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Deformation Transfer Survey

Richard A. Robertsa,∗, Rafael Kuffner dos Anjosa, Akinobu Maejimab, Ken Anjyoa,b

aComputational Media Innovation Centre, Victoria University of Wellington
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Abstract

Deformation transfer is a type of retargeting method that operates directly on the mesh and, by doing so, enables reuse of animation

without setting up character rigs and a mapping between the source and target geometries. Deformation transfer can potentially

reduce the costs of animation and give studios a competitive edge when keeping up with the latest computer animation technology.

Unfortunately, deformation transfer has limitations and is yet to become standard practice in the industry. This survey starts with the

seminal work by Sumner and Popović and highlights several key issues on performance, robustness, and automation that hamper

the practicality of this approach for industry settings. We then review related work in sections, organized by the key issues. After

surveying related work, we discuss how their advances open the door to the practical deformation transfer for industry applications.

To conclude, we highlight areas of future work.
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1. Introduction

Studios need to develop tools that enable artists to move

beyond manual keyframing and raw motion editing to keep up

with increasing demands for a high quantify of quality anima-

tion.

Retargeting, a field of research in computer graphics liter-

ature, can provide studios with a competitive edge when used

effectively. In the fundamental sense, the goal research in retar-

geting is to develop techniques that enable us to copy and paste

animation between characters. One key advantage of retarget-

ing, for studios, is that they can reuse animation. They might

employ an animator to craft animation for a template character,

but then copy that work to an entire crowd of orcs in a fantasy

film or onto multiple side-characters in a game. Another impor-

tant advantage is that if the director demands design changes,

retargeting techniques can avoid losing work by transferring an-

imation between design iterations. With these advantages, re-

targeting is an important tool for both small and large scale pro-

ductions. When used effectively, it ensures animation work can

be completed to a high quality in less time.

Unfortunately, commercially available solutions for retar-

geting are often not appropriate in many industry settings. As

one example, the HumanIK tool in Autodesk Maya lets an artist

specify pairs of joints between the source (animated) and target

(unanimated) characters. The tool then transfers animation by

copying changes in rotation between the pairs of joints. This so-

lution is problematic in that (1) the pairings need to be entered

for every unique pair of characters being retargeted, which is a

repetitive and laborious task; (2) secondary animations are lost
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during transfer when they cannot be expressed by joints; and,

perhaps most importantly, (3) retargeting across vastly different

characters is not possible. Studios are left to implement their

own solutions when these problems are prohibitive.

Deformation transfer is a relatively small topic in retarget-

ing, but has the potential to open the door to retargeting be-

tween all types of characters. In deformation transfer, the goal

is to transfer animation via the mesh directly. Figure 1 illus-

trates this goal: starting from neutral poses, find the pose for

the target mesh such that its deformation best matches that of

the source. While not as simple to understand and implement as

alternatives, deformation transfer offers the key advantage that

retargeting is possible without the need to first engineer and

map between character rigs. Thus, deformation transfer offers

retargeting without placing a burden on artist time and, conse-

quently, offers a sustainable option for animation reuse that is

well-suited to industry settings.

There are limitations of the seminal work that hamper a

practical application. These limitations are addressed by more

recent work, and some of their proposed solutions have already

been used successfully in digital productions. Inspired by this

success, we present this survey to clearly expose the potential

of deformation transfer for practical application in industry set-

tings: we first introduce the seminal work and summarize its

key issues; we then survey the related work in sections based

on which of these issues they address; and then conclude with

discussions that summarize the related work overall, that high-

light possible industry applications, and outline future work that

could further improve these techniques.

Ultimately, we hope that this survey provides a useful in-

troduction to deformation transfer and helps fellow researchers

and studios in choosing an implementation suited to their needs.
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Figure 1: The goal of deformation transfer is to deform a target mesh (camel),

by directly manipulating the mesh, such that it best recreates a given source

pose (horse, with leg forward).

1.1. Outline

Section 2 introduces seminal work on deformation trans-

fer and highlights key issues. We then introduce and discuss

the related work in sections based on which of the key issues

they solve: section 3 includes work that has changed the rep-

resentations of shape and deformation to improve performance,

broaden the range of meshes to which we can apply transfer,

or limit artifacts in results; section 4 focuses on techniques use

implicit models to enable partial or full automation over the

process; and section 5 describes one how deformation transfer

of semantic properties can be realized. As an auxiliary, sec-

tion 6 introduces a work that highlights how transfer often con-

flates deformations resulting from shape and from pose. In-

sights from this work helps to explain why a some methods

produce unnatural results. To conclude, we present and discuss

a table summarized the surveyed work (Section 7), we discuss

potential for industry applications (Section 8), and finish with

ideas for future work (Section 9).

2. Seminal Work

In their seminal work, Sumner and Popović [18] introduced

deformation transfer as the first retargeting solution that oper-

ates directly between meshes. Since the source and target rarely

match geometrically, the underlying challenge is to develop a

principled way to copy a change in pose for the source onto

the target. The seminal work addresses this challenge through

a correspondence mapping step and an optimization step.

As input, the artist should provide the source and target in

their reference poses. Conventionally the reference pose has the

characters in a natural stance, but any pose for the reference is

possible provided that the source and target are both posed in

the same way.

The first step of seminal deformation transfer is to build the

correspondence map. The correspondence map specifies ex-

actly how the triangles of the source character map onto the

target, and vice-versa. To build the map, the artist should first

specify a set of corresponding points. Given these points, an

optimization algorithm finds the best match between the source

and target and, once matched, nearest triangles are considered

to be corresponding pairs.

Next, the artist provides a new deformed pose for the source.

