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AN OPEN SOURCE MOTION PLANNING FRAMEWORK FOR AUTONOMOUS

MINIMALLY INVASIVE SURGICAL ROBOTS

Aleks Attanasio*, Nils Marahrens*, Bruno Scaglioni and Pietro Valdastri

STORM Lab, University of Leeds, United Kingdom

ABSTRACT

Planning and execution of autonomous tasks in minimally in-

vasive surgical robotic are significantly more complex with

respect to generic manipulators. Narrow abdominal cavities

and limited entry points restrain the use of external vision sys-

tems and specialized kinematics prevent the straightforward

use of standard planning algorithms. In this work, we present

a novel implementation of a motion planning framework for

minimally invasive surgical robots, composed of two subsys-

tems: An arm-camera registration method only requiring the

endoscopic camera and a graspable device, compatible with a

12mm trocar port, and a specialized trajectory planning algo-

rithm, designed to generate smooth, non straight trajectories.

The approach is tested on a DaVinci Research Kit obtaining

an accuracy of 2.71± 0.89 cm in the arm-camera registration

and of 1.30± 0.39 cm during trajectory execution. The code

is organised into STORM Motion Library (STOR-MoLib), an

open source library, publicly available for the research com-

munity.

Index Terms— Da Vinci Research Kit (dVRK), Trajec-

tory planning, ROS

1. INTRODUCTION

Trajectory planning lies at the heart of most robotic manipu-

lation tasks and is crucial to enable high levels of autonomy

[1]. While tasks usually define a set of different poses to be

achieved, how the robot should move in between these poses

is often left to motion planning algorithms. Common mo-

tion planners integrate a plethora of robot models, but surgical

minimally invasive surgical systems are not well represented.

This may attributed to their complex kinematic structures, of-

ten including parallel chains that are not supported by most

inverse kinematics solvers and can be numerically challeng-

ing. Moreover, the software frameworks used to control sur-

gical robots such as the Collaborative Robot Toolkit (CRTK)

[2] and the DaVinci Research Kit (dVRK) [3] only provide
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Fig. 1. Transformations of the different frames considered for

the registration of the arm to the camera frame.

the ability to reach a final pose with zero velocity, thus not

supporting the execution of complex trajectories.

In the particular case of the dVRK, one of the most pop-

ular surgical robotics research platform [4], a point to point

trajectory in the joint space is generated from the current end

effector pose to the goal by means of the Reflexxes RML II [5]

library. The resulting trajectory might be optimized in joint

space but is generally neither smooth nor optimal in cartesian

space. The available literature on motion planning for surgi-

cal robots is scarce. In [6] the problem is addressed for the

dVRK platform using the MoveIt![7] motion platform. How-

ever, the extended abstract is silent on how the problem of

parallel kinematics is solved, nor is their code publicly avail-

able to the community. Recent works have focused on em-

ploying machine learning techniques, such as Pyramid Stereo

Matching Network (PSMNet) [8] and reinforcement learning

[9]. While these methods show impressive results on specific

tasks, they are not generally applicable and easily adaptable.

Moreover, they are highly dependent on large amounts of la-

beled data, obtained via computationally and time-intensive

simulations. Another common problem limiting the develop-

ment of autonomous tasks in MIS robotics platforms is the co-

registration between the camera and the robotic arms, since

the two subsystems are usually connected to different bases.

This issue is commonly solved for generic manipulators using

external optical trackers [10]. This approach has been adopted

for surgical robots [8, 11] by attaching markers on the tip of



the surgical instruments. Although accurate, this method re-

quires the use of an external camera, which is a major limita-

tion in a small and delicate environment such as the abdom-

inal cavity, and is prone to inaccuracies due to the presence

blood or debris in the surgical scene. In this work, we: (1)

Present a software framework aimed at solving the problem

of co-registration for robotic platforms specific to MIS, fo-

cused on the ease of use and the feasibility of the application

in a clinical environment. (2) Present an approach to the plan-

ning and execution of complex trajectories on surgical robots,

integrated with ROS and easily adaptable to any platform. (3)

Provide public and documented code in a web repository to

benefit the surgical robotics research community.

