
This is a repository copy of Agent With Warm Start and Adaptive Dynamic Termination for 
Plane Localization in 3D Ultrasound.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/180016/

Version: Accepted Version

Article:

Yang, X, Dou, H orcid.org/0000-0001-8628-5489, Huang, R et al. (9 more authors) (2021) 
Agent With Warm Start and Adaptive Dynamic Termination for Plane Localization in 3D 
Ultrasound. IEEE Transactions on Medical Imaging, 40 (7). pp. 1950-1961. ISSN 0278-
0062 

https://doi.org/10.1109/tmi.2021.3069663

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1

Agent with Warm Start and Adaptive Dynamic

Termination for Plane Localization in 3D

Ultrasound
Xin Yang, Haoran Dou, Ruobing Huang, Wufeng Xue, Yuhao Huang, Jikuan Qian, Yuanji Zhang, Huanjia Luo,

Huizhi Guo, Tianfu Wang, Yi Xiong, Dong Ni

Abstract—Accurate standard plane (SP) localization is the fun-
damental step for prenatal ultrasound (US) diagnosis. Typically,
dozens of US SPs are collected to determine the clinical diagnosis.
2D US has to perform scanning for each SP, which is time-
consuming and operator-dependent. While 3D US containing
multiple SPs in one shot has the inherent advantages of less
user-dependency and more efficiency. Automatically locating SP
in 3D US is very challenging due to the huge search space
and large fetal posture variations. Our previous study proposed
a deep reinforcement learning (RL) framework with an align-
ment module and active termination to localize SPs in 3D US
automatically. However, termination of agent search in RL is
important and affects the practical deployment. In this study,
we enhance our previous RL framework with a newly designed
adaptive dynamic termination to enable an early stop for the
agent searching, saving at most 67% inference time, thus boosting
the accuracy and efficiency of the RL framework at the same
time. Besides, we validate the effectiveness and generalizability of
our algorithm extensively on our in-house multi-organ datasets
containing 433 fetal brain volumes, 519 fetal abdomen vol-
umes, and 683 uterus volumes. Our approach achieves localiza-
tion error of 2.52mm/10.26◦, 2.48mm/10.39◦, 2.02mm/10.48◦,
2.00mm/14.57◦, 2.61mm/9.71◦, 3.09mm/9.58◦, 1.49mm/7.54◦

for the transcerebellar, transventricular, transthalamic planes
in fetal brain, abdominal plane in fetal abdomen, and mid-
sagittal, transverse and coronal planes in uterus, respectively.
Experimental results show that our method is general and has
the potential to improve the efficiency and standardization of US
scanning.
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I. INTRODUCTION

ULTRASOUND (US) is the primary screening method

for assessing fetal health and development due to its

advantages of being low-cost, real-time and radiation-free [1].

Generally, during the diagnosis, sonographers first scan preg-

nant women to obtain US videos or volumes, then manually

localize standard planes (SPs) from them. Next, they measure

biometrics on the planes and make the diagnosis [2]. Of these,

SP acquisition is vital for subsequent biometric measurement

and diagnosis. However, it is very time-consuming to acquire

nearly thirty SPs during the diagnosis and the process often

requires extensive experiences due to the large difference in

fetal posture and the complexity of SP definitions. Thus,

automatic SP localization is highly expected to improve the

diagnostic efficiency and decrease operator-dependency.

A. Standard Plane Localization

2D and 3D US are two typical modalities used in prenatal

diagnosis. 2D US is easy to use and has better imaging

quality. However, automatic 2D SPs localization may fail in

detecting SPs when they are not scanned by clinicians due to

the invisibility of the fetus and fine position of each plane.

3D US can contain multiple SPs in just a single shot and

has the inherent advantages of less user-dependency and more

efficiency compared with 2D US [3]. Usually, after obtaining

the 3D US, the sonographer shifts and rotates the current view

plane to approach the SP. However, it is very challenging

to manually localize SPs in the volume due to the huge

search space, the large fetal posture variability and the low

image quality. Therefore, the development of automatic meth-

ods for localizing SPs in 3D US would improve diagnostic

efficiency and decrease operator-dependency by providing a

de-specialized scanning method for non-experts.

B. Termination Strategy for Reinforcement Learning

In reinforcement learning (RL), a decision needs to be made

by the agent as to whether to terminate the inference. The

termination conditions are usually pre-set, such as reaching

to the destination in MountainCar [4], pole’s falling up in

CartPole [5], etc. However, the termination conditions are
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often indistinct and can not be precisely determined in many

tasks (e.g., object detection [6], landmark detection [7], SP

localization [8], etc.). Specifically, in the SP localization,

the agent might fail to catch the target SP and continue to

explore without termination condition. One solution was to

extend the action space with a further terminate action [6].

However, enlarging the action space will result in insufficient

training. Several works terminated the agent searching by

detecting oscillation [7] or the lowest Q-value [9]. Although

no additional action was introduced, these approaches still

required the agent to complete inference with maximum step,

which is inefficient. Therefore, a dynamic termination strategy

to ensure the efficacy and efficiency of the SP localization is

highly desirable in the SP localization task.

C. Related Work

In our review of the related work on SP localization, we

first introduce the approaches based on 2D US, and then

we summarize the 3D US methods. Finally, we involve our

previous deep RL-based algorithm.

1) Standard Plane Detection in 2D US: The early

works [10], [11], [12], [13] selected SPs based on conven-

tional machine learning methods (i.e., adaboost, random forest,

support vector machine) through detecting key anatomical

structures or landmarks of each frame in the video. Recent

approaches made use of the convolutional neural network

(CNN) due to its powerful ability in automatically learning

hierarchical representations. The first two studies [14], [15]

built the CNN model with transfer learning technology to

detect fetal SPs. Chen et al. [16] then equipped the CNN

with recurrent neural network (RNN) to capture the spatial-

temporal information to detect three fetal SPs. Similar design

can also be found in [17], [18]. Baumgartner et al. [19]

further proposed a weakly-supervised approach to detect 13

fetal SPs and locate region of interest in each plane. Inspired

by [19], Schlemper et al. [20] incorporated the gated attention

mechanism into the CNN to contextualize local information

for detecting SPs. More recently, some works [21], [22], [23]

proposed to assess US image quality automatically. Wu et

al. [21] first introduced the quality assessment system of

fetal abdominal plane by a cascade CNN. Luo et al. [22]

and Lin et al. [23] then proposed to assess the quality of

fetal brain, abdomen and heart SPs by multi-task learning.