The transfer step aims to pose the target to match. In this sec-

ond step, the change between the source’s triangles in their ref-

erence and deformed states are modeled by a set of deformation

gradients. In practice, a deformation gradient is an affine ma-

trix that encodes how a triangle rotates and scales to transition

from its shape in the reference pose to that of the deformed

pose. Given the set of deformation gradients, a deformed pose

for the target is created using an optimization method that de-

forms the target so that its triangles best recreate the observed

deformation for their corresponding pairs in the source model.

In this section, we introduce the correspondence and trans-

fer steps in greater detail (Section 2.1 and 2.2). We then high-

light the key issues that we identified in discussion with our

industry partner (Section 2.3).

We refer readers to [17] for further details.

2.1. Correspondence Step

While a mapping is obvious when the geometry of both the

source and target are similar, it is difficult when this is not the

case. For example, consider how it might be difficult to corre-

spond the humps on a camel’s back to the spine of a horse (at

the level of triangles).

Borrowing from template-fitting algorithms, Sumner and

Popović proposed a method to build the correspondence map.

In their method, they employ an optimization scheme that warps

the source until it matches the target exactly, or vice-versa.

In other words, one mesh is deformed to become the other.

Once fitted in this way, pairings can be found by identifying

the source and target triangles that are closest to one another.

To initialize this step, the artist should first select pairs of

points that outline how the source and target correspond with

one another. Figure 2a provides an example. Next, an opti-

mization method tweaks vertices of the target until it finds a so-

lution that not only places the artist-specific pairs together but

also ensures that the target mesh does become otherwise mal-

formed. Specifically, the optimization is over an error function

that aims to minimize (1) the distance between the pairs of han-

dles, (2) the amount of deformation, and (3) local deformation

smoothness. Results of this step in our testing implementation

are shown in Figure 2b. The correspondence map can be built

once the target has been fitted. To build the map the algorithm

finds all similarly oriented source triangles nearest to a given

target and vice-versa, resulting in a many-to-many mapping.

Figure 2c-2e presents examples of mapping regions.

With the correspondence map in place, the first issue of en-

coding the geometric relationship between the source and the

target has been solved.

2.2. Transfer Step

With the correspondence map in place, the second step is

to calculate a target pose that best recreates deformations ob-

served for a given source pose. The challenge underlying this

is two-fold: one the one hand, assigning a deformation for each
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(a) Selected Pairs (b) Optimization Steps

(c) Mapped Area (tail) (d) Mapped Area (torso) (e) Mapped Area (leg)

Figure 2: In the seminal work, the correspondence map is calculated from a sparse set of corresponding points selected by the artist (a). From this input, a series

of four optimization steps are employed to warp the target lion into the source cat (b). Once the target has been transformed into the source, a many-to-many

mapping is formed between nearest valid triangles. A few examples of corresponding areas are displayed (c-e). Transfer becomes computationally tractable given

this mapping.

triangle independently results in a target pose the surface is no

longer intact (edges of adjacent triangles would become dis-

connected); and, on the other, we can observe that there is no

solution that optimizes the deformation for each triangle exists

(there are often competing corresponding pairs for each trian-

gle). Thus, to perform the second step we need a method that

not only determines deformation gradients for target triangles to

faithfully those of the source, but also keeps the target surface

intact.

As a potential solution, Sumner and Popović suggest using

an optimization method. Similar to the one used for the cor-

respondence step, the method tweaks deformation gradients of

the target triangles to minimize an objective function under the

constraint that adjacent edges stay connected. While simple to

implement this approach, unfortunately, would be too slow for

practical application.

To enable better performance, Sumner and Popović develop

an alternative method for the transfer step. By solving over ver-

tices, instead of triangles, they avoid the complication that the

mesh surface can become disconnected. The challenge, in this

case, is to determine how to best move the vertices to recreate

the appropriate triangles deformations. Impressively, Sumner

and Popović designed a linear system that models this problem

using deformation gradients. Their linear system places the de-

formation gradients of the source on one side of the linear sys-

tem. Then, on the other side, a matrix that negates the target’s

reference pose and a vector of unknown vertex positions; when

these are multiplied together, deformation gradients for the tar-

get triangles are produced. Solving the linear system is trivial

when using conventional least squares, and doing so finds the

deformation gradients that, when applied to the target triangles,

produce a target pose that best matches the source. While more

difficult to understand, this linear system enables a much faster

and practical solution to deformation transfer.

2.3. Key Issues

Performance. Even with the linear system in place, it is large

and cannot be solved fast enough for interactive applications

[7, 5, 24].

Broadness. The deformation gradients representation is only

compatible with triangle meshes [5, 25, 9]. While triangula-

tion can be used to address this issue in part, doing so exasper-

ates performance overheads. Transfer between meshes featur-

ing multiple-components is not possible.

Artifacts. Deformation transfer results tend to exhibit artifacts

that detract from natural appearance [16, 12].

Artist Input. Specifying pairs of points to initialize the corre-

spondence map can be a laborious task [21, 13]. This problem

is exasperated in that tweaking the selected pairs does not lead

to a proportionate change in the transfer. This disconnect com-

plicates the task of refinement (perhaps to resolve artifacts in

the transferred results).

Automation. A lack of automation limits the range of applica-

tions to those in which an artist is available [6, 21].

Semantic Transfer. Finally, while geometric properties are trans-

ferred, semantic properties are not.
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3. Representations to Improve Deformation Transfer

Motivated to improve upon key issues that we outlined ear-

lier in Section 2.3, many related works have proposed new or

extended ways to represent and transfer deformation. Some

choices of representation help speed up transfer, others enable

more robust application, and others limit the occurrence of arti-

facts.

