

This is a repository copy of *High-value products from ex-situ catalytic pyrolysis of polypropylene waste using iron-based catalysts: the influence of support materials.*

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/180005/

Version: Accepted Version

Article:

Cai, N, Xia, S, Li, X et al. (7 more authors) (2021) High-value products from ex-situ catalytic pyrolysis of polypropylene waste using iron-based catalysts: the influence of support materials. Waste Management, 136. pp. 47-56. ISSN 0956-053X

https://doi.org/10.1016/j.wasman.2021.09.030

Crown Copyright © 2021 Published by Elsevier Ltd. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	High-value products from ex-situ catalytic pyrolysis of polypropylene waste
2	using iron-based catalysts: the influenceof support materials
3	Ning Cai ¹ , Sunwen Xia ¹ , Xiaoqiang Li ¹ , Haoyu Xiao ¹ , Xu Chen ¹ , Yingquan Chen ^{1*} , Pietro
4	Bartocci ² , Hanping Chen ¹ , Paul T. Williams ³ , Haiping Yang ¹ *
5	¹ State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong
6	University of Science and Technology, 430074, Wuhan, PR China
7	² Department of Engineering, University of Perugia, via G. Duranti 67, 06125, Perugia, Italy
8	³ School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT UK
9	*Correspondingauthor;

10 Email addresses: <u>chenyingquan@hust.edu.cn</u> (Y. Chen), <u>yhping2002@163.com</u> (H, Yang)

Abstract: Catalytic pyrolysisis considered a promising strategy for the utilisation of 11 12 plastic waste from the economic and environmental perspectives. As such, the supporting materials play a critical role in the properties of the catalyst. This study 13 clarified this influence on he dispersion of the iron (Fe) within an experimental 14 context. Four different types of typical supports with different physical structures 15 16 were introduced and explored in a two-stage fixed-bed reactor; these included metallic oxides (Al₂O₃, TiO₂), a non-metallic oxide (SiO₂), and molecular sieves (ZSM-5). The 17 results show that the liquid products were converted into carbon deposits and lighter 18 19 gaseous products, such as hydrogen. The Al₂O₃-supported catalyst with a relatively 20 moderate specific surface areas and average pore diameter exhibited improved metal distribution with higher catalytic activity. In comparison, the relatively low specific 21 22 surface areas of TiO₂ and small average pore diameters of ZSM-5 had a negative impact on metal distribution and the subsequent catalytic reformation process; this 23 wasbecause of the inadequate reaction during the catalytic process. The Fe/Al₂O₃ 24 25 catalyst produced ahigher yield of carbon deposits (30.2 wt.%), including over 65% high-value carbon nanotubes (CNTs) and hydrogen content (58.7 vol.%). Additionally, 26

more dispersive and uniform CNTs were obtained from the Fe/SiO₂ catalyst. The 27 28 Fe/TiO₂ catalyst promoted the formation of carbon fibre twisted like fried dough twist. Notably, there was interesting correspondence between the size of the reduced Fe 29 30 nanoparticles and the product distribution. Within certain limits, the smaller Fe particle size facilitatesthecatalytic activity. The smaller and better dispersed Fe 31 particles over the support materials were observed to be essential for hydrocarbon 32 cracking and the subsequent formation of carbon deposits. The findings from this 33 34 study may provide specific guidance for the preparation of different forms of carbon materials. 35