These above methods showed the efficacy of detecting SPs and

assessing image quality by transfer learning, spatial-temporal

information, attention mechanisms and multi-task learning.

However, automatic SP detection in 2D US still suffers from

the high dependence on clinicians’ scanning skills.

2) Standard Plane Localization in 3D US: Different from

2D US, localizing SPs in 3D US usually faces challenges of

low image quality, large data size and huge search space. A

number of works [24], [25], [26], [27] formulated this task

as a cascade pipeline (i.e. from landmark detection to SP

regression) based on conventional machine learning methods.

Although effective by using prior anatomical knowledge, the

performance of these methods is still limited by landmark de-

tection accuracy and testing case-model difference. Recently,

Ryou et al. [28] proposed to locate the fetus by random forest

and detect SPs by CNNs sequentially. Schmidt-Richberg et

al. [29] introduced a deep learning based regression framework

to estimate SP locations. Li et al. [30] proposed a deep

neural network to move the estimated plane to the target SP

iteratively. They further customized a RL-based agent for view

plane searching in MRI volumes [9]. RL is promising for SP

localization in 3D US due to its ability of mimicking experts’

operation and exploring inter-plane dependency by the agent-

environment interaction. However, the RL solution may suffer

from its random initialization and empirical termination when

its environment, such as the US volume, has strong noise,

artifacts and large appearance variations.

To address the issues mentioned above, our previous

study [8] proposed a RL based framework to automatically

localize SPs in 3D US. We equipped the RL framework with a

landmark-aware alignment module for warm start to ensure its

effectiveness. In this module, we leveraged the CNN to detect

anatomical landmarks in the US volume and registered them

to a plane-specific atlas, thus providing strong spatial bounds

and effective initialization for the RL. Furthermore, instead

of passively and empirically terminating the agent inference,

we introduced a learning-based strategy for active termination

of the agent’s interaction procedure through an RNN module.

The learning-based strategy can achieve optimal termination

adaptively, thus improving the accuracy and efficiency of the

localization system.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 1. Sample cases of the studied seven target planes. (a)-(g) correspond
to the transcerebellar, transventricular, transthalamic, abdominal, mid-sagittal,
transverse, and coronal planes, respectively. Particularly, planes (a)-(c) are in
the fetal brain; plane (c) is in the fetal abdomen; and planes (d)-(g) are in the
uterus.

D. Contribution

In this study, we further improve the stableness, robustness

and efficiency of our previous method [8]. This article has

considerable difference compared with the previous confer-

ence paper, which consists of:

• We design an adaptive dynamic termination based on

our previous work [8], which enables an early stop

for the agent searching, resulting in efficiency-steered

localization system. Dynamic termination is an important

yet unsolved problem in reinforcement learning; Our

work provides the first effective solution for this and can

be generalized to other similar scenarios.
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• We validate the effectiveness and the generalizability of

our method on a large multi-organ dataset including 433

fetal brain volumes, 519 fetal abdomen volumes, and 683

uterus volumes. Specifically, we propose to localize seven

SPs (Fig. 1) from multiple organs, in contrast to the two

SPs from one organ [8].

• We have conducted comprehensive experiments to val-

idate the superiority of our method over existing ones

in aspects of SP localization performance, performance

comparison, computation efficiency, effectiveness of the

proposed adaptive termination module, and biometric and

qualitative evaluation of the obtained results from the

aspects of clinical practice.

II. METHOD

As shown in Fig 2, an automatic plane localization system

for 3D US is proposed to imitate the diagnosis of experienced

physicians. This system is implemented with a two-step unified

RL framework. First, a landmark-aware alignment module [8]

is adopted to reduce large search space caused by the complex

intrauterine environment and diverse fetal postures. Then, a

deep reinforcement model searches the target SPs within the

bounded environment resulted from the alignment module.

An adaptive RNN-based termination module is adopted to

dynamically stop the RL agent at the optimal interaction.

A. Deep Reinforcement Learning Framework

In the classical deep RL framework, the agent inter-

acts with the environment E by making successive actions

a ∈ A to maximize the expectation of reward, where A
is the action space. Meanwhile, a plane in 3D space is

modelled as cos(α)x + cos(β)y + cos(γ)z = d, where

n = (cos(α), cos(β), cos(γ)) denotes the unit normal vector

of the plane, and d is its Euclidean distance from the origin. In

this work, the origin is set as the center of an US volume. We

therefore define the main elements of this plane-localization

RL framework as follows:

State: The state is defined as the reconstructed 2D US image

from the volume given the current plane parameters. Since the

reconstructed image size may change, we pad the image to a

square and resize it to 224 × 224. In addition, we concatenate

the two images obtained from the previous two iterations with

the current plane to enrich the state information, which is

similar to [31].

Action: The action is defined as incremental adjustment to

the plane parameters. The complete action space is defined

as A = {±aα,±aβ ,±aγ ,±ad}. Given an action, the plane

parameters are modified accordingly (e.g. αi = αi−1 + aα).

We perform one action to adjust only one plane parameter

with the others unchanged for each iteration. Specifically, the

step size of angle adjustment is aα = aβ = aγ = 1◦, while

the distance step size ad is set as 0.5 voxel in each iteration.