Here we survey previous work that focuses on improving

performance (Section 3.1), enabling broader application (Sec-

tion 3.3), and limiting the occurrence of artifacts (Section 3.2).

We conclude with discussion in Section 3.4.

3.1. Improving Performance using Cages

Previous work has reduced the computational overhead of

transfer, primarily by using a cage that offers a lower-dimensional

interpretation of the mesh.

Ben-Chen et al. [5] present the first method to use a cage

for transfer. They first provide an algorithm to build the cage,

which starts from a dense sampling of the original mesh’s sur-

face and then interactively removes and repositions vertices.

The resulting cage ensures sparsity and a tight-fitting. The rela-

tionship between the cage and the underlying mesh is encoded

using the variational harmonic functions of [23]. The functions

form a basis that, when weighted appropriately, can modify the

pose. A least-squares solution is used for transfer, in which an

algorithm calculates offsets for target cage vertices such that the

deformed target best matches the given source (where closeness

is measured in terms of artist-specified points, which operate in

place of the correspondence map).

In similar previous work, Chen et al. [7] also propose to

enclose the source and target in a cage and perform transfer by

optimizing positional changes in a sparse set of artist-defined

landmarks. Making their work distinct from that of Chen et al.,

they use Green coordinate interpolation to propagate changes

of the target cage back to the target mesh. They argue that the

Green’s coordinate interpolation, which is biased to preserve

angles between edges over their lengths, helps to better preserve

transferred deformation in detailed areas of the mesh.

Most recently, Yifan et al. [22] proposed a novel technique

that employs a deep learning model – called CageNet – to learn

cage deformation. Where deformation transfer aims to recreate

a change between poses, the focus of their work is to deform

a given source model to take on the shape of a target model,

while preserving local geometric details. In their approach, they

first encode both meshes into a latent space and then apply two

different decoders: one decoder creates a cage for the source

mesh, while the other creates an offset that should be applied

to that cage’s vertices to best reproduce the target shape. While

not the primary focus of their work, they demonstrate how their

approach can be modified to perform deformation transfer of

human models. In their modification, they first learn a model

of cage deformation over a database of exemplary motions (by

training the model to fit the cage to best reproduce poses from

the database). Next, they use this trained model to transfer de-

formation: given a new human mesh with a sparse selection of

artist-selected landmarks and a desired pose from the original

database, they first align the source to the target reference pose,

then employ an optimization step to generate a cage for this

source model, and finally query the trained model to obtain an

offset for the generated cage that produces the deformed target

pose.

Cages are a powerful solution that exploit sparse represen-

tation to enable fast performance. With the enhanced perfor-

mance, these techniques make deformation transfer suitable for

interactive use. This is a critical advantage for any applications

where artists need to explore and potentially refine transfer re-

sults interactively. Unfortunately, the sparser representation has

the drawback that fine-scale deformations can be lost. In appli-

cations requiring higher fidelity, such as transfer of wrinkling

details in faces, the cage representation is not appropriate.

3.2. Limiting Artifacts for Better Transfer

Other previous work has focused on the issue that the result-

ing target pose often features visually unnatural artifacts. Some

of the more common artifacts of seminal deformation transfer

are crumpling and self-intersection.

Zhao et al. [24] introduce the dual-mesh representation for

deformation transfer.1 Distinct from seminal deformation trans-

fer, the dual mesh representation encodes and optimizes defor-

mation in terms of surface normals, which helps to eliminate

artifacts that arise in areas with fewer vertices or with complex

shapes.

Saito [16] extend the linear system used in seminal defor-

mation transfer with new constraints over intersection and smooth-

ness. For intersections, they add virtual triangles that encapsu-

late the holes in the model, such as eye holes and the mouth.

The virtual triangles are appended to the linear system used for

solving transfer, which biases transfer to preserve the shape of

the holes as well as the mesh and, consequently, intersections

across these holes are unlikely to occur. Second, they add a

Laplacian-based regularization term that leads to smoother de-

formations. With these two terms added to the linear system,

transfer results exhibit fewer artifacts.

Based on the observation that Euclidean spaces cannot ef-

fectively model deformation, Shabayek et al. [10] adapt the

Lie Bodies representation [11] for deformation transfer. The

Lie Bodies representation proposes to endow the totality of all

triangular deformations, each of which consists of rotation, in-

plane deformation, and scaling, with a Lie group structure. The

set of all those transformations constitutes a Lie group that has

a Riemannian metric from which a Lie algebra can be derived.

Shabayek et al. use this manifold for deformation transfer and

show impressive results that feature fewer artifacts when com-

pared to the seminal work (the algebra avoids degenerate cases

and tends to model transitions more naturally). Furthermore,

other advantages of this manifold are that interpolation and even

composition of deformations are possible, which may be a sig-

nificant advantage for some practical applications (perhaps to

1Au et al. [2] developed the dual-mesh representation for editing meshes

using Laplacian operations. These types of operations are common in applica-

tions that blend two or more images or meshes to appear seamless.
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transfer a simulated animation interactively, where the solver

might transfer and then combine many incremental deforma-

tions). Other advanced operations such as measuring variance

between poses are also possible.

If deformation transfer were to be applied more broadly

in industry, resolve transfer artifacts would become a common

task. In some cases, an artist would find that fixing a few mi-

nor artifacts by adjusting vertex positions would be relatively

trivial. However, in other cases, the artifacts may be too numer-

ous or occur in complex areas and demand more intensive work

to resolve. Furthermore, in other applications, an artist may not

be available (perhaps due to limited budget or real-time applica-

tion), in which case artifacts will detract be visually noticeable

and detract from the quality of the transferred animation. The

work introduced here helps to combat these issues: Zhao et al.’s

is a simple solution that can help to limit general artifacts with-

out requiring additional artist work and Saito’s virtual triangles

help to prevent intersections (particularly important for facial

animation). In broader applications, where it may be difficult

to create virtual triangles, artifact-free transfer remains an open

problem. In these cases, we can take inspiration from Shabayek

et al.’s work and look to develop a model such as Lie Bodies that

is better suited to more natural and stable deformation.

