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REVIEW

Overcoming roadblocks in the development of vaccines for leishmaniasis
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York, Heslington, York, UK; cMMGH Consulting, Zurich, Switzerland; dDepartment of Epidemiology and Public Health, Swiss Tropical and Public 
Health Institute, Basel, Switzerland; eDepartment of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands

ABSTRACT

Introduction: The leishmaniases represent a group of parasitic diseases caused by infection with one of 
several species of Leishmania parasites. Disease presentation varies because of differences in parasite 
and host genetics and may be influenced by additional factors such as host nutritional status or co- 
infection. Studies in experimental models of Leishmania infection, vaccination of companion animals 
and human epidemiological data suggest that many forms of leishmaniasis could be prevented by 
vaccination, but no vaccines are currently available for human use.
Areas covered: We describe some of the existing roadblocks to the development and implementation 
of an effective leishmaniasis vaccine, based on a review of recent literature found on PubMed, BioRxiv 
and MedRxiv. In addition to discussing scientific unknowns that hinder vaccine candidate identification 
and selection, we explore gaps in knowledge regarding the commercial and public health value 
propositions underpinning vaccine development and provide a route map for future research and 
advocacy.
Expert opinion: Despite significant progress, leishmaniasis vaccine development remains hindered by 
significant gaps in understanding that span the vaccine development pipeline. Increased coordination 
and adoption of a more holistic view to vaccine development will be required to ensure more rapid 
progress in the years ahead.
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1. Introduction

Leishmaniasis is endemic in 95 countries worldwide and the 

cause of significant morbidity and mortality. The notion that 

prevention of leishmaniasis can be achieved through vaccina-

tion is supported by a significant body of experimental and 

epidemiological data, but currently no vaccine exists for 

human use. This review addressed some of the major impedi-

ments to the development of vaccines for human 

leishmaniasis.

1.1. Leishmaniasis: the clinical and public health context

The leishmaniases are a collection of globally important 

neglected diseases caused by several species of the protozoan 

parasite Leishmania. It is estimated that up to 1 billion people 

are at risk of infection [1,2]. Based on the most recent data, 

between 498,000 and 862,000 new cases of all forms of leish-

maniasis occur each year resulting in up to 18,700 deaths and 

1.6 million disability adjusted life years (DALYs) lost [3]. 

Transmitted by the bite of phlebotomine sand flies, the leish-

maniases disproportionately affect populations in low- and 

middle-income countries (LMICs). In addition to the obvious 

effect on health during clinical disease, there is a growing 

appreciation of the impact of long-term sequelae associated 

with different forms of leishmaniasis, notably on mental health 

[4]. For example, the DALY burden associated with cutaneous 

leishmaniasis was estimated to be up to seven-fold higher 

when accounting for major depressive disorder [5]. Similarly, 

leishmaniasis may have major impacts on economic prosperity 

at the individual and community level, through reducing an 

infected individual’s ability to work and the caregiving require-

ments that fall on wider families and communities [6]. In one 

study in Sudan, 75% of households were reported to incur 

catastrophic out-of-pocket costs amounting to up to 40% of 

annual income when a family member required treatment for 

visceral leishmaniasis [7].

Underpinning the geographic distribution and varied clin-

ical presentation of the leishmaniases is a complex evolution-

ary relationship between vector, parasite and host [8]. At least 

19 species of sand fly are capable of supporting the develop-

ment of Leishmania and have been incriminated as vectors, 

and human leishmaniasis has been attributed to at least 20 

species of parasite belonging to two sub genera, Leishmania 

(Leishmania) and Leishmania (Viannia) [8]. Human genetics 

almost certainly plays a role in determining disease outcome, 

though well-evidenced examples are few and far between [9]. 

Other factors such as malnutrition [10], co-infection [11] and 

socio-economic status [12] also contribute, with leishmaniasis 
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described as reflecting a vicious cycle of poverty and infec-

tion [13].

Clinically, the leishmaniases may be loosely sub-divided 

into tegumentary leishmaniasis (affecting the skin and muco-

sae) and visceral leishmaniasis, involving the systemic organ 

systems. With an annual reported incidence of over 600,000 

new cases across 55 countries, the tegumentary leishmaniases 

represent the greatest disease burden. These include localized 

cutaneous leishmaniasis (LCL), disseminated cutaneous leish-

maniasis (DL), diffuse (anergic) cutaneous leishmaniasis (DCL), 

mucocutaneous leishmaniasis (MCL) and post-kala-azar dermal 

leishmaniasis (PKDL). Each is typically but not uniquely asso-

ciated with specific parasite species. For example, L. major and 

L. tropica are responsible for most LCL in Africa, Asia, and the 

Middle East, whereas LCL in the Americas is associated with 

L. mexicana, L. peruviana, L (V.) guyanensis and L. (V.) brazilien-

sis, among others. Associations between parasite species and 

disease presentation are however not prescriptive. In Ethiopia, 

the full spectrum of tegumentary disease is associated with 

infection by L. ethiopica and inter-species hybrids are being 

discovered in many regions of the world [14,15], further com-

plicating this picture.