Reward: The reward signal defines the goal in a RL

problem. It instructs the agent what policy should be taken

to select the proper action. In this study, the reward is defined

as whether the agent approaches or moves away from the

target, which can be obtained by r = sgn(‖Pi−1 − Pg‖2 −

‖Pi − Pg‖2), where Pi, Pg indicate the plane parameters

of the predicted plane and the ground truth in iteration i,
sgn(·) is the sign function. The universal set of the calculated

reward signal is: {+1, 0,−1}, where +1 and −1 indicate the

positive and negative movement, respectively, and 0 refers to

no adjustment.

Agent: The agent is a policy component that outputs the

action via interacting with environment. In this study, we adopt

the Q-learning [32] as the solution for the SP localization.

Different from the existing work using a deep neural network

to estimate the Q-value directly [31], the dueling learning [33]

is utilized to encourage the agent to learn which states should

be weighted more and which are redundant in choosing proper

actions. Specifically, the Q-value function is decomposed into

a state value function and a state-dependent action advantage

function, respectively.

As shown in Fig. 3, the deep duel neural network takes

the state as input and outputs the action. In this work, we

use the pre-trained VGG [34] as the convolutional backbone.

The number of features in each layer is 64, 128, 256, 512,

512, respectively. To mitigate the gradient vanishing issue, we

add batch normalization layer [35] after each convolutional

layer in the neural network. The extracted high-level features

are then fed into two independent streams of fully connected

layers to estimate the state value and the state-dependent action

advantage value. The hidden units of fully connected layers

are 512, 128, 1 in the state value estimation stream, and 512,

128, 8 in the state-dependent action value estimation stream,

respectively. The outputs of the two streams are fused to

predict the final Q-value.

Replay Buffer: The replay buffer is a memory container

that stores the transitions of the agent to perform experience

replay for learning procedure. Element transition is typically

represented with a vector (st, at, rt, st+1), where st, at, rt
denote the state, action and reward at the step t. In this study,

the prioritized replay buffer [36] is adopted to improve the

learning efficiency.

Training Loss: As explained above, we decompose the

Q-value function, Q(s, a;w), into two separate estimators

including the state value function V (s;wc, wv) and the state-

dependent action advantage function A(s, a;wc, ws), where s
is the input state of the agent, a is the action, wc, wv, ws

represent the parameters of the convolution layers and the

two streams of fully-connected layers, respectively, and w =
{wc, wv, ws}. The Q-value function of the agent is calculated

as:
Q(s, a;w) =V (s;wc, wv) +A(s, a;wc, ws)

−
1

|A|

∑

a

A(s, a;wc, ws)
(1)

where |A| = 8 denotes the size of the action space. The loss

function for our framework is then defined as:

L(w) = Es,a,r,ŝ∼U(M)[(r + γmax
â

Qtarget(ŝ, Q(ŝ, â;w); w̃)

−Q(s, a;w))2]
(2)

where γ is a discount factor to weight future rewards; ŝ and

â are the state and the action in next step; U(M) represents
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Fig. 2. Schematic view of our proposed framework. Our framework contains three modules: 1) the SP localization based on deep RL (middle), 2) the landmark-
aware alignment to provide a warm start for efficient agent searching (left), and 3) the learning-based adaptive termination to improve the localization efficiency
and accuracy (right).

Fig. 3. Architecture of our agent neural network. Blue, green and yellow
rectangles represent convolutional layers global average pooling and fully
connected layers, respectively.

uniform data sampling from the experience replay memory M ;

w and w̃ are the parameters of Q network (Q(w)) and target

Q network (Qtarget(w̃)).

B. Landmark-aware Plane Alignment for Warm Start

Fig. 4. Pipeline of our landmark-aware alignment module. We first select the
plane-specific atlas from the training dataset. Then, a pre-trained detection
network is employed to predict the landmarks. Finally, we obtain the bounded
environment by aligning the testing volume with the atlas based on the
landmarks. The bounded environment includes the aligned volume and the
initial position of the standard plane.

Due to the low image quality, large data size and diverse

fetal postures, it is very challenging to localize SPs in 3D US.

Moreover, the random state initialization used in [9] often fails

in localizing SPs because of the noisy 3D US environment.

Therefore, a landmark-aware alignment module was proposed

in our previous study [8] as a dedicated warm-start of the

searching process via anatomical prior knowledge. A more

concrete processing pipeline is detailed in this section.

This landmark-aware module aligns US volumes to the

atlas space, thus reducing the diversity of fetal posture and

US acquisition. As shown in Fig. 4, our proposed alignment

module consists of two steps, namely plane-specific atlas

construction and testing volume-atlas alignment. The details

are described as follow.

Algorithm 1 Atlas Selection

1: for all i ∈ {1, ..., N} do
2: Refer to the US volume Vi as the proxy atlas.
3: for all j ∈ {1, ..., N} do
4: if i == j then
5: continue
6: else
7: T i

j ← transformation matrix from Vj to Vi.
8: Perform rigid registration from Vj to Vi.

9:
~nj

P ← compute registered normal vector of plane P .

10: djP ← compute the distance from the origin to the plane
P in registered Vj .

11: errori,j = Θ1(Ti
j × ~nj

P , ~n
i
P )+ ‖ d

j

P − diP ‖1
12: end if
13: end for
14: errori =

1

N−1

∑N−1

j
errori,j

15: end for
16: return The US volume with the minimum error.

• Plane-specific Atlas Construction: In this study, the atlas

is constructed to initialize the SP localization in the testing

volume through landmark-based registration. Hence, the atlas

selected from the training dataset must contain both reference

1Θ calculates the angle between plane normal vectors, referred to equation 5
in the Section III-C.



5

landmarks for registration and SP parameters for plane initial-

ization. As shown in Fig. 4, instead of selecting a common

anatomical model for all SPs [3], [26], we propose to select

specific atlas for each SP to improve the localization accuracy.