Despite their advantages, these techniques retain higher com-

putational costs and, unlike the cage-based approaches, are not

suitable when interactive performance is required.

3.3. Broader Mesh Types

Another focus of previous work has been to enable transfer

for more generic mesh types.2

Domadiya et al. [9] introduce a vector graph representation,

which enables deformation transfer to be applied to meshes

with any type of polygons. The vector graph extends the mesh

by placing a new vertex at the center of each face and then

adding new edges that span these new vertices. This process

effectively triangulates the mesh and, while this would gener-

ally slow down the solution, they introduce an optimization that

scans through the correspondence map to selects a subset of el-

ements (approximately half) to use when solving for transfer.

This optimization makes their vector graph amenable for trans-

fer with similar performance to the seminal work.

Zhou et al. [25] propose a solution to enable transfer be-

tween multi-component meshes. Their extension finds spatial

relationships between the multiple components of a character

and uses these to define a new error term that is minimized

when those spatial relations are preserved by transfer. This new

error term is non-linear and so they must use the optimization

method for transfer (described in Section 2.2; however, they

demonstrate that each step in the optimization scheme is lin-

ear, which means that performance is still amenable for some

2Seminal deformation transfer supports only triangular meshes. Other types

of meshes are also used in computer graphics, such as meshes containing

quadrilateral polygons and even polygons with higher numbers of vertices.

Some meshes combine different types of polygons, which are typically called

hybrid meshes. Furthermore, some meshes are composed of multiple separate

parts, called multi-component meshes.

applications. Despite this drawback, their solution enables im-

pressive transfer between characters composed of multiple parts

and opens the door to advanced transfer applications (perhaps

deforming a cloud of particles based on a template animation,

or between a template animation and a robot composed of many

small parts).

Enabling deformation transfer for a broader range of mesh

types, while retaining the ability to be computationally feasi-

ble is a difficult problem. In one sense, the previous work on

enveloping meshes using a cage-representation could already

solve this problem; however, a key drawback of these tech-

niques is that they lose fine-scale details. The methods pre-

sented here operate on the source and target meshes directly,

enabling transfer for a broader range of meshes without the

drawback of detail loss.

Despite the advantages of these techniques, they also retain

higher computational costs and, again, are not suitable when

interactive performance is required.

3.4. Discussion

In this section, we surveyed related work that tackles key

issues of performance, artifacts, and generality.

To improve performance, a sparse representation – typi-

cally a cage that envelopes the mesh – have been proposed

[5, 7, 8, 24, 14]. The cage offers significant gains in perfor-

mance as the transfer can operate over a much sparser repre-

sentation. However, this gain in performance tends to come

with the cost of detail loss.

To reduce artifacts, the related work has proposed to extend

transfer with a representation of the negative space and with a

preference for deformation smoothness. Virtualization of neg-

ative space can be achieved by adding virtual triangles and de-

formation smoothness can be encoded either implicitly through

an alternative deformation representation (like the dual-mesh in

[24]) or explicitly through a regularization term (like the Lapla-

cian in [16]). Finally, most recently, Shabayek et al. [10] have

introduced a non-Euclidean deformation representation that avoids

degenerate transformations by design.

Finally, extensions have been proposed to generalize the

range of meshes to which transfer can be applied. Transfer can

be performed for meshes containing any types of polygons with

the vector-graph [9], and for multi-component meshes when

spatial relationships and found and added as a new term to the

transfer method [25].

While an all-encompassing solution for fast, artifact-free,

and general deformation transfer is yet to be proposed, the ad-

vantages provided by the surveyed work are already well-suited

to a broader industry application.

4. Toward Automatic Correspondence

Seminal deformation transfer requires the artist to manually

specify pairs of points. Allowing manual input from the artist

is a desirable feature, especially in production scenarios where

an artist can tune the selection of correspondence pairs to affect

transfer results (at least through trial and error). However, there

are other situations where automation is helpful.
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Motivated to provide partial or full automation, related work

has proposed novel methods to reduce artist involvement when

initializing the correspondence map. This may be done by (1)

developing a method to help find correspondence points or by

(2) using an implicit correspondence map, which omits the need

for the artist to specify correspondence pairs. With either ap-

proach, deformation transfer can be applied with less artist in-

volvement. The task of shape correspondence or matching,

which can be used for finding an explicit or implicit correspon-

dence map, has applications in several areas other than defor-

mation transfer such as 3D scan alignment, reconstruction, and

classification. Outside of deformation transfer, other work has

developed approaches to match data of different representations

(points, surfaces, skeletons) and dimensions (2D, 3D, temporal

or non-temporal), providing different type of correspondences

(dense, sparse, full, partial, probabilistic, one-to-many, many-

to-many, affine or rigid transformations), and taking different

approaches to the problem of correspondence mapping. The

survey from van Kaick et al. [19] provides an in-depth review

of different approaches and also discusses their use in alterna-

tive applications.

While the broader field of shape correspondence and match-

ing could be applied to deformation transfer, here we introduce

only the correspondence methods proposed in work on defor-

mation transfer.