Brazil, East Africa and South Asia carry the burden of visc-

eral leishmaniasis, a disease that is invariably fatal in the 

absence of treatment and responsible for most Leishmania- 

attributable deaths [2]. PKDL is a chronic stigmatizing skin 

condition that develops in 5–30% of patients successfully 

treated for VL and affects quality of life particularly in young 

adults and females [16]. PKDL patients also provide a reservoir 

for Leishmania transmission and represent a significant risk to 

VL elimination programs [17,18].

1.2. Leishmaniasis – the life cycle and immune control of 

infection

Infection with Leishmania parasites is initiated during sand fly 

bite, with regurgitation of metacyclic promastigotes into the 

host dermis. From a holistic standpoint, transmission involves 

not only the transfer of parasites, but also reflects the biolo-

gical properties of sand fly-derived proteins, parasite-excreted 

phosphoglycans and components of the sand fly microbiota 

[19]. Collectively, this microenvironment is permissible to 

infection of a variety of host cells including neutrophils, mono-

cytes, tissue resident dermal macrophages and stromal cells. 

Whilst conversion to intracellular amastigotes may occur in 

many cells types, replication of amastigotes is more commonly 

associated with parasitism of mononuclear phagocytes where 

it occurs within a prescribed parasitophorous vacuole/phago-

lysosome [20]. This intracellular lifestyle largely dictates the 

nature and efficacy of the ensuing acquired immune response. 

Whilst B cells are activated and can produce copious quanti-

ties of antibodies that have utility in diagnosis, these are 

thought to be ineffective at killing intracellular parasites. 

A role for antibodies in limiting cell to cell transfer and para-

site dissemination has not however been formally disproved. 

Antibodies may also facilitate killing of infected cells through 

antibody-dependent cellular cytotoxicity (ADCC), though 

again this has not been formally demonstrated. In contrast, 

several decades of research in experimental models and in 

patients has firmly established the role of T cell mediated 

immunity in determining the outcome of natural infection 

and as the primary mediator of vaccine-induced protection, 

at least in animal models. Tcell-derived cytokines (notably 

interferon-γ; IFNγ) serve to enhance the innate leishmanicidal 

properties of macrophages and thus promote cure, whereas 

disease progression is associated with cytokines that either 

directly inhibit macrophage leishmanicidal activity or skew 

T-cell differentiation away from IFNγ production. Regulatory 

cytokines, notably interleukin (IL)-10 produced by T cells and 

other cells including macrophages and B cells, play an impor-

tant role in fine-tuning these responses and maintaining 

a balance between immunity and immunopathology. 

Cytotoxicity focused on infected macrophages whose function 

has been depressed by intracellular parasitism may allow pha-

gocytosis by cells with greater leishmanicidal activity, provid-

ing an alternate host protective mechanism. Although both 

CD4+ and CD8+ T cells play a role in these host protective 

pathways, both can also contribute to pathology and most 

aspects of clinical disease are immunopathologic in nature. 

The immunology and immunopathology of leishmaniasis are 

reviewed in detail elsewhere [21–23].

1.3. Vaccines for leishmaniasis – current state of the art

There have been many recent reviews of leishmaniasis vaccine 

development [21,24–30] and only a summary is warranted 

here. First-generation vaccines, comprising whole killed 

Article Highlights

● Identification of correlates of protection and pathogenesis – a key 
gap in scientific understanding requiring greater in-depth immuno-
logical analysis of cohorts, vaccine trials and the use of controlled 
human infection models

● Understanding the role of parasite genomics in determining (poten-
tial) variations in vaccine efficacy - whilst candidate vaccine antigens 
may be shared across species,other genetic determinants of virulence 
may impact on expression of resistancemechanisms induced by 
vaccination

● Impact of host nutritional status / co-infections on vaccine efficacy – 
a somewhat generic roadblock for the development of vaccines for 
use in LMICs, where studies of candidate leishmaniasis vaccines may 
contribute

● Increased need for epidemiological modelling of the impact of vac-
cines on diseaseburden in different geographical settings – this may 
be particularly important for zoonotic leishmaniasis as well as for 
establishing the full burden of the disease and the size of the at-risk 
population. The latter also to serves as a base for a solid estimate of 
vaccine demand.

● Economic modelling as foundation for developing a commercial 
value proposition - beyond determining the effectiveness of vaccines 
for leishmaniasis, it is necessary to economically assess how much 
different countries can pay for the health gains offered. This can 
demonstrate market size and incentivize continued product 
development.

● Advocacy – there is an increasing need to raise awareness of the case 
for a leishmaniasis vaccine, spanning grass roots public engagement 
through to governmental lobbying. Mechanisms and resources for 
increased advocacy exist but have been largely untapped by the 
leishmaniasis vaccine research community.

This box summarizes key points contained in the article.
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Leishmania promastigotes, usually adjuvanted with M. bovis 

BCG and/or Alum, had been shown to have some therapeutic 

promise, but have not been developed further. However, pro-

phylactic vaccine trials in humans have proved disappointing, 

with a recent meta-analysis of clinical data finding evidence of 

immunogenicity but not protection [27]. A new generation of 

live genetically attenuated (GA) vaccines for leishmaniasis 

have now been developed, showing great promise in experi-

mental models [31], including cross protection by a L. major 

centrin−/− vaccine against vector-transmitted L. donovani 

infection in hamsters [32]. These are discussed more fully 

elsewhere [33]. Second-generation subunit vaccines (including 

peptides and proteins in a variety of adjuvant and delivery 

systems [34];) have shown promise in various experimental 

models of cutaneous and visceral leishmaniasis. Complete 

protection (e.g. failure of lesion development or lack of viscer-

alisation) has rarely been demonstrated, however, and few 

such candidates have progressed to human clinical trial. 