36 Keywords: Waste plastics; Catalytic pyrolysis; Support materials; Hydrogen; Carbon

37 nanotubes

38 **1 Introduction**

With the advancement of the modern society, polymer plasticsare well-received 39 40 owing to their superior performance and are widely used in industry and production. However, many plasticshave a short longevity and tend to become part of the municipal 41 42 solid waste (MSW) stream(Li et al., 2020b). In 2017, approximately8.3 billion tons of plastic waste was generated worldwide;only 9wt.% of this waste was recycled(Geyer et 43 al., 2017). The onset of the novel coronavirus (COVID-19) pandemic has rapidly 44 increased the consumption of plasticssuch as personal protective equipment (PPE) 45 (Prata et al., 2020). Therefore, the recovery of the plastic wastefor the manufacture of 46 high-value products is of great significance and has been attracting increasing attention. 47 48 Compared with traditional incineration or landfilling, catalytic pyrolysisis considered as an efficient meansto convertwaste plastic into high-value products such 49 as hydrogen (Williams et al., 2020; Yao et al., 2017), jet fuel (Huo et al., 2020; Zhang et 50 al., 2019) and carbon nanotubes(CNTs)(Nahil et al., 2015; Williams et al., 2020). As 51 such, catalytic pyrolysis has demonstrated enormous potential for plastic waste 52 recovery and utilisationas it creates valuable products while reducing environmental 53 54 pollution (Ellis et al., 2021). Moreover, naphtha may be a promising means to recycle polyolefins for the development of a circular economy (Dai et al., 2021). Based on the 55 56 requirements of cracking carbon–carbon and carbon–hydrogen bonds, transition metal 57 (iron and nickel)based catalysts have been broadly used in the catalytic pyrolysis of plasticwaste (Ahmed et al., 2009; Jonathan et al., 2016; Wang et al., 2020a). Acombet al. 58 (Acomb et al., 2013)investigated thecatalytic pyrolysis of electrical and electronic 59

equipmentwaste, finding that higher molecular weight polyaromatic hydrocarbons 60 (PAHs) were thermally degraded via cracking when nickel catalysts were used. They 61 62 formed smaller molecular weight aromatic compounds and hydrocarbon gases, increasing the hydrogen yield. Aboulet al. (Aboul et al., 2018) found that altering the 63 iron metal ratio in the catalyst may adjust thetype and morphology of the deposited 64 carbon.Here, hybrid materials, CNTs, carbon nanofibres (CNFs) accompanied 65 withcarbon nano-onions (CNOs), as opposed to CNTs, were collected from 66 intermediate iron loadings. Furthermore, compared with Ni catalysts, iron-based 67 68 catalysts have generated higher carbon deposit yields because of the decent dispersion in thealuminium oxide(Al₂O₃) support material (Yao et al., 2018b). However, other 69 studies have reported different results in which better dispersion was obtained using 70 71 Ni-based catalysts, although lower carbon deposits or catalytic activity was observed(Liu et al., 2017). Overall, the literature suggests that ironexhibits better 72 73 catalytic activity than other transition metals in the thermal catalytic degradation of 74 plastic waste. Additionally, compared with Ni and other metals, iron is a cost-effective 75 metal that is a relatively more suitable candidate for the catalytic pyrolysis of plastics 76 waste and large-scale applications(Panda et al., 2010).

Support materials also play an important role in catalyst properties; they promote the dispersion of active metal particles and provide mass transport channels and reaction sites as a result of their physicochemical structure (Deelen et al., 2019). In general, several types of materials have been used as supports, including metal oxides (Aboul et al., 2018; Torres et al., 2014), non-metallic oxides (Shen & Lua et al., 2015; Wei et al.,

2001), molecular sieves (López et al., 2011; Santos et al., 2018) and biochar (Li et al., 82 2020a; Zhang et al., 2019) from the pyrolysis of biomass. Li et al. (Li et al., 2014) found 83 84 that more uniform carbon materials were obtained from alumina as opposed to zeolite-supported catalysts because of their porous structure. Yao et al. (Yao et al., 85 2018b)observed that alumina supports exhibited better effects, and the catalytic results 86 changed with the formation of various crystalline phases. However, Santos et al. 87 (Santos et al., 2018) discovered that support materials with many mesopores inhibited 88 89 the conversion of volatiles to solid products. Takenaka et al. (Takenaka et al., 2001) 90 obtained highlyunusual results; they reported that the catalytic support silica, without a pore structure, was the most satisfactory catalyst in terms of carbon deposit. This may 91 92 be indicative of the relatively week affect the physical structure of the support hadon 93 the catalytic process. These studies indicate that selecting different supporting materials may adjust the distribution and quality of products, particularly for gaseous or 94 95 carbon deposits. However, these studies rarely considered liquid oil during catalytic 96 pyrolysis of plastic waste, andthere is uncertainty as to the mechanism underlying the competitive transformation between products. The conversion mechanism of plastic 97 98 waste using different support materials also requires further investigation.