In order to ensure the initialization effectiveness, ideally, the

specific SP of the selected atlas should be as close to the

SPs of other training volumes as possible. Algorithm 1 shows

the determination of the plane-specific atlas volume from

the training dataset based on minimum plane error (i.e. sum

of the angle and distance between two planes). During the

training stage, each volume is first taken as an initialized proxy

atlas, then performing landmark-based rigid registration with

the remaining volumes. According to the mean plane error

measured between the linear-registered planes and ground

truth for each proxy atlas, volume with the minimum error

is chosen as the final atlas.

• Testing Volume-atlas Alignment: Our alignment module

is based on landmark detection and matching. Unlike the

direct regression, we convert the landmark detection as a

heatmap regression task [37] to avoid learning a highly abstract

mapping function (i.e. feature representations to landmark

coordinates). We trained a customized 3D U-net [38] with the

L2-norm regression loss, denoted as:

L =
1

N

N
∑

n=1

(

Hi − Ĥi

)2
(3)

where N = 3 denotes the number of landmarks, and Hi,

Ĥi represent the ith predicted landmark heatmap and ground

truth landmark heatmap, respectively. These ground truth

heatmaps are created by placing a Gaussian kernel at the

corresponding landmark location. During inference, we pass

the test volumes to the landmark detector to get predicted

landmark heatmaps. The coordinates with the highest value in

the landmark heatmap are selected as the final prediction. We

map the volume to the atlas space through the transform matrix

calculated by the landmarks to create a bounded environment

for the agent. Furthermore, we utilize the annotated target

plane function of the atlas as the initial starting plane function

for the agent.

C. Adaptive Dynamic Termination

Compared with the current empirical termination strat-

egy [7], [9], our previous work [8] indicated that a learning-

based termination strategy can improve the planning perfor-

mance in deep RL. However, it requires the whole Q-value

sequence obtained by maximum iterations to determine the

final termination, which is inefficient. In this study, we update

the active termination strategy into the adaptive dynamic

termination, which is proposed in deep RL framework for the

first time.

Specifically, considering the sequential characteristics of

the iterative interaction, as shown in Fig. 2, we model the

mapping between the Q-value sequence and optimal step

with an additional RNN model. The Q-value is defined as

qt = {q1, qi, ..., q8}, consisting of 8 action candidates at

the iteration t; and the Q-value sequence refers to a time-

sequential matrix Q = [q1,q2, ...,qn], where n denotes

the index of iteration step. Taking the Q-value sequence as

input, the RNN model can learn the optimal termination step

based on the highest Angle and Distance Improvement (ADI).2

During training, we randomly sampled the sub-sequences from

the Q-value sequence as the training data and denoted the

highest ADI during the sampling interval as the ground truth.

Unlike the previous studies [8], [9], we design a dynamic

termination strategy to improve the inference efficiency of

the reinforcement framework. Specifically, our RNN model

performs one inference every two iterations based on the

current zero-padding Q-value sequence, enabling an early stop

at the iteration step having the first three repeated predictions.

Our previous study [8] used Mean Absolute Error (MAE)

loss function to train the RNN in the termination module.

However, it has constant gradient of back-propagation and lack

of measuring the fine-grained error. This study replaces it with

the Mean Square Error (MSE) loss function to relive this and

target a more stable training procedure. Since ground truth, i.e.

optimal termination step, is usually larger than 1 (e.g. 10∼75),

the conventional MSE loss function may struggle to converge

in training due to the excessive gradient. We adopt the MSE

loss function with a balance hyper-parameter, and defined as:

LMSE (w) = ‖f(x;w)− δGi‖
2
2 (4)

where w is the RNN parameters, x is the input sequence of the

RNN, f (x;w) represents the RNN network, and G denotes

the optimal termination step. The balance hyper-parameter δ
= 0.01 can normalize the value range of learned steps to [0,

0.75] approximately, thus simplifying the training process. The

RNN model is trained using inference results obtained from

training volumes.

III. EXPERIMENT CONFIGURATIONS

A. Implementation Details

We implemented our framework in PyTorch [39], using a

standard PC with an NVIDIA Titan XP GPU. We trained the

whole framework through Adam optimizer [40] with a learning

rate of 5e-5 and a batch size of 4 for 100 epochs, which

cost about 4 days. We set the discount factor γ in the loss

function (Equation 2) as 0.9. The size of the Replay Buffer

was set as 15000. The target Q network copied the parameters

of the Q network every 1500 iterations. The maximum number

of iterations in one episode was set as 75 in fetal dataset

and 30 in uterus dataset to reserve enough moving space

for agent exploration. The initial ǫ for ǫ − greedy action

selection strategy [17] was set as 0.6 at first and multiplied

by 1.01 every 10000 iterations until 0.95 during training.

The RNN variants, i.e. vanilla RNN and Long Short Term

Memory (LSTM) [41], were trained for 100 epochs, using

mini-batch Stochastic Gradient Descent (SGD) [42] optimizer

with a learning rate of 1e-4 and batch size of 100, which

costed about 45 mins. The number of hidden units was 64

and that of the RNN layers is 2. The starting plane function

for training the framework was randomly initialized around the

2The definition of ADI refers to equation 7 in the Section III-C.
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ground truth plane within an angle range of 25◦ and distance

range of 10 mm to ensure the agent can explore enough space

within the US volume. For landmark detection, we trained the

network using Adam optimizer with a batch size of 1 and a

learning rate of 0.001 for 40 epochs.

We chose the hyper-parameters based on the validation set

and evaluate the performance of our method with several

metrics on the held-out test sets. In specific, we trained the

model for each hyper-parameters with different magnitudes

and evaluate the performance on the validation dataset. We

selected the value of hyper-parameters with the best validation

performance as the default setup for the training phase. In this

study, three high-impact hyper-parameters including the size

of Replay Buffer, γ and ǫ were searched.