Notable in this regard are various incarnations of a poly- 

protein fusion adjuvanted with an oil emulsion developed by 

the Infectious Diseases Research Institute [35]. Subunit vac-

cines for canine VL have shown sufficient evidence of protec-

tion to warrant licensure [36], but their formulations are 

unsuitable for human use. Third generation, or DNA-based 

vaccines have been shown to be effective in rodent and 

simian models [37] and one, the adenovirus-based vaccine 

ChAd63-KH, has been shown to be safe and immunogenic in 

healthy UK volunteers [38] and in Sudanese patients with 

persistent PKDL [39]. The results of a randomized, placebo- 

controlled efficacy trial to assess the therapeutic benefit of 

vaccination with ChAd63-KH in PKDL patients are expected in 

2022. mRNA vaccines, which have risen to the fore as a result 

of the COVID-19 pandemic [40], have yet to be fully explored 

in the context of leishmaniasis, with only in vitro studies on 

candidate antigen expression reported to date [41]. 

Nevertheless, as for vaccine development for malaria and 

other NTDs [42,43], adoption of this technology within leish-

maniasis vaccine development programs is likely to be rapid.

2. Roadblocks along the path to vaccine 
development

2.1. The breadth of the challenge

Developing any new vaccine is a complex, multistep process 

fraught with scientific and practical challenges many of which 

are amplified in the context of vaccines for neglected diseases 

[44,45]. These challenges or roadblocks may be evident at 

various stages along the conventional linear ‘laboratory to 

clinic’ development process, but also arise from knowledge 

gaps that negatively impact on rational vaccine design, man-

ufacture, deployment, and perception of public health value 

(Figure 1). Here, we focus on identifying key roadblocks to 

leishmaniasis vaccine development across this broad spectrum 

of inter-disciplinary activities. We have taken a disease- and 

vaccine-agnostic approach to the discussion, as many of the 

principles apply equally to vaccines targeting VL and CL and in 

either a prophylactic or a therapeutic setting. Where there are 

specific considerations, these have been noted.

2.2. Candidate antigen selection

Typically, candidate vaccine antigens are identified by: i) tar-

geted antigen discovery using immune cells or serum to 

directly identify antigens recognized following parasite expo-

sure [24,30], ii) reverse vaccinology, employing bioinformatic 

analysis of Leishmania proteome or genome data [46–48], iii) 

reverse vaccinology based on an understanding of human 

genetic control of leishmaniasis and peptide elution from 

HLA molecules [49], iv) identifying sand fly salivary compo-

nents that facilitate infection [50,51], and v) serendipity, arising 

as an offshoot of fundamental research on parasite biology 

and/or the host–pathogen interaction. The latter reflects 

a major knowledge gap in the foundational step of vaccine 

antigen selection, namely that we have few if any bona fide 

virulence factors identified in Leishmania. Best characterized 

are the surface lipophosphoglycan (a challenging glycoconju-

gate for vaccine development [52]), the protease gp63 [53] 

and a variety of components of the parasite secreted via 

exosomes [54]. As if by design, Leishmania does not possess 

a single ligand responsible for infection of phagocytes, lacks 

secretory organelles delivering invasion-related proteins, does 

not deliver virulence factors via dedicated pathways and does 

not have a single ‘toxin’ responsible for disease. Thus, key 

elements associated with successful vaccine development for 

other pathogens are absent. Future exploration of the abun-

dant hypothetical proteins encoded in the Leishmania gen-

ome may help identify mechanisms of virulence more directly 

targetable by vaccines and a paradigm shift in how vaccine 

antigens are selected. An alternative explanation for the 

plethora of candidate antigens showing success in animal 

models may be that once triggered, even by limited antigen 

release from a few dead parasites, vaccine-induced protection 

is then mediated relatively nonspecifically, reliant on promis-

cuous killing of parasites by activated macrophages. 

Generation of parasites deficient in select vaccine antigens 

by CRISPR/cas9 engineering provides a route to test this 

hypothesis. Novel methods for epitope selection based on 

high throughput T cell receptor sequencing are now available 

[55] and will likely provide an even more granular view of 

human antigen recognition across the leishmaniasis disease 

spectrum and after cure. Whilst small-scale pilot studies will 

provide initial insights, appropriately designed epidemiologi-

cal studies will be required to link such data to disease out-

come and control for confounding factors affecting immune 

recognition. As parasite immune evasion strategies have been 

honed by their evolution in response to naturally induced 

immune responses, due consideration should also be given 

to identifying novel pathways of immunity that can be 

induced by vaccination without an over-reliance on vaccines 

trying to mimic natural immunity.