2. CO-REGISTRATION ALGORITHM

This section describes the approach adopted to determine the

transformation between the endoscopic camera and the sur-

gical instrument held by the robot. This step is crucial to

plan and execute autonomous tasks based on visual servoing

in scenarios where the endoscope and the robotic arm do not

share the same reference frame. This is the case with robots

such as the dVRK, the Raven [12] and modular robots like

CMR Versyus or Medtronic’s Hugo RAS. The goal is to com-

pute the transformation from the camera frame to the origin of

the robotic arm. This can be solved by evaluating a sequence

of transformations that start from the pose of the robot end-

effector with respect to the camera. In robots equipped with

cameras, this can be achieved by adopting a computer vision

algorithm to detect one or more visual markers mounted on

the end-effector. To this end, we adopt the ArUco markers

[13] and mount them on a custom 3D printed pick-up device,

designed to be held by standard surgical instruments and be

inserted through standard 12mm trocar ports. Once the pick-

up device with ArUco marker is grasped by the robotic instru-

ment (Fenestrated Bipolar Forceps), exposed to the camera

and recognized by the vision algorithm, the transformation

T
p0
C between the PSM’s base frame Tp0 and the endoscope’s

base frame TC is calculated as follows:

T
p0
C = TM

C T
pee

M T p0

pee

(1)

where TM
C is the transformation between camera and a visual

marker held by the end-effector, T
pee

M is the transformation

between the marker and the end-effector reference frame, and

finally T p0

pee

is the pose of the end-effector with respect to the

robot base frame. The transformations are shown in Figure 1

on a DaVinci Patient Side Manipulator (PSM), in which the

base frame is placed in the remote centre of motion, on the

trocar. Assuming that T p0

pee

can be extracted from the robot

kinematics and that T
pee

M is known by design of the marker

holder, TM
C can be estimated by using the endoscope in con-

junction with software packages like tuw marker detection

[14]. Finally, the transformation T
pee

M is applied to align the

marker frame with the tool tip frame of the robot. To increase

RCM RCM
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Fig. 2. Original PSM model and the simplified model used

in this work. In our simplified model, the base of the robot

is omitted, thus removing the parallel kinematic chain and

allowing the usage of the MoveIt! package without any loss

of generality in the trajectory planning.

robustness of the results, we combine both detected transfor-

mations from the left and right endoscopic camera and aver-

age the results over 100 frames, each 100ms apart.

3. TRAJECTORY PLANNING

The co-registration algorithm enables to evaluate and con-

trol the position of the robot end-effector in the camera

workspace. This feature facilitates the definition of points

of interest based on computer vision or deep-learning algo-

rithms and to relate them to the position of the end-effector.

In many autonomous tasks, it is required to generate a trajec-

tory based on the points identified in this step, and to execute

it smoothly. One goal of this paper is to provide a framework

for planning and smoothing of the trajectory dedicated of

surgical robotic tools. For this purpose, the MoveIt! [15]

framework has been used, due to the wide adoption in the

research community. MoveIt! is based on the widely used

Open Motion Planning Library (OMPL) [16] that includes

state-of-the-art algorithms for trajectory planning, manipu-

lation and navigation and is integrated into ROS [17]. In

order to plan a trajectory for a specific robot, and therefore

produce a feasible trajectory in joint and Cartesian spaces,

MoveIt! gathers information about the robot layout from two

files: the Unified Robot Description Format file (URDF),

used in the ROS ecosystem to define robots kinematics, and

the Semantic Robot Description Format file (SRDF), which

includes additional information to the URDF such as default

robot configuration and collision checking. The trajectory

planning is carried out in four steps: (1) The robot URDF

and SRDF are loaded onto Moveit!. (2) The robot starting

position, way-points and goal of the trajectory are defined.

(3) The MoveIt! function computeCartesianPath() is used to

evaluate a sequence of points on straight lines from the start-

ing position, through the way-points, to the final goal. (4)

The Stochastic Trajectory Optimization for Motion Planning



(STOMP) [18] is used to plan trajectory using the previously

generated points as seeds and produce the final trajectory,

represented as a set of points in the 3D workspace. STOMP

is adopted for its capability of avoiding local minima while

allowing a faster convergence to the solution if compared to

other planners such as Covariant Hamiltonian Optimization

for Motion Planning (CHOMP) [19]. Additionally, given its

stochastic nature, the STOMP planner can generate a smooth

path even in the presence of obstacles.