4.1. Finding Correspondence Pairs

Bian et al. [6] present a fully automatic approach that finds

correspondence pairs for transfer between faces. In their ap-

proach, they search a mesh projected onto a 2D image to find

landmarks around features such as the eyes. In particular, they

find one landmark in each eye corner, two landmarks in each of

the upper lids, and two in each of the lower lids. Once found for

both the source and the target, they use the inverse projection

to derive which vertices of the mesh match the identified land-

marks. Through doing this landmark search for both meshes,

they can automatically find points correspondence pairs. While

this approach is successful in automating over faces, their search

mechanism cannot be extended trivially to other applications.

Nevertheless, this principle of using domain-specific knowl-

edge to find similar points between the source and target is a

novel in that it can automatically suggest candidates to the artist

(thus reducing overheads) or, when the found correspondence

pairs are already sufficient, be used to automate the algorithm

altogether.

Based on the observation that the task of choosing which

points to use for correspondence is complex, yet the task of

finding a point corresponding to a given point is more simple,

Yang et al. [21] explore how to automatically choose ideal cor-

respondence points for the source (and leave the task of pairing

them to points on the target to the artist). To choose the points,

they employ harmonic analysis (see [23]), segmentation, and

clustering. Next, they identify a point representing each cluster

and provide this set as candidates. The artist then completes the

easier task of finding their pairs on the target model. Since the

pairing task is easier, significantly less artist time is required to

initialize the correspondence map. Interestingly, while the re-

sulting correspondence pairs could be used as input to the sem-

inal method, Yang et al. propose an alternative transfer method

where deformation is copied between the source to target pairs

directly (with an automatic skinning step used to deform the tar-

get mesh to best fit the updated handles). This direct scheme is

significantly faster although, much like the cage representation,

is prone to detail loss.

4.2. Implicit Correspondence Map

The other approach that enabling more automation is to

compute an implicit correspondence map. Methods in deep

learning excel in this case.

Gao et al. [13] develop a solution for transfer in which

deep learning is used to train a model for deformation. Once

trained, their model provides mapping functions that can ef-

fectively recreate an observed deformation for a source onto a

target. To train their model they use a generative adversarial

network, a type of deep learning approach. The network is ap-

plied to iteratively test and improve two mapping functions that

best transfer pose between examples of source and target char-

acters. These examples are obtained from databases of human

motion that cover a wide range of human shapes and poses.

During this process, they use a latent encoding for each mesh

and, through doing so, can implicitly model correspondence.

Consequently, there is no explicit definition of how triangles

between a given source and target map to one another, yet trans-

fer is possible anyway due to the latent encoding. This solution

is very powerful since transfer can be performed without any

explicit correspondence mapping. However, extensive data is

required for training which currently limits the application of

these techniques to characters that we can amass data for (such

as human scans).

Most recently, borrowing a model architecture developed

for style-transfer in images, Wang et al. [20] introduced the first

solution for deformation transfer between two meshes without

the need for a source reference pose. In their solution, they train

and encode and decoder pair. Given a deformed source pose,

they encode it to a latent space via a feature vector that observes

the local properties of the mesh. Then they develop a decoder

that, through several layers inspired by style-transfer methods,

produces a target pose that reproduces the local properties ob-

served by the feature vector. In this case, correspondence is

implicitly through the feature vector. Once trained, the encoder

and decoder pair produce impressive results without ever ob-

serving the deformation directly (there is no reference source

pose). While perhaps the most powerful learning solution, its

application is again limited to situations where recreating lo-

cal properties enables effective transfer – thus, this process is

well-suited when the source and target shape are similar, but

not when they differ significantly.

While a corpus of data and high-performance computing is

required for the training with machine-learning methods, the

deep learning solutions offer a way to leverage all the informa-

tion within meshes to enable powerful and automatic deforma-

tion transfer.
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4.3. Discussion

The approaches surveyed in this section enable many prac-

tical applications of deformation transfer.

When we can make assumptions about the domain of the

problem, we can take inspiration from Bian et al.’s work [6] to

develop heuristics to automatically find correspondence pairs.

This approach is most easily applicable to transfer between faces

but may also prove useful to other applications such as transfer

between similar virtual characters. Employing heuristics based

on domain-specific knowledge has the advantage of being fast

to compute but also the drawbacks that those heuristics can be

difficult to discover and that, once developed, are limited to

their specific applications.

Deep-learning approaches are potentially the most power-

ful. They avoid the need to specify correspondence by encoding

it indirectly through latent space. While expensive to train, the

resulting models enable transfer that is both fast and automatic.

Unfortunately, extensive data is required for training, which

will not be readily available outside of human characters (and

perhaps domestic animals where motion capture may be used).

Furthermore, without any way for the artist to guide the de-

formation result, deep learning solutions are only applicable to

situations where the result is already suitable for the intended

application, which limits their practical use in productions of

films and games where significant artistic refinement will be re-

quired. Given the restrictions imposed by learning methods, we

might consider that Yang et al.’s [21] method of automatically

choosing candidates to reduce artist time required for initializa-

tion is the most feasible approach to those production situations.

5. Semantic Transfer

The seminal work solves transfer by minimizing deforma-

tion gradients that encode geometric differences between ref-

erence and deformed poses. However, there are many cases

where geometrically corresponding a given source and target is

not possible: how should we correspond a flamingo with two

legs to a horse with four?

Baran et al. [4] present the first approach for transferring

deformation semantically, rather than geometrically. In seman-

tic transfer, the idea is to pose the target to recreate the meaning

of the source pose, more so than changes observed in geom-

etry. The key idea behind semantic transfer is to set up two

spaces, one for the source and one for the target, that semanti-

cally match one another. The matching means that interpolation

through those spaces produces semantically matching poses,

and thus transfer can be performed by first projecting into the

source space and then interpolating in the target space.