99 This study utilised four types of materials, Al_2O_3 . silicon dioxide 100 (SiO₂),titanium dioxide (TiO₂), and ZSM-5,as supports for iron catalysts, and polypropylene (PP) waste was selected as the raw material. The effect of supports 101 on the catalytic pyrolysis of plastic waste, correlation of support with catalyst activity, 102 and properties of products were exploredbased on thephysicochemical properties of 103

104 fresh catalysts and obtained products. An in-depth analysis of the related reaction105 mechanisms was also undertakenconcurrently.

106 2 Materials and methods

107 **2.1 Materials**

The PP samples were collected from a waste lunch box (washed);**Table S1**details the corresponding proximate and ultimate analyses.The ultimate analysis showed that carbon and hydrogen make up approximately 99 wt.% of the raw materials. The proximate analysis showed that the raw materials were abundant in volatiles (up to 99.87 wt.%),with only 0.06 wt.% ash.

Iron nitrate nonahydrate (Fe(NO₃)₃·9H₂O, \geq 98.50%), Al₂O₃(\geq 99.99%), SiO₂ 113 114 (≥99.7%), and TiO₂(≥99.50%) were purchased from Sigma-Aldrich (China). Absolute ethanol (≥99.7%)was purchased from Sinopharm Chemical Reagent Co., Ltd. 115 (China).ZSM-5(SiO₂/Al₂O₃ ratio=23)was purchased from Tianjin Nanhua Catalyst Co., 116 117 Ltd. (China). All other chemicals were of analytical grade and used without further purification. The catalysts used in this study were prepared using an impregnation 118 method, as described in previous studies (Cai et al., 2020a; Cai et al., 2020b);10 wt.% 119 iron was introduced in the catalysts. For the Fe/Al₂O₃ catalyst, 0.72 g FeNO₃·9H₂O 120 121 was dissolved in 30 mL absolute ethyl alcohol. Following completedissolution, 0.9 g Al₂O₃ was added to the solution and stirred at 50 °C with a magnetic stirrer until the 122 123 solution had formed a slurry. The slurry was oven-dried at 105 °C for 12 h to remove excess ethanol. The obtained solid was smashed into small particles between 0.08 and 124

125 0.16 mm. The catalyst powder sample was calcined at 800°C for 2 h at a heating rate of 126 20 °C min⁻¹ in air. After cooling to room temperature (~25°C) naturally, the catalyst was 127 collected and labelled as Fe/Al₂O₃. The other three catalysts, using SiO₂, TiO₂, and 128 ZSM-5 as support materials, were prepared using the same method and ratio, and were 129 termed asFe/SiO₂, Fe/TiO₂, andFe/ZSM-5, respectively.