Given the background of so many vaccination studies in 

animals and with so many candidate antigens (albeit many 

selected on relatively weak evidence), it is pertinent to ask 

whether more are needed. Do we already have a sufficient 

armory of candidate antigens and what is lacking is the 

capacity to evaluate these across different platforms and in 

models that are sufficiently predictive of human response, or 

indeed in humans themselves? These types of studies 
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(involving harmonized protocols and end points, potentially 

complex models of vector transmission, IP discussions related 

to mixing of platform technologies and the like) are challen-

ging for any single organization to conduct, particularly if 

their core business is discovery science. Or do we have to re- 

set and apply more rigorous selection criteria for candidate 

antigens based on large-scale interrogation of human 

immune responses. Either way, the development of 

a comprehensive framework for identifying and evaluating 

existing and emerging candidate antigens may facilitate 

progress in this regard, e.g. following the model of CEPI 

(https://cepi.net/get_involved/cfps) and/or the Solidarity 

study for COVID-19 treatments (https://www.who.int/emer 

gencies/diseases/novel-coronavirus-2019/global-research-on- 

novel-coronavirus-2019-ncov/solidarity-clinical-trial-for-covid 

-19-treatments). Such a framework could also incorporate 

evidence of target disease burden and vaccine demand as 

selection criteria given that, as discussed below, these factors 

will ultimately determine the public health and commercial 

viability of a vaccine.

Figure 1. Factors influencing the development of leishmaniasis vaccines.

The central column depicts the linear development process from discovery science through preclinical models, manufacturing and into human trials. Not depicted for clarity is the 
significant level of iteration that may occur within the processes depicted in the ‘funnel’ and through preclinical models. Side bars indicate where additional insights are required to develop 
a robust case for progression of a vaccine through to licensure. These may be vaccine candidate agnostic or require insights specific to each candidate. The roadblocks identified at each 
stage are discussed further in the text. CHIM, controlled human infection model; cGMP, current Good Manufacturing Process; CMC, chemistry, manufacturing, and controls; IP, intellectual 
property; $, investment. (Original Figure) 
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2.3. Exploiting parasite genomics to further identify 

candidate antigens and mechanisms of protection

The Leishmania genome contains approximately 8500 genes, 

many encoding ‘hypothetical’ proteins of currently unknown 

function. Genome instability and aneuploidy, together with 

a sexual stage in the sand fly vector that facilitates the generation 

of ‘genetic hybrids’ [56,57] all serve to complicate Leishmania 

genetics. To date, our increased knowledge concerning genetic 

diversity in Leishmania has not been used to directly identify 

candidate vaccine antigens or novel mechanisms of immunity. 

The recently reported ability to generate hybrids in vitro may 

allow use of forward genetics to address these challenges [58]. As 

a result of polycistronic transcription, mRNA abundance in 

Leishmania is controlled by gene dosage [59] and post- 

transcriptionally and/or post-translationally [60]. Transcriptomic 

studies have identified stage-specific differences in mRNA abun-

dance, providing opportunities for reverse genetic approaches to 

identify candidate antigens associated with infective stages of 

the life cycle, e.g. through high throughput DNA vaccine screen-

ing [61]. The development of high throughput protein expres-

sion systems may also facilitate more rapid identification of 

candidate vaccine antigens [62]. Recently, application of micro-

bial genome-wide association studies (mGWAS) led to the iden-

tification of genetic markers associated with miltefosine 

resistance in Leishmania infantum [63] and similar approaches 

could be used to identify potential Leishmania vaccine candidate 

antigens, as mooted for other pathogens [64]. The full power of 

such approaches is only likely to be realized through application 

of knowledge on the epidemiology of disease in different geo-

graphic settings. This will require insights into parasite epide-

miology and transmission, information that will be equally 

valuable in the design of future clinical trials. The recent applica-

tion of CRISPR-cas9 technology in Leishmania provides opportu-

nities to introduce gene modifications/deletions creating 

parasite strains lacking specific antigens, a valuable tool to assess 

the importance of putative virulence factors and to formally 

distinguish between bystander and antigen-specific immunity 

following vaccination. In addition, CRISPR-cas9 underpins the 

development of live GA Leishmania vaccines [33].

Whilst immune mechanisms of protection may vary across 

the spectrum of leishmaniasis, a vaccine with prophylactic 

efficacy in at least most of the major forms of human disease 

would be more desirable than one restricted to a single dis-

ease entity. Hence, there is considerable value in incorporating 

antigens shared across parasite species and/or where HLA 

binding across diverse populations can be demonstrated. 

Cross-species sequence conservation is a criterion for selection 

of most subunit vaccines, perhaps exemplified by KMP-11 

[37,65], and is obviated in the case of a GA live vaccine. In 

some cases, sequencing of clinical isolates has been used to 

fine tune antigens to maximize their chances of immune 

recognition. For example, the gene encoding hydrophilic acy-

lated surface protein (HASP) B (as used in the ChAd63-KH 

vaccine) was engineered to produce a synthetic gene product 

in which the repeat regions retained the diversity and repeat 

structure found in isolates from across East Africa and 

India [65].

2.4. Appropriate use of preclinical and human models

Leishmania can infect and cause disease in a range of mam-

malian host, including mice, hamsters, guinea pigs, rats, and 

primates. Numerous reviews have provided in-depth evalua-

tion of some of the advantages as well as the limitations of 

various models used for the pre-clinical evaluation of vaccine 

candidates [66,67], and a recent review identified >160 vac-

cine studies in the literature using such pre-clinical models 

[68]. Most recently, some of these models, notably in mouse 

[31] and hamster [69], have been refined by the introduction 

of sand fly challenge, accommodating the view that vaccine- 

induced protection may differ between needle inoculation 

and natural challenge [70]. Whilst model refinement is likely 

to impact on their predictive efficacy, two limitations remain. 