A C++ library, STORM Motion Library (STOR-MoLib)

is developed to provide the code to the community. The

library requires minimal user input and can be utilized by

means of the following methods: compileMotionPlanRe-

quest(waypoints constraint, trajectory seed) and transform-

Trajectory(trajectory, base frame). The first populates the

MoveIt! motion request constraining the passage through

the desired way-points. The trajectory seeds are the output

of the computeCartesianPath function included in MoveIt!.

The second function transforms the trajectory points from the

robot frame to the user-defined base frame, in our case the

camera frame. The MoveIt! motion request is then solved by

the STOMP Planner which returns a smoothed trajectory.

4. EXPERIMENTAL VALIDATION

The validation of our approach is composed of two steps: the

evaluation of the accuracy for the camera-arm registration and

the assessment of the trajectories planning and execution. Al-

though the application of the framework could be general-

ized to any robot, in this work we focus on the dVRK due to

its ubiquity and the availability of an open source simulation

software, thus circumventing the need for a physical platform,

to replicate the results described here. In particular, we adopt

a subset of the full DaVinci system composed of one PSM

and one stereoscopic endoscope mounted on an independent

base. A Linux (Ubuntu 18.04) machine equipped with an In-

tel Xeon Gold 6140 (2.30GHz) CPU, an Nvidia Quadro 5000

RTX GPU and 128 GB DDR4 2666MHz RAM was adopted

to carry out the planning. While the use of a specific robot

is transparent to the co-registration algorithm, the trajectory

planning depends on the features of each robotic arm through

the URDF and SRDF files. Initially, the PSM description files

provided with the dVRK library [3] are used. However, the

PSM adopts a parallel mechanism to ensure a fixed remote

centre of motion. This type of kinematics is not supported in

MoveIt!. In order to overcome this issue, a modified version

of the PSM excluding the parallel link is developed (Figure

2). Despite the different physical layout, the kinematics of

the robot is correctly reproduced by maintaining the Remote

Centre of Mass fixed and eliminating the parallel link and the

preceding links in the kinematic chain.

To quantify the registration error, a 3D-printed calibration

body attachable to the endoscope’s tip was designed. The cal-

ibration body contains nine landmark points (p1C - p9C) with
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Fig. 3. 3D-printed rigid body used for the validation of the

marker-based co-registration (a). 3D-printed rigid body used

to validate the precision during the trajectory execution (b). A

marker has been attached to the body to allow the registration

of the points via the camera.

known distance with respect to the camera’s base frame TC

(Figure 3a). By touching the landmarks with the tip of the

surgical instrument, we acquired the location of these posi-

tions in the PSM’s base frame Tp0.By performing several reg-

istrations (n = 5) and averaging the position of each of the

nine points over all runs we obtain p1p0 - p9p0. With a con-

fidence interval of 0.0734 mm (c = 0.95), we assume the

robot’s positional accuracy to be fairly high and consistent

compared to the camera. In order to assess the accuracy of

the co-registration approach on our surgical setup, five reg-

istrations are performed using the ArUco marker with differ-

ing tool positions and thus different placements of the marker

with respect to the camera. With the acquired transforma-

tions T
p0

C from the visual marker registrations, we transform

the points p1C - p9C on the calibration body from the camera’s

base frame TC to the PSM’s base frame Tp0 and calculate

the euclidean distance to the respective points obtained via

landmark registration. Our results indicate a mean positional

error of 2.71 ± 0.89 cm (c = 0.95) over all registered points

and registration runs compared to the position obtained via

the camera calibration body. We believe the main source of

inaccuracy to be the camera distortion. Despite a thorough

calibration, the fish-eye lenses of the endoscope produce a

significant distortion that negatively affects the accuracy of

the marker detection, particular when the marker is not place

directly at the center of the image. Additionally, the small

distance between the two cameras limits the usage of further

information from the 3D scene via stereo matching or similar

techniques.