130 **2.2 Catalytic pyrolysis experiment**

Catalytic pyrolysis experiments were conducted in a two-stage fixed-bed reactor 131 (Fig. S1). For each trial, an iron-based catalyst (0.5 g) was placed into a quartz 132 bracketplantloaded on the lower catalytic stage. Then, nitrogen was introduced into the 133 reactor to create an inert atmosphereat 500 mLmin⁻¹ for 20 min. Subsequently, 134 thenitrogen gas flow velocity was switched to 100 mLmin⁻¹, and the lower stage was 135 first preheated to 800°C from the indoor temperature at a heating rate of 20°C min⁻¹ 136 and maintained at isothermal. As soon as the lower stage reached 800 °C, a hanging 137 quartz basket with 1 g of plastic waste inside was introduced into the upper stage 138 139 using a telescopic device. The upper pyrolysis stage wasconcurrently heated at a rate of 10 °Cmin⁻¹ to 500 °Cand maintained at isothermal for 10 minprior to completing 140 the catalytic pyrolysis experiments. To adequately collect the products, liquid oil and 141 gaseous products were collected separately from repeated trials(Tang et al., 2020). 142 Volatiles from catalytic pyrolysis wereliquefied using liquid nitrogen, and liquid oil 143 was collected once the condensing bottle temperature returned to room temperature. 144 For gaseous products, ice water was used to condense the volatiles to avoid the 145

excessive condensation of small molecules; this resulted in an incomplete collection. The specific collection method was that: when upper pyrolysistemperature reached 300° C, the gas collecting bag was connected with the end of the gas path for 30 min for gas collection. The black solid residue in the lower quartz bracket was gatheredwhen the entire reaction system was cooled to room temperature (~25 °C).

Notably, the gaseous yield was determined from the total gas volume, gas density, and gas volumeafter nitrogen was removed (Zou et al., 2018). The liquid oil yield was calculated from the difference betweenthe initial and final weights of the condensate bottle in the liquid nitrogen condenser. For the solid product, yield was computed using the weight difference of the quartz holderbefore and after the catalytic pyrolysis. Furthermore, the experiment using the same catalyst was carried out at least three times, and the average was computed from three sets of data with an error<5%.

158 **2.3 Characterisation of catalyst and catalytic pyrolysis products**

X-ray diffraction (XRD) (Philips X'Pert PRO, Japan) was used to explore the 159 160 crystalline structures of the prepared catalysts; the scanning range and speed were 10–80° and 7° min⁻¹, respectively. The physical structure was determined using nitrogen 161 adsorption measurements (Quantachrome IQ, USA) at -196 °C. The specific surface 162 areas werecalculated using the Brunauer-Emmett-Teller (BET) method andpore size 163 distribution was computed using the non-linear density function theory(NLDFT) 164 calculation model with the adsorption branch. Moreover, total pore volume (V_{total}) was 165 calculated from the maximum P/P_0 , and the average pore diameter was determined 166

167 using the V_{total} and specific surface areas.

168	Gaseous products were detected using gas chromatography (GC) (Panna A91, China).
169	Two different modules, a thermal conductivity detector (TCD) and flame ionisation
170	detector (FID), were equipped to separate and analyse as many chemical species as
171	possible in these gaseous products. The relative volumetric yields of other gaseous
172	compounds were calculated, with the exception of the nitrogen inside. Furthermore, the
173	lower heating value(LHV) of the gaseous products was computed using Eq. (1):
174	LHV(MJ/Nm ³)=0.126×CO+0.108×H ₂ +0.358×CH ₄ +0.665×C _n H _m (1)
175	where each species represents its volumetric fraction.
176	The components of the liquid oil were identified using GC-mass spectroscopy
177	(GC-MS, Agilent, HP7890 series GC with an HP5975MS detector, United States) with
178	an HP-5MD capillary column that had a temperature limitation between 0 and 350 $^{\circ}$ C
179	The organic components in liquid oil were identified using a mass spectral
180	library(NIST14.L).
181	Transmission electron microscopy (TEM) and high-resolution transmission electron
182	microscopy (HR-TEM) were used to visualise the surface morphology and size of the
183	reacted catalysts with a field-emission transmission electron microscope (FE-TEM)
184	TecnaiG2 F20 S-TWIN, United States), at an accelerating voltage of 200 kV. Using the
185	XRD results, the size of the carbon and ironin the reacted catalysts (D_C and D_{Fe}) were

186 calculated using the Scherrer equation (Eq. (2)) based on the (002) and (110) peaks,

187 respectively. The interlayer spacing (d_{002}) of carbon was calculated using Brag's law, as

