voltage vectors. The direction of the resulting 

voltage vector could be different from that of its reference for 

SVPWM-D3. On the other hand, the different nonlinear 

modulation ranges of these two SVPWM techniques could 

generate different low-frequency harmonics, thereby affecting 

the performance. Of note, under other voltage references 

involving harmonics with different orders, amplitudes or phases 

in xy subspace, the performance for SVPWM-D3 and the 

enhanced SVPWM-SV could vary. Therefore, it cannot be 

guaranteed that one technique has a better performance than the 

other for any voltage reference with limited dc-link voltage. 

This is our future research direction.  

For both SVPWM techniques, the modulation of the 

fundamental voltage in αβ subspace deteriorates due to the 

limited dc-link voltage. However, it might need to be secured in 

most applications because of the electromagnetic torque control. 

Under the condition of limited dc-link voltage, the partial 

control strategy can be applied to secure the modulation in αβ 
subspace for both SVPWM-D3 and the enhanced SVPWM-SV. 

In this approach, the length of 𝑽𝒙𝒚∗  is reduced to 𝐿𝐿𝑀𝑅 but the 

direction of 𝑽𝒙𝒚∗  does not change. Therefore, the control in xy 

subspace can be achieved partially. 

 

  
(a)  (b) 

-40

-20

0

20

40

-40 -20 0 20 40

α-axis

(V)

β-axis (V)

-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15

x-axis

(V)

y-axis (V)

=0.59V

-0.5

0

0.5

1

1.5

D
u

ty
 c

y
cl

es

Time (0.1s/div)

DR DS DT

-6
-4
-2
0
2
4
6

P
h

as
e 

cu
rr

en
ts

 (
A

)

Time (0.1s/div)

iR iS iT

iU iV iW

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i R
, 
i U

(A
) 

Harmonic order 

Zoomed

0

0.04

0.08

5 7

iR iU

-4

-2

0

2

4

i α
 , 

i β
(A

)

Time (0.1s/div)

iα iβ

-0.4

-0.2

0

0.2

0.4

i x
 , 

i y
(A

)

Time (0.1s/div)

ix iy

-40

-20

0

20

40

-40 -20 0 20 40

α-axis

(V)

β-axis (V)

-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15

x-axis

(V)

y-axis (V)

=12.14V



IEEE POWER ELECTRONICS REGULAR PAPER/LETTER/CORRESPONDENCE 
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(g) 

Fig. 33  Experimental results with current compensation in xy subspace using 

enhanced SVPWM-SV under 𝑉𝑑𝑐=70V. (a) Voltage trajectory in αβ subspace. 
(b) Voltage trajectory in xy subspace. (c) Duty cycles. (d) Phase currents. (e) 

Spectrum analysis of Phase R and U currents. (f) Currents in αβ subspace. (g) 
Currents in xy subspace. 

 

V. CONCLUSION 

 

This paper focuses on the modulation restraint analysis of 

three practical SVPWM techniques for dual 3-ph machines 

under vector space decomposition, through defining the linear 

modulation range of xy subspace under an assured modulation 

index of fundamental voltage. It is found that there is no linear 

modulation range in xy subspace for the SVPWM with four 

large voltage vectors, while there is a trade-off between the 

linear modulation range of xy subspace and the modulation 

index of fundamental voltage in αβ subspace for the SVPWM 

with two separate 3-ph modulation frames and the SVPWM 

with synthetic vectors which is further enhanced in this work by 

reducing the device switching frequency. This is particularly 

useful to limit the output limit of current controllers in xy 

subspace (harmonic control capability) under a required 

electromagnetic toque or current, thereby avoiding the 

modulation failure. 

The experimental results in the open-loop voltage injection 

and the closed-loop current compensation demonstrate the 

voltage distortion, failure of current regulation, and harmonics 

caused by the modulation failure when the voltage reference in 

xy subspace exceeds the linear modulation range.  

Besides, the three SVPWM techniques are generally 

representative regarding the voltage vector selection principle, 

so that other SVPWM techniques using similar voltage vector 

selection principles can be analyzed following the procedures 

presented in this paper. Additionally, the SVPWM using 

synthetic vectors is improved to be simpler and more practical 

and accessible for microcontrollers because of no complicated 

switch sequence arrangement and no multiple switching. 
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(f) 

 
(g) 

Fig. 34  Experimental results with current compensation in xy subspace using 

enhanced SVPWM-SV under 𝑉𝑑𝑐=50V. (a) Voltage trajectory in αβ subspace. 
(b) Voltage trajectory in xy subspace. (c) Duty cycles. (d) Phase currents. (e) 

Spectrum analysis of Phase R and U currents (f) Currents in αβ subspace. (g) 

Currents in xy subspace. 
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