In summary of Baran et al.’s algorithm: two sets of match-

ing poses for the source and target are provided as input. For

example, the first pair of pose might feature the source and tar-

get standing, the second pair might feature the top of a jump,

the pair poses might feature a crouch, and so on. Whatever each

pair of poses depict, they must be a semantic match. Given the

sets of poses, they convert each of the poses for the source into

coordinates that span a low-dimensional shape space. The same

is done for the target poses, which form a corresponding tar-

get space. Since the coordinates of each space share semantic

meaning, the spaces implicitly correspond to each other. Due to

their correspondence, transfer can be performed by projection

and interpolation. First, their algorithm projects a given source

pose into the source space to determine its coordinate. Through

the projection, they obtain a set of weights that describe how to

combine the basis coordinates (the coordinates of the original

source poses) to best recreate the given deformed pose. Second,

they interpolate the target space using these weights to obtain

a target coordinate that corresponds to the identified source co-

ordinate. Finally, to obtain a target pose, they employ a least-

squares solver to choose vertex positions that, when projected,

is nearest to the interpolated coordinate.

Semantic deformation transfer is ideal for applications that

demand transfer between characters of vastly different shapes.

As one example, consider the task of animating a horse from

a human mocap. The artist might choose to scan through the

mocap and identify a few representative poses, from which they

pose the horse manually. After creating a modest library of

poses, they can apply semantic deformation transfer to transfer

the rest of the motion automatically.

Like the deep learning methods described in Section 4.2,

semantic deformation transfer also encodes the correspondence

map implicitly and therefore removes the need for the artist time

to manually define correspondence pairs.

While the approach taken by Baran et al. for semantic trans-

fer is the only one to tackle transfer for vastly differing charac-

ters, a key drawback is that two sets of poses that sufficiently

define the deformation space must be provided. While exten-

sive data is not required, it may be infeasible to produce the

poses sets in production settings [9, 21]. For example, in a pro-

duction setting using virtual characters, it may be too expensive

to have the artist make several sculpted poses.

6. Decoupling Shape and Pose Deformations

Another idea that must be considered, tangential to the con-

cept of semantic versus geometric deformation transfer, is whether

deformation results from a change in pose or is unique to the

shapes of the object.

Pose-based deformation is any deformation that results di-

rectly from a change in pose. In particular, it is deformation

that occurs independently from the shape of the character. For

example, an arm will bend as the elbow joint closes. In con-

trast, shape-based deformation is any deformation unique to the

shape of the object. For example, the bulging unique to a mus-

cly character. Figure 3 illustrates these differences.

Anguelov et al. [1] developed a method that learns two

parametric models that separate shape and pose deformation.

Given scans of different poses, they first transform a template

mesh to different and develop, from these transformations, build

a pose model. Once set up, the parameters of this model adjust

only the pose of this template character. Next, they construct

another model, but this time develop parameters that vary its

shape to deform the template into a variety of scans that de-

pict different humans. With the two models in place, Anguleov
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(a) Idle (b) Posed (c) Flexed (d) Deformation from Pose (e) Deformation from Shape

Figure 3: The example above highlights the difference between deformations relating to pose and shape. The example depicts a close view of the right-arm of

a muscly character. There are three key poses: the arm is relaxed at their side (a), the arm strikes the pose but remains relaxed (b), and the arm now flexed (c).

Deformation lies between the poses: in (a-b) deformation relates to pose (d), and in (b-c) deformation is unique to the shape of this muscly character (e). Changing

pose directly from (a) to (c) would involve both the pose (d) and shape (e) deformations occurring simultaneously. Consider how a weak character would have

smaller muscles and therefore not feature the same shape deformation, in this case seminal deformation transfer will correctly apply pose-based deformations, but

may also erroneously transfer shape-based deformations. By considering the impact of conflating pose and shape deformations we can see how artifacts occur

in seminal deformation transfer – imagine how shape deformations vary between skinny and overweight characters, short and tall characters, and young and old

characters. Model provided by Turbo Squid, under Royalty Free License.

et al. demonstrate that natural pose-based deformations can be

created for a range of characters despite their shape variation.

The separation between pose-based and shape-based defor-

mations, as highlighted in Anguelov et al.’s work, reveals a key

problem for deformation transfer. Transfer, when solved geo-

metrically, conflates both the pose and the shape aspects of de-

formation. This conflation is one reason why artifacts occur in

the target pose resulting from transfer. If we are able to decou-

ple pose-based and shape-based deformations during transfer,

we may be able to avoid much of these artifacts.

For now, decoupling deformation in its pose and shape com-

ponents remains an open problem for deformation transfer. Balan

et al. [3] expose one possible direction in related work: they

present a technique that tweaks Anguelov et al.’s model param-

eters to pose a character that matches both the shape and pose

observed in images of people. Their results demonstrate that

the fitted model accurately depicts the pose and the shape of the

human. One could consider an approach that performs transfer

over corresponding pose-based and shape-based parameters, al-

though this is yet to be explored.

Interestingly, approaches that model correspondence implic-

itly tend to avoid the problem or inadvertently transferring shape-

based deformation. In semantic transfer (Section 2), conflat-

ing pose and shape deformations is avoided as a separate shape

space is used for the source and the target models (the trans-

fer cannot inadvertently transfer deformations relating to shape

because of this separation). The recent work on deep-learning

(Section 4.2) also avoids the problem implicitly, as the mod-

els are trained against sets of poses unique to characters (again,

separation avoids the problem).

7. Summary of Related Work

Table 1 lists the surveyed work that introduces novel meth-

ods for deformation transfer. In this section, we summarize the

work with a focus on their choices of shape and deformation

representation, denoted by columns 2 and 3. We also comment

on how these representations underpin the type of correspon-

dence mapping and the method of transfer (columns 4 and 5),

along with their key advantages and limitations (columns 6 and

7).