B. Datasets

We validated the proposed framework using three distinct

3D US datasets, including fetal brain, fetal abdomen and

uterus. Specifically, we aim to localize the three SPs: the

transventricular (TV), the transthalamic (TT) and the tran-

scerebellar (TC) SPs in the fetal brain, the fetal abdominal

(AM) SP in the fetal abdomen, and the mid-sagittal (S), the

transverse (T) and the coronal (C) SPs in uterus, respectively.

We select three/four landmarks from each fetal/uterus US

volume: the genu and the splenium of the corpus callosum,

and the center of cerebellar vermis for fetal brain volumes;

the umbilical vein entrance, the centrum, and the neck of

the gallbladder for fetal abdomen volumes; two endometrial

uterine horns, endometrial uterine bottom and uterine wall

bottom for uterus volumes. We collected our dataset with

1635 prenatal 3D US volumes (433 fetal brains, 519 fetal

abdomens and 683 uterus US volumes). Approved by the local

Institutional Review Board, all volumes were anonymized and

obtained by experts using a Mindray DC-9 ultrasound system

with an integrated 3D probe. Average volume size of our

dataset is 270 × 207 × 235 in fetus and 261 × 175 × 277
in uterus with a unified voxel size of 0.5 × 0.5 × 0.5mm3.

Four sonographers with 5-year experience provided manual

annotations of landmarks and SPs for all the volumes. All the

annotation results were double-checked under strict quality

control from a senior expert with 20-year experience. We

randomly split our dataset for training, validating, testing of

313, 20, 100 in fetal brain, 389, 20, 110 in the fetal abdomen,

and 519, 20, 144 in uterus.

C. Evaluation Criteria

In this study, we used three criteria to evaluate the localiza-

tion accuracy of the predicted planes compared with the target

plane. First, the angle and distance deviation between the two

are estimated. Formally, we defined:

Ang = arccos
np · ng

|np| |ng|
(5)

Dis = |dp − dg| (6)

where the np, ng represent the normal of the predict plane and

target plane, the dp, dg represent the distance from the volume

origin to the predicted plane, and that to the ground truth

plane. It is noted that the Ang and Dis are evaluated based

on the plane sampling function, i.e., cos(α)x + cos(β)y +
cos(γ)z = d, with an effective voxel size of 0.5 mm3/voxel.
Moreover, it is also important to examine whether these two

planes are visually alike. Therefore, Peak Structural Similarity

(SSIM) [43] was leveraged to measure the image similarity of

the planes.

Besides, the ADI in iteration t is defined as the sum of the

cumulative changes of distance and angle from the start plane,

which is as follows:

ADI = (Angt −Ang0) + (Dist −Dis0) (7)

IV. RESULTS

In this section, we conducted extensive experiments on the

three dataset to validate the effectiveness and generalizabil-

ity of our method. These experiments include performance

comparison with state-of-the-art methods, effectiveness of the

landmark-align module, effectiveness of the adaptive dynamic

termination module, statistical significance test, clinical bio-

metric evaluation, and qualitative evaluation.

A. Comparison with state-of-the-art methods

To examine the effectiveness of our proposed method in

standard plane localization, we conducted a comparison ex-

periment with the classical learning-based regression method,

denoted as Regression, the current state-of-the-art Automatic

View Planning method [9], denoted as AVP, and our previous

method [8], denoted as RL-US. To achieve a fair compari-

son, we used the default plane initialization strategy of the

Regression and AVP, and re-trained all the two compared

models using the public implementations. We also adjusted

the training parameters to obtain the best localization results.

As shown in Table I and II, it can be observed that our method

achieves the highest accuracy compared with the alternatives

in almost all of the metrics. This indicates the superior ability

of our method in standard plane localization tasks.

B. Impacts of the landmark-align module

Fig. 5. The 3D visualization of fetal brain landmarks distribution of pre- and
post-alignment. Different color points represent different category landmarks.

To verify the impact of the landmark-aware alignment mod-

ule of the proposed approach, we compared the performance

of the proposed framework with and without this module. In

the Pre-Regist method, we set the agent with random starting
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TABLE I
COMPARISON RESULTS OF OUR PROPOSED METHOD AND OTHER EXISTING METHODS IN FETAL US (MEAN±STD, BEST RESULTS ARE HIGHLIGHTED IN

BOLD).

Method
TC TV TT AM

Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM

Regression 12.44±7.78 2.18±2.12 0.634±0.157 13.62±4.98 5.52±4.02 0.636±0.136 13.87±11.77 2.81±2.16 0.760±0.141 17.48±12.45 6.24±4.77 0.758±0.081

AVP [9] 48.42±12.45 10.55±7.46 0.580±0.047 48.31±18.25 14.64±10.20 0.586±0.054 57.35±12.31 9.92±6.29 0.554±0.088 46.52±13.54 7.71±7.01 0.649±0.071

RL-US [8] 10.54±9.45 2.55±2.45 0.639±0.131 10.40±8.46 2.65±1.62 0.655±0.131 10.37±8.08 3.46±2.89 0.769±0.087 14.84±8.22 2.42±1.96 0.784-0.080

Ours 10.26±7.25 2.52±2.13 0.640±0.144 10.39±4.03 2.48±1.27 0.659±0.135 10.48±5.80 2.02±1.33 0.783±0.060 14.57±8.50 2.00±1.64 0.790±0.074

TABLE II
COMPARISON RESULTS OF OUR PROPOSED METHOD AND OTHER EXISTING METHODS IN UTERUS US (MEAN±STD, BEST RESULTS ARE HIGHLIGHTED IN

BOLD).