First, despite intense study in rodents, understanding of the 

human response to infection remains somewhat limited, with 

many clinical studies remaining focused on a handful of car-

dinal cytokines associated with protective mechanism in leish-

maniasis, but which have been largely lacking in predictive 

power when applied to vaccine studies. A more unbiased 

evaluation of human immune responses would allow for 

a broader perspective on the similarities and differences asso-

ciated with each pre-clinical model. Deep phenotyping of 

Leishmania lesions using bulk or spatially resolved transcrip-

tomics/proteomics have been conducted [71–73] and given 

the relatively modest changes in clinical protocol or tissue 

sampling required for such studies, failure to expand this 

type of research represents a lost opportunity for the field. 

Analysis costs are of course not insignificant. Second, as well 

documented for other vaccines-preventable diseases, lessons 

learnt through clinical trial are essential for effective vaccine 

selection and development. This iterative cycle is at best 

rudimentary for leishmaniasis vaccines. There is an urgent 

need to enhance the throughput of early-stage trials to estab-

lish immunogenicity profiles in humans and associate these 

with outcomes e.g. skin test conversion in a prophylactic set-

ting, or clinical response in a therapeutic setting.

2.5. Advancing clinical trials

A search on clinicaltrials.gov (July 2021) using the terms 

‘malaria’ and ‘vaccine’ reveals 2 early-phase challenge studies, 

171 Phase I studies, 88 Phase II studies and 19 Phase III studies. 

In contrast, a similar search of ‘leishmaniasis’ and vaccine” 

yielded 9 Phase I (mostly polyprotein fusions vaccines), 7 

Phase II (two Alum-ALM+BCG, three ChAd63-KH and two 

with recombinant protein vaccines) and 2 phase III (both 

Alum-ALM+BCG). Only one study (NCT03969134) is currently 

recruiting. Whilst not suggesting that leishmaniasis vaccine 

R&D should be on par with that of malaria, these figures do 

nevertheless illustrate that based on the numbers of candi-

dates tested, the odds are currently stacked against discover-

ing a vaccine for leishmaniasis. Furthermore, the paucity of 

clinical trials of leishmaniasis vaccines negates iterative learn-

ing, of obvious benefit during malaria vaccine development. 

Failed clinical trials [74], if analyzed in depth, can provide vital 
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clues not only on what constitutes a correlate of protection 

but also what does not.

The reasons behind the paucity of clinical trials of leishma-

niasis vaccines is not for want of candidates, but the combined 

effects of lack of funding, lack of commercial incentive and 

clearly defined public health value, poorly predictive models 

and a reluctance on the part of many researchers to embark 

on a road so fraught with uncertainty [30,39,75,76]. G-Finder 

data (https://gfinderdata.policycuresresearch.org/pages/data- 

visualisations/allNeglectedDiseases) indicates a drop in overall 

funding for leishmaniasis from 2% of total global R&D spend 

in 2007–2012 to only 1% from 2013 − 2019 (not including core 

funding for research organizations involved in leishmaniasis 

control) with a marked decline in investment from ~60-80 M p. 

a. in 2007–2010 to almost level funding of $45 M from 2012 

onwards ($41 M in 2019). Since 2007, approx. $79 M was 

earmarked specifically as vaccine research (~12%). In contrast, 

over the same period drug development received ~ $223 M 

(33%). Hence, even within funding dedicated to leishmaniasis, 

vaccine development is apparently not highly prioritized by 

funders. There may be many factors accounting for this, 

including proven past successes and the effectiveness of 

a structured approach to drug development facilitated by 

DNDi and greater investment in drug discovery infrastructure 

for neglected diseases e.g. the Tres Cantos Open Lab 

Foundat ion  (ht tps : / /www.openlabfoundat ion .org/  

AboutTheOpenLab) established by GSK and the Novartis 

Institute for Tropical Diseases (https://www.novartis.com/our- 

science/novartis-institutes-biomedical-research/research- 

locations/novartis-institute-tropical). Furthermore, vaccine 

development remains a highly risky enterprise with a much 

lower expected return than drug development, especially for 

oncology and rare diseases with their high prices. This is even 

more true for diseases primarily affecting low-income settings. 

As a result, private funding (in particular venture capital, often 

critical for the transition into clinical development) is even 

more rarely directed toward those vaccines.

As discussed below, reaping the benefits of discovery 

science for vaccine development will require targeted research 

aimed at building a public health and commercial value pro-

position to support the investment needed to redress this 

imbalance. Our own experience has been that ~$2 M was 

sufficient to develop a new candidate vaccine from concep-

tion through to completion of a first-in-human trial. If com-

bined with human infection models [77,78,79] (and Parkash 

et al., this volume), we estimate that efficacy data on similar 

new vaccines could be achieved for a total development cost 

of under $4 M. Relative to the investment in vaccine antigen 

selection and other aspects of discovery research, this appears 

a rather modest sum. The leishmaniasis vaccine research 

development community should raise the bar and set an 

ambition for at least one new candidate vaccine to enter 

clinical development every other year. We should take advan-

tage of investments being made in vaccine manufacturing 

infrastructure for example by UK Research and Innovation 

[80] and align our plans to benefit from such resources. 