188 shown in Eq. (3). The graphitisation degree (g^d) and the number of carbon layers (N)

were evaluated based on the interlayer spacing. Thermogravimetric analysis (TGA) was carried out for the reacted catalyst at a heating rate of 20 °C min⁻¹on a DiamondTG/DTA (PerkinElmer Instruments, China) to analyse the carbon deposit properties. Furthermore, Raman spectra from 800 cm⁻¹to 3200 cm⁻¹were obtained to determine the graphitisation degree of the carbon deposits using aRaman instrument with an excitation wavelength of 532 nm (LabRAM HR 800, France):

- 195 $D=k\lambda/\beta\cos\theta$ (2)
- $d_{002} = n\lambda/2\sin\theta \quad (3)$

197 **3 Results and discussion**

198 **3.1 Prepared catalysts**

199 The crystal properties of the fresh catalysts were studied using XRD, and the results are presented in Fig. 1a. Several broad and weak peaks were observed for the 200 Fe/Al₂O₃ catalyst, which were associated with the Al₂O₃support material. There was 201 202 only one peak related to Fe₂O₃ at approximately 35.7°. The Fe/SiO₂ catalyst showed sharp and intense Fe_2O_3 diffraction peaks, indicating a high degree of crystallisation; a 203 204 left peak located at approximately 25° was attributed to SiO₂. The XRD diffraction 205 spectrum of Fe/ZSM-5 showed strong and narrow features and multiple peaks 206 indicative of the crystalline phases of Fe₂O₃. There were also many dense peaks at relatively low angles; this represents the characteristic peak of the ZSM-5 molecular 207 208 sieve. Compared with the Fe/SiO₂ catalyst, there was a slight difference observed for the Fe/ZSM-5 catalyst, in which an Fe-Si bond was formed. For the Fe/TiO₂ catalyst, 209

the diffraction peaks were more numerous, higher, and sharper; however, most peaks were associated with TiO₂. Only one peak at approximately 35.7° was ascribed to the active component, Fe₂O₃.The crystalline phases of Fe₂O₃ prepared by impregnation were mainly alpha, and the corresponding PDF card number was 01-089-0598.By contrast, crystalline Fe₂O₃ and Fe₃O₄ were obtained from bimetallic catalysts (Yao et al., 2021), reflecting the critical influence of the introduction of other metals.

216 materialexhibiteddifferent dispersive capacities for Each supporting the 217 samemetal. Table S2 details the average crystallite size of Fe₂O₃for all catalysts 218 calculated using the Scherrer equation from the peak at approximately 2θ and 32.8° . 219 The exact Fe₂O₃ average crystallite size was26.24, 37.53, 43.77 and 76.93 nm for the Fe/Al₂O₃, Fe/SiO₂, Fe/ZSM-5 and Fe/TiO₂ catalysts, respectively. The results show that 220 221 the iron catalyst was well-dispersed over theAl₂O₃ support, followed by the SiO₂, ZSM-5, and TiO₂ supports. Yao et al. (Yao et al., 2018b)found that iron can disperse 222 well on an Al₂O₃ support, which plays a critical role in subsequent catalytic 223 224 conversion; SiO₂ has also been widely used as a support material. However, better dispersion or a smaller ironparticle size was obtained in this study compared with a 225 226 previous report(Liu et al., 2017). The larger crystallite sizes obtained from TiO₂ 227 supportmaterials have also been observed in other studies; these larger sizes have 228 caused relatively lower catalytic activity(Rossetti et al., 2013).