Method
S T C

Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM

Regression 10.27±11.40 3.34±1.30 0.835±0.092 10.57±8.84 3.03±2.71 0.693±0.112 9.07±7.85 2.23±1.11 0.605±0.094

AVP [9] 44.12±14.00 15.27±9.87 0.736±0.066 66.71±17.31 16.48±13.02 0.575±0.073 53.21±13.21 13.41±14.47 0.522±0.064

RL-US [8] 9.89±9.73 2.62±2.99 0.886±0.061 9.59±8.24 3.08±2.40 0.773±0.094 7.50±6.69 1.56±1.48 0.697±0.096

Ours 9.71±9.69 2.61±3.02 0.888±0.062 9.58±8.08 3.09±2.38 0.773±0.092 7.54±6.64 1.49±1.47 0.699±0.098

plane function like [9] and choose the lowest Q-value [9]

as the termination step. The Regist method represents the

framework equipped with the alignment module but without

agent searching. The Post-Regist method denotes the searching

result of the agent with a warm-up initialization with the align-

ment module. We also chose the lowest Q-value termination

strategy to implement the Post-Regist for a fair comparison.

As shown in the Table III and IV, the accuracy of the Pre-

Regist method is significantly lower than that of the Regist and

the Post-Regist method. This proves that the landmark-aware

alignment module can improve the plane detection accuracy

consistently and substantially. Figure 5 provides visualization

of the 3D spatial distribution of the fetal brain landmarks pre-

/post-alignment. It can be observed that all the landmarks are

mapped to a similar spatial position, which indicates that all

the fetal postures are roughly aligned.

C. Analysis of adaptive dynamic termination

To demonstrate the impact of the proposed adaptive dy-

namic termination (ADT) strategy, we performed compari-

son experiments with existing popular strategies such as the

termination with max iterations (Max-Step), the lowest Q

Value (Low Q-Value [9]), and the active termination [8] with

LSTM (AT-LSTM). We also compared with our proposed

ADT with different backbone network including Multi-layer

Perceptron (ADT-MLP), vanilla RNN (ADT-RNN) and LSTM

(ADT-LSTM). The superscript ∗ represents the model was

trained with the normalized MSE loss function (LMSE , Eq. 4)

As shown in Table V and VI, equipped with the adaptive dy-

namic termination strategy, the agent was able to avoid being

trapped into an inferior local minimum and achieved better

performance. Furthermore, from Table VII, we can observe

that our proposed dynamic termination can save approximately

67% inference time at most, thus improving the efficiency of

the reinforcement framework.

Figure 6 displays the training curves and validation per-

formance of the same model trained with the MAE loss [8]

and the normalized MSE loss, respectively. It shows that the

MSE loss can facilitate the model to obtain a more stable

Fig. 6. The training curves and validation performance of the termination
module trained with MAE loss and modified M-MSE loss. The top is the loss
curves and the bottom is the curves of sum of angle and distance in validation.
We performed the training and validation sequentially every epoch, where we
obtained the loss and validation performance curves.

convergence and lower Ang+Dis in validation as comparison

to the MAE loss. This indicates the effectiveness of the LMSE

in simplifying the training of the termination module.

As shown in Table VIII, we performed the ablation study

of the number of layers and hidden units of the LSTM in fetal

brain dataset. We can observe that the LSTM with 2 layers
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TABLE III
COMPARISON RESULTS OF THE ABLATION STUDY FOR ANALYSIS OF WARM START IN FETAL US (MEAN±STD, BEST RESULTS ARE HIGHLIGHTED IN

BOLD).

Method
TC TV TT AM

Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM

Pre-Regist 48.42±12.45 10.55±7.46 0.580±0.047 48.31±18.25 14.64±10.20 0.586±0.054 57.35±12.31 9.92±6.29 0.554±0.088 46.52±13.54 7.71±7.01 0.649±0.071

Regist 14.28±7.62 3.48±2.41 0.609±0.129 13.96±4.33 2.39±1.34 0.642±0.120 14.36±13.41 2.11±1.41 0.767±0.079 17.31±12.04 2.57±2.34 0.773±0.080

Post-Regist 10.98±9.86 2.88±2.46 0.636±0.144 11.30±10.80 2.66±1.69 0.649±0.128 12.28±8.77 2.62±2.50 0.769±0.071 16.05±8.93 2.24±2.10 0.776±0.079

TABLE IV
COMPARISON RESULTS OF THE ABLATION STUDY FOR ANALYSIS OF WARM START IN UTERUS US (MEAN±STD, BEST RESULTS ARE HIGHLIGHTED IN

BOLD).

Method
S T C

Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM

Pre-Regist 44.12±14.00 15.27±9.87 0.736±0.066 66.71±17.31 16.48±13.02 0.575±0.073 53.21±13.21 13.41±14.47 0.522±0.064

Regist 11.55±9.99 2.86±3.39 0.814±0.082 9.96±7.18 3.29±2.60 0.671±0.103 8.50±6.73 1.54±1.60 0.545±0.127

Post-Regist 9.85±9.74 2.56±3.03 0.884±0.066 9.72±8.08 3.10±2.55 0.770±0.105 7.48±6.43 1.70±1.56 0.686±0.093

TABLE V
COMPARISON RESULTS OF THE ABLATION STUDY FOR ANALYSIS OF TERMINATION STRATEGY IN FETAL US (MEAN±STD, BEST RESULTS ARE

HIGHLIGHTED IN BOLD).

Method
TC TV TT AM

Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM

Max-Step 12.73±11.33 3.74±3.33 0.619±0.135 12.17±11.54 2.80±1.85 0.645±0.127 17.29±14.56 4.76±5.17 0.727±0.091 18.97±11.93 2.90±3.10 0.755±0.095

Low Q-Value [9] 10.98±9.86 2.88±2.46 0.636±0.144 11.30±10.80 2.66±1.69 0.649±0.128 12.28±8.77 2.62±2.50 0.769±0.071 16.05±8.93 2.24±2.10 0.776±0.079

AT-LSTM [8] 10.54±9.45 2.55±2.45 0.639±0.131 10.40±8.46 2.65±1.62 0.655±0.131 10.37±8.08 3.46±2.89 0.769±0.087 14.84±8.22 2.42±1.96 0.784-0.080