Should more than one vaccine candidate prove safe and 

immunogenic in first-in-human trials, well-designed adaptive 

trials should be employed in controlled human infection 

models and/or Phase II clinical trials to allow comparability 

of performance and ease of down-selection.

2.6. Modeling the impact of vaccines

Unsurprisingly, the epidemiology of leishmaniasis is complex 

and varied, particularly so for VL where epidemic cycles are 

the norm. Mathematical models have played an important role 

in underpinning strategies for the control of NTDs [81] includ-

ing the campaign to eliminate VL from the Asian sub- 

continent [82]. Most research has focused on improving 

understanding of transmission dynamics for example on 

a regional scale as for VL in the Indian subcontinent [83], to 

monitor outbreaks or to assess different transmission modes 

[84]. More recently, spatio-temporal models have been devel-

oped focusing on household or community data [85–87] high-

lighting the heterogeneity of disease incidence and 

transmission. In contrast, few studies have used epidemiologi-

cal modeling to predict how vaccines may serve as effective 

public health measures. For canine VL, models have been used 

to illustrate the potential of vaccines to reduce the basic 

reproductive rate (R0) [88,89]. In our recent work [90], we 

used a set of age-structured deterministic models of VL 

(Erasmus MC) parameterized with data from Bihar, India [91] 

to evaluate the degree to which vaccination could provide an 

additional tool for VL elimination in South Asia. We simulated 

introduction of vaccines with a variety of different character-

istics and found that those which prevented the development 

of clinical VL, or reduced host infectiousness were likely to 

have most significant impact. In addition, we found that 

a vaccine which prevented the development of PKDL would 

be highly effective at sustaining the VL elimination target once 

reached through existing control measures, supporting data 

from spatio-temporal modeling that also suggests PKDL 

patients play a significant role in VL transmission [92].

Further studies of this type, using spatio-temporal models 

that allow assessment of the impact of vaccines targeting 

different aspects of disease natural history, deployed with 

different schedules and with differing efficacy are urgently 

needed. In addition, expanding the modeling of other forms 

of leishmaniasis including zoonotic cutaneous leishmaniasis 

[93,94] should be seen as a priority, so that the potential 

global impact of newly developed vaccines might be more 

fully assessed.

Molecular epidemiology encompassing both parasite and 

host is also likely to be of increasing importance in designing 

appropriate early and late phase clinical trials. We currently do 

not fully understand what dictates variability in clinical cure 

rates and the potential impact of co-infections, nutritional 

status or environmental factors on vaccine responsiveness. 

Biomarkers of disease outcome and treatment response have 

been developed based on whole-blood transcriptional signa-

tures [95] and similar approaches may provide new tools for 

monitoring therapeutic vaccine responses. We recently identi-

fied a myeloid cell associated gene signature associated with 

early cure in a small cohort of patients with persistent PKDL in 

Sudan, though whether this reflects a response to vaccination 

or provides an insight into the immune status of patients likely 

to self-cure remains an open question [39]. Parasite 
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genotyping will likely play an important role in clinical trial 

design, allowing stratification of patients based on parasite 

genotype and avoiding confounding issues related, for exam-

ple, to the presence of genetic hybrids.

2.7. Identifying vaccine demand

It is commonplace to present leishmaniasis as a disease wait-

ing for a vaccine, built on the argument that vaccination is an 

achievable goal when seen from an immunological perspec-

tive [75]. Whilst this is the case, it represents only half of the 

argument when considering vaccine development. To fully 

justify this standpoint also requires an understanding of 

demand, largely reflecting target population size, schedule of 

immunizations, roll out approach, longevity of protection and 

frequency of booster vaccinations. Many of these factors are 

also reflected in the target product profile (TPP) and have 

repercussions for choice of vaccine delivery platform, manu-

facturing approaches and scalability and lead through to the 

design of early phase clinical studies. Although there have 

been attempts to formulate a TPP for a visceral leishmaniasis 

vaccine [96], there have been no substantive attempts to 

model demand, despite the proven usefulness of this 

approach in the development of rotavirus and pneumococcal 

vaccines [97]. This gap is also the result of the absence of an 

agreed, ideally WHO sanctioned global view, and conse-

quently estimate, of the size of the population at risk of 

leishmaniasis (both VL and CL). Thus the size of the problem 

remains unknown.