The nitrogen isothermal adsorption–desorption curves and pore size distribution of
all prepared catalysts are shown in the insets of Fig. 1b and Fig. 1b, respectively. Fig.
1b shows that the Fe/Al₂O₃ and Fe/SiO₂ catalysts exhibitedtype III isotherms and H3

hysteresis loops(at relativelyhigher pressures of approximately 0.5–1.0). This 232 is characteristic of slit holes formed from the accumulation of flake particles, often 233 234 observed in mesoporous or macroporousmaterials(Tsai et al., 2002);evidently, the pore size of Fe/SiO₂was slightly larger. In addition, for the isotherms of Fe/ZSM-5, the 235 volumetric absorption was higher at relatively low P/P₀; this is related to the presence 236 of micropores. Table S2 presents the pore structural parameters, such as specific 237 surface area, pore volume, and average pore diameter. The Fe/ZSM-5 catalysthad the 238 maximum S_{BET} and minimum D_{average}, corresponding to 178 m² g⁻¹ and 5.01 nm, 239 240 respectively. This originates from the porous characteristics of the ZSM-5substrate. The highest V_{total} and D_{average} were obtained from Fe/SiO₂ catalyst, 241 being 1.11 cm³g⁻¹ and 46 nm, respectively. Notably, the Fe/TiO₂ catalyst had a 242 243 relatively lowerS_{BET} and V_{total}, which may be due to the poor dispersity and larger iron oxide. The inset inFig. 1b shows the pore size distributions of the four catalysts 244 according to the QSDFT model. A clearraised peak at approximately 28 nm was 245 246 observed for Fe/SiO₂, and there were no pores smaller than 10 nm; this contributed to the largest average pore diameters. For the Fe/ZSM-5 catalyst, there was a sharp peak 247 at approximately 3 nm, indicative of the presence of small mesopores and the 248 corresponding large S_{BET} of the Fe/ZSM-5 catalyst. These results were also consistent 249 250 with theS_{BET} and D_{average} values presented in **Table S2**.

3.2 Analysis of yield and composition

252 **3.2.1 Yield of catalytic pyrolysis products**

 Table 1 presents the product distributions of different phases from the catalytic
 253 pyrolysis of PPwaste.Without the catalyst, PP largely cracked into liquid oil (~46 254 wt.%)and gaseous products(~45 wt.%);the remaining coke was negligible.Oncethe 255 256 catalyst was added, the yield of solid carbon depositsemerged; a dramatic decrease in 257 the liquid oil yield was also observed. For the Fe/Al₂O₃ catalyst, a higher solid (30.2 wt.%) and lower gaseous (41.7 wt.%) yield was observed. A greater amount of liquid oil 258 (20.6 wt.%) was collected for the Fe/ZSM-5 catalyst; this may be related to a smaller 259 260 pore size that limits the catalytic reaction or the intrinsic acidity of the ZSM-5 support that promotes the formation of aromatic hydrocarbons(Che et al., 2019). 261

For the Fe/SiO₂ catalyst, a lower yield of the liquid product was obtained. This 262 263 might be attributed to the fact that large molecules could enter the larger pores of the 264 Fe/SiO₂ catalyst andcome into contact with active sites, which is beneficial to the further cracking of volatiles(Hamid et al., 2017). A lower solid (26 wt.%) and higher 265 266 gaseous product (45.7 wt.%) yield was obtained for Fe/TiO2. The excessively strong interaction between iron species and TiO₂ may lower the reduction of iron oxide 267 particles, decreasing catalyticactivityduring the catalytic pyrolysis(Rossetti et al., 2013). 268 269 Notably, the gaseous productyield was more stable than the other two products, which may reflect the potential conversion pathway. This pathway is characterised by larger 270 molecules in liquid oil being involved in the cracking and deposition process, largely 271

converting into carbon deposits and producing a lower liquid oil yield. Furthermore, the
mass balance for the PP catalytic pyrolysis was approximately 90 wt.%, and 10% errors
may be related to the pyrolysis volatiles condensed on the inner walls of the reactor or
specific hydrocarbon gases that are difficult to detect with GC.