ADT-MLP 10.39±7.33 2.55±2.15 0.640±0.145 10.97±4.56 2.57±1.49 0.653±0.133 11.90±7.50 3.20±3.43 0.764±0.074 15.30±8.27 2.34±2.18 0.779±0.081

ADT-RNN 10.63±7.24 2.66±2.19 0.640±0.142 10.90±4.46 2.55±1.47 0.655±0.134 11.45±7.18 2.78±3.12 0.774±0.068 15.05±0.77 2.26±2.06 0.781±0.077

ADT-LSTM 10.49±7.33 2.56±2.14 0.639±0.144 10.60±4.30 2.49±1.44 0.657±0.136 10.84±6.23 2.64±2.88 0.775±0.066 14.92±8.08 2.28±2.15 0.784±0.076

ADT-LSTM∗ 10.26±7.25 2.52±2.13 0.640±0.144 10.39±4.03 2.48±1.27 0.659±0.135 10.48±5.80 2.02±1.33 0.783±0.060 14.57±8.50 2.00±1.64 0.790±0.074

TABLE VI
COMPARISON RESULTS OF THE ABLATION STUDY FOR ANALYSIS OF TERMINATION STRATEGY IN UTERUS US (MEAN±STD, BEST RESULTS ARE

HIGHLIGHTED IN BOLD).

Method
S T C

Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM

Max-Step 9.82±9.12 2.70±3.21 0.877±0.070 9.83±8.72 3.11±2.66 0.770±0.101 8.14±6.84 1.99±1.67 0.670±0.090

Low Q-Value [9] 9.85±9.74 2.56±3.13 0.884±0.066 9.72±8.08 3.10±2.55 0.770±0.105 7.48±6.43 1.70±1.56 0.686±0.093

AT-LSTM [8] 9.89±9.73 2.62±2.99 0.886±0.061 9.59±8.24 3.08±2.40 0.773±0.094 7.50±6.69 1.56±1.48 0.697±0.096

ADT-MLP 9.89±9.76 2.63±2.99 0.885±0.060 9.70±8.43 3.07±2.47 0.772±0.097 7.69±6.65 1.59±1.50 0.698±0.094

ADT-RNN 9.85±9.76 2.62±3.00 0.886±0.061 9.66±8.40 3.08±2.44 0.773±0.097 7.65±6.63 1.52±1.48 0.697±0.093

ADT-LSTM 10.03±9.73 2.63±2.97 0.885±0.059 9.60±8.10 3.09±2.39 0.773±0.093 7.54±6.60 1.53±1.47 0.698±0.096

ADT-LSTM∗ 9.71±9.69 2.61±3.02 0.888±0.062 9.58±8.08 3.09±2.38 0.773±0.092 7.54±6.64 1.49±1.47 0.699±0.098

TABLE VII
AVERAGE TERMINATION STEP OF THE ADAPTIVE DYNAMIC

TERMINATION AND ACTIVE TERMINATION

Plane
Termination Step
AT ADT

TC 75 39.0
TV 75 24.8
TT 75 18.8
AM 75 20.3

S 30 18.0
T 30 27.8
C 30 7.5

and 64 hidden units outperforms those with other settings.

D. Significant Difference Analysis

To investigate if the difference between methods were sta-

tistically significant, we performed paired t-tests between the

results of our methods and Regression, AVP [9], Registration.

These tests were conducted for all of the performance metrics

including Angle, Distance and SSIM. We set the significance

level as 0.05. The results are shown in the Table IX and X. The

results of the comparisons and tests in Tables I-IV and IX-X

indicate that our method performed best among the state-of-

art methods (Regression, AVP [9]) and Registration. Although

our method outperforms the AT-LSTM [8] without significant

difference, our method could save at most 67 % inference time

as shown in Table VII.

E. Clinical biometric evaluation from SP

In this section, we further explore whether the detected

planes can provide accurate biometrics that are consistent with

the ones obtained in manually acquired planes, which are more

of clinical concerns. To obtain those on the predicted planes

(TT and AM), a pre-trained DeepLabv3+ [44] was used to

perform segmentation of fetal head and abdomen. Then two

smallest ellipses enclosing the segmentation map in predicted

plane and the annotated ground truth in target plane are

generated for the fetal head or abdominal circumference. We
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TABLE VIII
ABLATION STUDY FOR THE NUMBER OF LAYERS AND HIDDEN UINTS OF THE LSTM IN FETAL BRAIN DATASET.

Num of layers Num of units
TC TV TT

Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM

1 64 10.37±7.14 2.71±2.11 0.641±0.145 10.67±3.72 2.44±1.48 0.657±0.131 10.90±6.17 2.70±2.98 0.774±0.066

2 64 10.36±7.26 2.56±2.14 0.638±0.143 10.39±4.03 2.48±1.27 0.659±0.135 10.72±6.18 2.59±2.77 0.777±0.064

4 64 10.41±7.29 2.52±2.11 0.637±0.141 10.49±4.01 2.50±1.28 0.658±0.131 10.78±6.05 2.61±2.92 0.778±0.064

2 16 10.41±7.28 2.55±2.14 0.638±0.142 10.57±3.79 2.49±1.44 0.658±0.134 11.32±6.89 2.55±2.32 0.777±0.067

2 256 10.50±7.33 2.56±2.13 0.635±0.140 10.51±3.84 2.49±1.43 0.657±0.134 10.88±5.97 2.61±2.88 0.777±0.064

TABLE IX
p-VALUES OF PAIRWISE t-TESTS BETWEEN THE RESULTS OF EACH METHOD AND OUR METHOD FOR THE THREE PERFORMANCE METRICS IN THE FETAL