As a start to addressing this roadblock, we recently devel-

oped an in-depth demand forecast for human leishmaniasis 

vaccines [98]. The approach taken was vaccine-agnostic and 

examined demand for specific ‘use cases,’ namely prophylaxis 

targeting either VL, CL or both, and/or therapeutic targeting 

PKDL. As neither the efficacy nor the required schedule for 

a vaccine has yet to be established, we modeled a range of 

potential scenarios each involving roll out initiated with 

a catch-up campaign but ranging from population coverage 

in regions at risk with multiple booster vaccinations, to more 

targeted vaccination campaigns using a more limited vaccina-

tion schedule. In each setting, we factored into the simulation 

the population at risk and their evolving demographics, allow-

ing for a final determination of demand based on the number 

of doses required. Not surprisingly given the paucity of data 

and the uncertainty surrounding some of our assumptions, 

estimates of demand varied under different simulations con-

ditions, from 310 million to 830 million doses required for 

preventing VL and from 557 million to 1400 million doses 

required for preventing CL, over a 10-year period (2030– 

2040). If a stand-alone vaccine was required for targeting 

PKDL (i.e. vaccines preventing clinical VL did not prevent 

PKDL), such a vaccine might have more limited demand (~ 

330,000 doses over 10 years). These initial results would sug-

gest sufficient demand to support commercial manufacture of 

prophylactic vaccines targeting CL and/or VL, whereas the 

limited demand for a vaccine to prevent or treat PKDL might 

favor philanthropic donors or the use of development path-

ways favoring orphan indications [98]. Similar considerations 

regarding limited demand may also come into play when 

considering the development of vaccines where protection 

might be confined (e.g. by the nature of the vaccine compo-

nents) to specific forms of CL, hence targeting only a region- 

specific portion of the global population at risk. Conversely, 

should a vaccine be also protective in canids, overall demand 

estimates (and affordability, see below) might increase, at least 

for countries where zoonotic VL predominates.

Models of this type can help early-stage vaccine develop-

ment gain an awareness of the impact of, for example, differ-

ing vaccination schedules and to factor this into early-stage 

vaccine design. However, the future refinement of such mod-

els will be dependent on access to more nuanced data on the 

population at risk for the various leishmaniases, and hence 

would require significantly improved modeling of disease 

transmission and the ability to evaluate vaccine impacts 

when deployed in different ways (e.g. ring vaccination as 

a means of outbreak prevention).

2.8. Understanding the affordability (or ability to pay 

for) of vaccines

Complementary to an understanding of likely demand for 

a leishmaniasis vaccine, is an assessment of different countries’ 

health systems abilities to pay for such vaccines, regardless of 

whether this is funded entirely through domestic sources or 

with support from international funders. All countries have 

limited resources with which to meet the health needs of 

their populations. It is, therefore, crucial to know whether mak-

ing funding available for the purchase and deployment of 

leishmaniasis vaccines would generate a positive or negative 

impact on the health of the population when compared with 

other claims upon limited resources. Cost-effectiveness analysis 

(CEA) can inform this assessment and is widely used in many 

areas of health care, including for vaccines, such as Human 

Papilloma virus, Chagas disease, norovirus, and influenza 

[99,100]. It requires estimation of the health effects of vaccines 

(for instance, as measured by DALY’s averted), the full commod-

ity and delivery cost net of resource savings generated by 

avoiding cases of disease. When there is an additional net cost 

imposed on the health system through acquisition of the vac-

cine, it is necessary also to know what health gains could have 

been generated if the equivalent of that net cost was to be 

invested in other interventions and programs (i.e. the health 

opportunity cost). This can be expressed as a ‘cost-effectiveness 

threshold’ reflecting the system’s marginal productivity and 

hence ability to pay [101].

Studies providing estimates for the cost-effectiveness of 

leishmaniasis vaccines are few. Lee et al. [102] used a Markov 

modeling approach to generate an estimate of cost- 

effectiveness for a vaccine targeting VL in Bihar state, India. 

Their analysis, based on 2012 data on VL incidence and treat-

ment costs (including for Amphotericin B, hospitalization, loss 

of earnings etc.), suggested that a vaccine with >50% efficacy 

would be cost-effective at a vaccination cost (including vac-

cine components, accessories, storage, distribution, labor, and 

training) per individual of $350 and one with 25% efficacy 

would still be cost-effective at $100. However, this study did 

not take into account the practical considerations of vaccine 
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introduction, such as gradual rollout and wastage. Further, it 

relied upon very high assessments of how much countries 

could afford to pay, based upon now discredited former 

WHO guidance of using a cost-effectiveness threshold equal 

to a country’s Gross Domestic Product per capita [103] rather 

than the health system’s ability to pay.

More recently, we have projected the economic feasibility 

of a leishmaniasis vaccine based on estimates of cost- 

effectiveness thresholds reflecting health opportunity costs, 

as well as disease incidence and burden of disease [104]. In 

contrast to the approach taken by Lee et al., our simulation 

projects the future value of the vaccine based on a realistic 

timescale of availability and distribution, accounts for time-

scales of vaccine rollout and changes in health systems and is 

an estimate of the full health system cost per vaccinated 

individual that countries can afford [104]. Given current esti-

mates of population at risk, this analysis suggests that for 13 

out of the 24 countries (representing 80% of the global bur-

den of CL and VL) which were analyzed, the projected demand 

for vaccines between 2030 and 2040 could be afforded at 

vaccination costs over $3 per course administered under cost- 

effectiveness considerations, even if the efficacy of the vaccine 

were as low as 50%. Given the expected manufacturing costs 

of $2-3, at least for some candidate vaccines with production 

at scale [105], this implies that the vaccine would be commer-

cially viable, unless the vaccine implementation costs are pro-

hibitive. Furthermore, these calculations may under-estimate 

significantly the ability to pay due to a number of factors, 

notably exclusion of vaccine impacts on transmission 

[106,107], under-reporting of disease incidence [5,108], under- 

appreciation of disease burden [5] and treatments costs due 

to HIV co-infection [109].