Successful deformation transfer is heavily reliant on an ef-

fective representation of both the shape (mesh) and the defor-

mation being transferred. Recalling Section 2, in their seminal

work Sumner and Popović [18] propose that we imagine form-

ing a tetrahedron over each triangle. The tetrahedron connects

each of the vertices along with an additional vertex that sits at

the end of the face normal. Since this family of tetrahedrons,

together, express the shape of the mesh, we refer to them as the

shape representation. Using the shape representation, we can

easily define a deformation for a given pose. When following

the seminal work, we calculate an affine matrix that transforms

each tetrahedron from its shape in the reference pose to that of

the given pose. By performing this calculation for each tetrahe-

dron,3 we can fully express the deformation of the mesh; thus,

we refer to the resulting set of affine matrices as the deformation

representation.

The representations used in seminal work are ideal in that

they fully capture the deformation of the mesh. Due to this

advantage, it remains a common choice when surface deforma-

tions are the focus of transfer (used in [18, 17, 25, 24, 16, 6]).

However, this representation is granular and, consequently, a

large number of deformations must be transferred such that a

large linear system is required and renders the algorithm too

slow for interactive use. Furthermore, the optimal deforma-

tions per triangle can conflict with one another and so a number

of artifacts can arise as at least some sub-optimal deformations

must be present in the results. Finally, the representation is only

suited to triangle meshes, which does not support broad appli-

3Note that, in practice, adding the extra vertices to form tetrahedrons would

be disadvantageous since doing so would increase the size of the linear system

for transfer. As summarized in [17], we can derive deformation gradients that

do not require the extra vertex by examining the deformation of edge matrices

(hence the notation of edges in column 2 of Table 1).

8



Reference Shape Rep. Deformation Rep. Correspondence Transfer Method Key Advantages Key Limitations

[18] Sumner and Popović triangles edges, affine dense least squares triangles only, artifacts, speed

[5] Ben-Chen et al. cage landmarks sparse least squares faster, broader application fine-scale loss

[7] Chen et al. cage landmarks sparse optimization faster, broader application fine-scale loss

[22] Yifan et al. cage sparse deformation network learn cage deformations fine-scale loss, need data

[25] Zhou et al. triangles + spatial edges, affine dense optimization broader application speed

[9] Domadiya et al. vector graph vertices, frames dense least squares broader application speed

[16] Saito triangles + virtual edges, affine dense least squares limit artifacts, enable constriants triangles only, speed

[24] Zhao et al. dual mesh vertices, affine dense optimization limit artifacts triangles only, speed

[10] Shabayek et al. triangles triangles, groups dense least squares limit artifacts triangles only, speed

[6] Bian et al. triangles edges, affine dense least squares automatic correspondence triangles only, speed, artifacts

[21] Yang et al. clusters landmarks sparse copy directly semi-automatic correspondence fine-scale-loss

[13] Gao et al. latent implicit mapping functions automatic correspondence need data

[20] Wang et al. latent implicit decoder transfer without source identity need data

[4] Baran et al. shape space implicit project + interpolate triangles only, artifacts

Table 1: A summary of key work surveyed in this report. The first column specifies the citation and title, columns 2 and 3 denote the representations used to

model shape and deformation; columns 4 notes the type of correspondence mapping and 5 the method of transfer; and columns 6 and 7 summarize advantages and

limitations.

cation.

Some work extends the representations of seminal work

with additional properties. Recalling Section 3.2, Zhao et al.

[24] use a dual-mesh shape representation that limits artifacts

when paired with a Laplacian error term, at the cost of requiring

a more expensive optimization process for transfer. And, recall-

ing Section 3.3, Zhou et al.’s [25] method appends spatial rela-

tions that enable stable transfer for multi-component meshes.

These appended elements successfully enable broader transfer,

but have the drawback that a larger linear system (although, in

practice, this overhead should be relatively minimal).

It is also possible to use alternative surface-based repre-

sentations. For example, Domadiya et al. [9] employ a vec-

tor graph as their shape representation, that effectively con-

verts a hybrid mesh into a triangular mesh. For deformation,

they create local coordinate frames describing how each ver-

tex of the vertex graph moves between the reference and de-

formed poses. As well as enabling broader application, their

formulation has another advantage in that each deformation is

expressed in a local coordinate system that more easily en-

ables post-processing (they apply a Poisson interpolation post-

process to improve temporal properties of transferred sequences).

As another example, Shabayek et al. [10] employ a non-Euclidean

deformation representation that encodes each triangle deforma-

tion as a group containing a rotation, in-place deformation, and

isotropic scaling. The Lie group features a Riemannian met-

ric, they are able to produce results that appear more natural

than those of the seminal work. Furthermore, their deformation

representation enables new operations such as interpolation and

composition. While powerful, this approach is currently limited

to triangle meshes.

Other works combat computational complexity, primarily

by using a cage as the shape representation, paired with con-

straints at landmarks for the deformation representation [5, 7,

21]. Recalling Section 3.1, Ben-Chen et al.’s [5] formulate the

transfer problem as the task of choosing vertex positions for the

target cage such that the resulting target pose best meets con-

straints at the landmark points (in particular, the constraints are

based on the gradients of variational harmonic functions that

are effectively at modeling deformation). Using a cage for the

shape representation has the key advantage that the linear sys-

tem to be solved is smaller and thus can be executed fast enough

for interactive use. Furthermore, as these methods effectively

deform the entire space enclosed by the cage, they can be also

applied whenever the given source and target can be well ex-

pressed as a cage (generally any mesh that does not feature flat

surfaces). While fast and broadly applicable, the sparsity of the

cage means that finer-scale deformations are lost.