DATASET. THE BOLDED RESULTS REPRESENT SIGNIFICANT DIFFERENCE

Metric
TC TV TT AM

Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM

Ours vs. Regression 10
−4 0.003 0.138 0.003 10

−15 0.282 10
−4 0.008 0.301 0.006 10

−25 0.161

Ours vs. AVP [9] 10
−56

10
−45 0.003 10

−57
10

−56 0.001 10
−64

10
−44

10
−18

10
−49

10
−32

10
−10

Ours vs. Registration 10
−4 0.003 0.162 0.001 0.454 0.399 10

−4 0.049 0.329 0.005 0.048 0.399

TABLE X
p-VALUES OF PAIRWISE t-TESTS BETWEEN THE RESULTS OF EACH METHOD AND OUR METHOD FOR THE THREE PERFORMANCE METRICS IN THE UTERUS

DATASET. THE BOLDED RESULTS REPRESENT SIGNIFICANT DIFFERENCE

Metric
S T C

Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM Ang(◦) Dis(mm) SSIM

Ours vs. Regression 0.603 0.009 0.005 0.276 0.848 10
−5 0.130 0.025 10

−6

Ours vs. AVP [9] 10
−49

10
−63

10
−11

10
−71

10
−63

10
−15

10
−61

10
−58

10
−14

Ours vs. Registration 0.047 0.359 10
−4 0.720 0.495 10

−6 0.329 0.877 10
−10

TABLE XI
SEGMENTATION PERFORMANCE AND THE QUANTITATIVE ANALYSIS OF

THE CLINICAL ASSESSMENT.

Plane Dice A-Error(mm) R-Error(%) p-value

TT 0.971±0.009 1.125±1.431 2.05±1.56 0.22
AM 0.941±0.047 3.608±3.462 3.25±4.44 0.13

used three metrics to evaluate the performance of the biometric

measurements including dice score (Dice), absolute error (A-

Error) and relative error (R-Error) of the circumferences from

the prediction and the annotation. As shown in Table XI,

the proposed method gained good performance in Dice score.

Meanwhile, the absolute error and relative error of fetal head

circumference and abdominal circumference of our method are

1.125mm, 2.05% and 3.608mm, 3.25%, respectively. The p-

values in Table XI also indicate our predicted biometrics has

no significant difference with the annotations. This shows a

similar performance with human-level performance [45], [46]

and suggests that the proposed method has potential to be

applied in real clinical setting.

F. Qualitative evaluation

Figure 7 and 8 provide visualization results of the proposed

method. It shows the prediction plane, the ground truth, the

termination curve and the 3D spatial visualization of four

randomly selected cases. It can be observed that the predictions

are spatially close and visually similar to the ground truth.

Furthermore, the proposed method can reach an ideal stopping

point consistently. Both the maximum iteration and lowest

Q values termination strategies fail in spotting the optimal

termination step.

V. DISCUSSIONS

Although RL is powerful in localizing view plane in

MRI [9], it failed to localize SPs localization in 3D US.

Without an alignment module and early-stop setup, the AVP

needs a careful design for agent training and inference in

a vast search space. Thus it is easier for learning-based

localization methods to locate the SP within a limited search

space. This might explain the relative low performance of

[9] in Table III and Table IV. The proposed landmark-aware

alignment module was devised based on the exact concern.

It aligns all the volumes to the same atlas space using rigid

registration, which can constrain the environment like that in

MRI images. Furthermore, our proposed alignment method

can be regarded as a prior-based initialization of the agent in

testing US volumes, which reduces the search space into a

fine-grained subspace.

A proper termination strategy is essential in deep RL while

it is difficult to estimate the optimal termination step because

the agent often gets trapped in the local minimum during the

iterative searching process. Prior studies have proposed several

different termination strategies for such applications [7], [9].

However, as shown in Table V and VI, Fig. 7, and 8, the afore-

mentioned experimental or previous knowledge-based termi-

nation strategies failed in estimating the optimal termination

step in this challenging task. Meanwhile, the prior studies [9],

[8] default the agent terminates at the fixed maximum step,

causing inefficiency of the localization system. Our previous

study designed a learning-based active termination using RNN

to learn the mapping between the Q-value sequence and the

optimal step. However, it requires waiting for the agent to

finish inference as well. In contrast, our termination module

enables the dynamic agent searching with the RNN to learn
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Fig. 7. Visualization of our method in sampled SPs of the US fetal dataset. (a) is the transcerebellar SP, (b) is the transventricular SP, (c) is the transthalamic
SP, and (d) is the abdominal SP. For each case, the upper left is the predicted standard plane, the upper right is the ground truth, the bottom left is the inferring
curve of the termination module, and the bottom right is the 3D spatial position of the predicted plane and ground truth.

Ang:6.67°

Dis:2.13mm

(a)

Ang:7.25°

Dis:0.05mm

(b)

Ang:4.75°

Dis:0.83mm

(c)

Fig. 8. Visualization of our method in sampled SPs of the US uterus dataset. (a) is the mid-sagittal SP, (b) is the transverse SP, and (c) is the coronal SP. For
each case, the upper left is the predicted standard plane, the upper right is the ground truth, the bottom left is the inferring curve of the termination module,
and the bottom right is the 3D spatial position of the predicted plane and ground truth.
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the implicit relationship between the Q-value curve and the

optimal termination step. The resulting RL framework can

achieve more accurate efficient predictions. Note that this

learning-based termination strategy is a general method and

can be applied to other similar tasks.

VI. CONCLUSION

In this paper, we present a deep RL framework equipped

with 1) a landmark-aware alignment module to provide a warm

start for the agent searching, and 2) a novel learning-based

strategy for adaptive dynamic termination. SP localization in

3D US is challenging due to the low image quality, large

data size and diverse fetal postures. Along with the proposed

landmark-aware alignment module, the deep RL framework

can start searching within the environment constrained by

anatomical prior knowledge. In reinforcement learning for

SPs localization, the termination conditions are usually in-

distinct and can not be precisely defined. Our proposed

adaptive dynamic termination raises a new solution towards

an effectiveness- and efficiency-steered localization system.

Validation experiments showed that our model not only out-

performs the current state-of-the-art learning based methods in

detecting SPs, but also saves about 67% time during inference

and shows great generalizability across multiple challenging

datasets.
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