Capturing a vaccine’s potential economic value as 

described above will also provide valuable insights spanning 

the development process and that can be used to inform the 

development of TPPs, including generating estimates of man-

ufacturing scale and costs, efficacy targets, refining target 

populations, and target demand.

2.9. Increasing advocacy for leishmaniasis vaccines

Numerous examples exist where the R&D and public health 

and financial communities have come together to facilitate 

change in the vaccine or drug development landscape 

through product development partnerships (PDPs) 

Notable examples include the Medicines for Malaria 

Venture (https://www.mmv.org), the TB Alliance (https:// 

www.tballiance.org) and the International AIDS Vaccine 

Initiative (https://www.iavi.org). Unlike these PDPs that 

focus on a single disease, the Drugs for Neglected 

Diseases Initiative (DNDi) takes a somewhat broader 

approach and has been spectacularly successful, delivering 

eight new treatments for five neglected tropical diseases. 

For leishmaniasis, DNDi have supported the introduction of 

two new treatments for VL and currently have seven new 

chemical entities under development (one preclinical, five 

in Phase I and one in proof of concept). Likewise, the 

European Vaccine Initiative (EVI) (https://www.euvaccine. 

eu) promotes vaccine R&D and supports clinical develop-

ment of vaccines for malaria, leishmaniasis, Shigella, Nipah, 

and Zika viruses, as well as more recently COVID-19. In 

addition, EVI supports cross-cutting platforms providing 

important resources for the vaccine community, including 

coordinating access to critical EU-funded infrastructure for 

clinical trials (TRANSVAC2: https://www.transvac.org/trans 

vac2). Thus, through EVI a framework may already exist 

to expand advocacy for leishmaniasis vaccine development 

without the burden of establishing a new entity.

The importance of making meaningful progress toward 

‘joining the dots’ across these diverse aspects of the vac-

cine development process has been similarly articulated by 

Hotez and colleagues in their broader ‘call for action’ for 

NTD vaccines [76]. The recent pandemic of SARS-CoV-2 has 

highlighted how research communities nationally and 

internationally can be brought together to achieve unpre-

cedented gains in terms of both fundamental knowledge 

and translational impact. For small research communities 

already hampered by fragmentation and limited resources, 

such as those engaged in leishmaniasis vaccine develop-

ment, this must provide a lesson on how future progress 

can be made to overcome the roadblocks of the past.

3. Expert opinion

Developing new measures to control leishmaniasis remains 

as important as ever. In drug development, DNDi has 

helped established a robust pipeline of preclinical candi-

dates and a clear pathway for translational development 

(https://dndi.org/research-development/portfolio). Whilst 

the former is also true of vaccine discovery research, the 

latter is sorely missing. For vaccines against leishmaniasis 

to become a reality, previous roadblocks need to be over-

come, through increasing collaborative working, the devel-

opment of shared resources and harmonized approaches 

to preclinical and clinical evaluation and a commitment to 

the use of innovative cost-effective clinical trials coupled 

with state-of-the-art approaches to identify potential cor-

relates of vaccine-induced immunity. The vaccine R&D pro-

cess needs to be supported and informed by the greater 

use of epidemiological modeling to evaluate the true bur-

den of disease and size of the population at risk, predict 

the benefits of vaccines in different disease settings and 

through the application of economic modeling to ensure 

vaccines being developed are suitable for and will be used 

by the desired market. On this basis, realistic estimates of 

demand need to be continuously updated to inform deci-

sions of vaccine developers and ministers of health. These 

goals are challenging, but by taking the first steps toward 

developing a shared collective ambition, the research com-

munity may generate sufficient leverage to stimulate 

greater funder awareness of the progress made and the 

potential public health benefits of vaccination and help 

secure delivery of the first registered vaccine for human 

leishmaniasis.
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Though prophylactic vaccines may provide maximal 

public health benefit, the role of therapeutic vaccines, 

used alone or in combined immune-chemotherapy, should 

not be ignored and progress here may be facilitated by 

greater integration of drug and vaccine development.

If successful, over the next five years researchers at the fore 

of human and veterinary vaccine development will have 

taken the first steps to developing a collaborative network 

showcasing developments in the field of leishmaniasis vacci-

nology and the evidence-base supporting the argument for 

vaccine manufacture and clinical evaluation as well as for 

country adoption. They will continue to feed the pipeline of 

vaccine candidates through discovery research that exploits 

cutting-edge multi-omics approaches to studying parasite 

biology and disease pathogenesis in humans and animal 

models. There will be established means to efficiently test 

such candidates in validated preclinical models utilizing 

diverse delivery systems (mRNA, viral vectors, adjuvanted 

protein), and a critical and robust approach to vaccine down- 

selection based on an expanded portfolio of human infection 

models. Funding for leishmaniasis vaccine development will 

be sought not in a piecemeal manner, where the likelihood of 

return is low, but through longer and larger awards. These will 

support a collective interdisciplinary vision that is cognisant 

of the role that vaccines play in a broader ‘one health’ solu-

tion to the challenges posed by leishmaniasis. Within 5 years, 

safety, immunogenicity and initial efficacy data should have 

been obtained for at least two vaccines, and up to three new 

candidates will have moved toward clinical development, as 

a mark of renewed commitment and ambition.
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