Another powerful approach is to represent shape and de-

formation in a way that enables implicit correspondence of the

source and target. Recalling Sections 4.2 and 5, a number of

methods have been proposed for implicitly representing the cor-

respondence between the source and target. A pair of shape

spaces are used semantic transfer [4], and a latent space in the

deep learning methods [13, 20]. The implicit representations re-

duce the burden on artist time (since the artist no longer needs

to manually identify corresponding points to initialize the al-

gorithm) and can potentially offer automation. Furthermore,

they are the only techniques that have the potential to trans-

fer between characters of significantly differing shapes. While

powerful, these methods require large numbers, or even entire

database, of poses and this limits their application to situations

in which such data is readily available.

In summary, the choice of shape and deformation represen-

tation is perhaps the most critical consideration when choosing

one of the above techniques, and this choice often prescribes

what the type of correspondence mapping and transfer method

are to be used. The deformation gradients, of seminal work, are

still reasonable as the default choice; they excel in capturing the

full surface deformation and transfer can be applied by pairing

a dense correspondence map with a least-squares solver. When

speed is an important factor, the cage representation enables a

smaller linear system that can be used for interactive process-

ing (an artist can see the results in real-time). Alternatively, if

preserving fine-scale details while also reducing artifacts is a

focus, then one should consider techniques that add additional

factors to the shape representation (such as the dual-mesh rep-

resentation, the vector graph, or the virtual triangles). When

automation is favorable, then one should consider the latent rep-

resentations that are used by the latest deep-learning techniques

to enable implicit correspondence. Finally, for transfer between

vastly different characters, one can look to the work on seman-
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tic deformation transfer.

8. Industry Application

Through the discussion of Section 7, we can conclude that

deformation transfer is already developed to a point where it

can be applied to many advanced industrial applications.

With a correspondence map set up in advance, cage-based

techniques can support transfer in interactive media such as

video-games or interactive VR/AR experiences. Surface-based

methods run fast enough for artists to supervise results. They

offer transfer with a higher level of detail, being best suited

to the purpose of reusing animation between similar charac-

ters (such as different design iterations of a lead character).

These can be used when creating animation for side-characters

or crowds. When transfer is required between characters that

vary dramatically in shape – such as transfer between a human

source and a non-human monster or another virtual character

– semantic transfer can be applied. And, once trained, deep

learning methods push the boundary forward for applications

requiring automation.

As one specific example, Saito’s [16] deformation transfer

has been used successfully in the production of a full feature

length film. In this application deformation transfer, extended

with Saito’s virtual triangles and smoothness constraints, was

used to create facial blendshapes for custom characters by trans-

ferring poses from a predefined template model. While blendshape-

based facial rigs are a standard in industry, the cost of creating

additional shapes tailored to each unique character is consider-

able, and for productions with lower budgets this cost is infea-

sible. To address this issue, the studio employed deformation

transfer to create blendshapes almost automatically. And, with

the Saito’s extensions reducing the occurrence of artifacts, there

was little need to fix issues such as invalid creasing near the cor-

ners of the lips and eyes.

Ultimately, by considering the demands of the given appli-

cation and carefully choosing an appropriate variation, we be-

lieve that deformation transfer can provide studios with a com-

petitive edge to keep up with the growing demands of animation

production.

9. Conclusion

Seminal deformation transfer enables artists to copy and

paste animation between two characters without first needing

to create and map between customized controls for each of

those characters. While the seminal technique is limited in

terms of efficiency, robustness, and automation, it can already

be applied for several practical applications. While a fast, au-

tomatic, artifact-free, deformation transfer technique that sup-

ports a broad variety of characters and also the ability to be

artist tuned is yet to be proposed, the promising advantages of

the surveyed work make it hard to imagine a practical transfer

application that cannot already be realized.

To conclude this report, we highlight areas of future work

that may help further the practical application of deformation

transfer.

Cages without Detail Loss. Cage-based approaches [5, 7, 22]

are critical for realizing interactive performance, but risk los-

ing fine-scale deformations. Future work should consider algo-

rithms to adapt cages to best preserve fine-scale details.

Resolve Intersection Artifacts. Saito [16] highlights that trans-

fer results often feature intersections, which can be resolved in

part by adding virtual triangles that represent the space between

different parts of the mesh. Future work considering broader

solutions to resolving intersections would be valuable.

Artist Guidance. It is critical that artists be able to refine trans-

fer results. A clear and intuitive mechanism for artists to guide

the transfer is yet to be proposed.

Temporal Editing. Domadiya et al. [9] highlight that tempo-

ral artifacts need to be addressed in transfer results. Future

work might consider deformation representations that model

both spatial and temporal properties to ensure that transfer faith-

fully recreates both the poses and the timing of the source.

Hybrid Techniques. Deep learning techniques [13, 20, 22], en-

able fast, robust, and automatic deformation transfer once trained

effectively, but their application is generally limited due to the

lack of input data for non-human and virtual characters. Impor-

tant future work would be to consider a hybrid approach, where

traditional deformation transfer techniques are used to create

missing data that can then be used to initialize such learning

techniques.

Shape Matching for Better Correspondence. The range of cor-

respondence methods explored for deformation transfer is rel-

atively small in comparison to the variety surveyed in [19].

Valuable future work would be to apply more advanced shape

matching solutions for correspondence mapping in deforma-

tion transfer. Recent work by [15] provides an exciting starting

point.

Decoupling Shape and Pose Deformations. Recalling Section

6, future work should develop new representations for shape

and deformation that can isolate deformations as being unique

to either pose or shape. Doing so would further enable artifact-

free transfer.
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