In order to evaluate the accuracy of the trajectory plan-

ning and execution, a 3D-printed reference body with four

vertical pegs was designed. The tip of each peg represents

either a way-point or the goal of the trajectory (Figure 3b).

The reference body also integrates an ArUco marker, added to

obtain a transformation from its local reference frame to the

camera frame TRB
C . The coordinates of each way-point are

transformed into the PSM’s base frame Tp0 by combining the



two previously obtained transformations (TRB
p0 = TC

p0T
RB
C ).

The planner evaluates a trajectory starting from the current

position of the instrument, passing along the way-points and

ending in the goal position. Two different trajectory scenar-

ios have been considered with three and four way-points, re-

spectively. Each trajectory has been repeated 8 times and,

for each repetition, the surgical instrument was initially man-

ually placed in a varying position around the starting point.

Although the planner can consider variable instrument orien-

tations, we maintained a constant, randomly selected, orien-

tation during the whole trajectory.

The planner’s output consists of a trajectory defined as

an array of joint values, one set for every trajectory point.

These are converted to the Cartesian space by means of for-

ward kinematics and eventually organised in a vector of poses

sent to the dVRK software. The dVRK only allows a point

to point trajectory, constraining the initial and goal velocity

to zero. To perform a smooth trajectory, we published the

new poses at a rate of 20Hz, sending a new command before

the robot had reached the previous goal and thus avoiding the

condition of zero velocity. Before executing each trajectory,

the position of each way-point with respect to the robot’s base

frame Tp0 was collected by manually positioning the surgi-

cal instrument (large needle driver) onto a landmark on each

peg’s tip and recording its position. Figure 4 shows the 8 tra-

jectories for both the three and four point case. The start and

end point of the trajectory are represented in blue and green,

respectively. The way-points are represented in red. It must

be pointed out that the sequence of the way-points is different

for the two trajectories. The sequence chosen in the four point

case is aimed at demonstrating the ability of the planner to

find a solution in the even in the case of more involved trajec-

tories, containing a indirect path with back and forth motion.

The evaluation of the trajectories is carried out by considering

the minimum distance between the path executed by the robot

and each way-point measured before the trajectory execution

via the robots tool tip. With this reference, the average error

amounts to 1.09± 0.59 cm (c = 0.95) for the three point and

1.30± 0.39 cm (c = 0.95) in the four point case.

5. CONCLUSIONS

In this paper, we presented a comprehensive library to man-

age the trajectory planning of surgical robots with the specific

aim of developing a method that does not require dedicated

hardware such as optical trackers or external cameras, thus

applicable in the context of minimally invasive surgery. Ini-

tially, we presented a method for arm-to-camera registration

based on the ArUco markers. We showed the method to be a

feasible approach in robotic systems where the arms and the

camera do not share the same kinematic base. Subsequently,

we demonstrated an approach for planning and executing tra-

jectories based on Moveit! and integrated with ROS. For our

evaluation, we applied our framework and approach to the

Fig. 4. Repetitions for the trajectory planning and execution

for three point (a) and four point (b) case. The initial point is

shown in blue, the goal point in green and the way-points in

red. The red dashed lines depict the seeds used by the STOMP

planner.

dVRK platform. The registration makes it possible to plan

trajectories with respect to the camera frame, thus supporting

the execution of vision-based autonomous surgical gestures.

Moreover, the registration algorithm can be useful in setups,

such as the dVRK, in which teleoperation is challenging due

to the lack of a simple built-in co-registration protocol. Al-

though the dVRK Setup Joints controller will be available

in the future, not all the research groups have access to the

full platform. We believe that this library could significantly

benefit the research community. STOR-MoLib code is open

source and publicly available 1.

Further development of this library, currently under in-

vestigation, include the implementation of a collision avoid-

ance algorithm, useful in collaboration scenarios in which a

human operator is controlling one arm, while the other arm

is autonomously operated. Other improvements, particularly

regarding the registration accuracy, might be obtained by fur-

ther investigations on the distortion of the cameras’ lenses.

1https://github.com/Stormlabuk/dvrk_stormolib
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