276

3.2.2 Components of gaseous products

The gaseous product distribution of the catalytic pyrolysis plastic waste is presented 277 278 in Table 1. Apparently, hydrogen gas (H₂), alkane (like CH₄), and olefin gases (e.g., C_2H_4)were dominant in the gaseous form. **Table 1** shows that without the catalyst, CH_4 279 was the main component, accountingfor >54 vol.% of gaseous products. Subsequently, 280 281 H₂ and C₂H₄ occupied 22.8 vol.% and 20.5 vol.%, respectively. However, more H₂ was collected from gasification process (Liu et al., 2019). In addition, a small amount of C₃₊, 282 including propylene and propane, were also observed. At high temperatures, PP 283 284 crackedtoolefins (including ethylene)in a random scission manner, and further crackedinto C₂H₄, CH₄, and H₂(Chi et al., 2018). With the introduction of a catalyst, the 285 gaseous composition greatly altered with a significant decrease in CH₄ and 286 C₂H₄;however, the proportion of H₂ increased significantly, and some carbon monoxide 287 (CO)was detected. The increase in H₂may be attributed to the secondary reaction of 288 hydrocarbon gases on the surface of the catalyst, while the CO produced may be related 289 290 to the presence of Fe₂O₃. Under the pyrolysis atmosphere, Fe₂O₃ was reduced to iron by H_2 or other hydrocarbons, and oxygen was possibly released in the form of H_2O ; 291 thismay be further transferred to CO by reacting with hydrocarbons(Zhang et al., 292

293 2015).

Furthermore, the gaseous component distribution differedas a function of the 294 295 catalysts with various supports. The H₂ content increased by 157% in the presence of the Al₂O₃support catalyst compared to that in the absence of the catalyst;specifically, the 296 H₂yield increased from 22.8 vol.%to 58.7 vol.%with the introduction of the Fe/Al₂O₃ 297 catalyst.Hydrogenis mainly generated from the cracking of C-H bonds in hydrocarbons, 298 particularly with small molecules of hydrocarbons such as CH₄ and C₂H₄, resulting in a 299 sharp decrease in CH_4 and C_2H_4 (Barbarias et al., 2018). The other catalysts (Fe/SiO₂, 300 301 Fe/TiO₂, and Fe/ZSM-5) had similar methaneyields (~42 vol.%). However, the Fe/TiO₂ 302 catalyst produced a higher volumetric fraction of C₂H₄and a lower volumetric fraction of H₂; this means that there was less C₂H₄involved in the catalytic depositionin the 303 presence of the Fe/TiO₂ catalyst. This reflects the relatively low activity of the Fe/TiO₂ 304 catalyst, whichmay be associated with the low specific surface areas and 305 underdeveloped pores of the Fe/TiO₂ catalyst. Table 1 shows that the hydrogen 306 production trend was similar to the solid product yield, further confirming that 307 hydrogen is mainly formed from solid deposition. 308

Table 1 also presents the LHV of gaseous products derived from the catalytic pyrolysisof PP. The LHV of gaseous products from pure PP pyrolysiswas as high as 36.8 MJ Nm⁻³; this is comparable to that of the natural gas(Tang et al., 2019). The results show that the LHV of gases from different catalysts varied from 21.2 MJ Nm⁻³ to 26.9 MJ Nm⁻³; these values werelower than that obtained without catalysts; however, the gases can still can be used as industrial fuel.

315 **3.2.3 Components of liquid oil**

Fig. 2and S2 illustrate the carbon number distribution (relative percentage of peak 316 317 area) and chromatograms, respectively, for organic constituents in liquid oil collected using different catalystsduring the catalytic pyrolysis. The liquid oil from PP pyrolysis 318 in the absence of thecatalyst contained a large number of aromatic hydrocarbons; 319 these aromatics had a wide range of carbon number, which varied from C6 to 320 321 C22. This wide range maybe attributed to the formation of aromatics from the olefins derived from PP pyrolysis via the Diels-Alder reaction and dehydrogenation at high 322 temperatures (600-800°C) (Park et al., 2019a). The specific ingredients of the liquid 323 productswere relatively complex, varying from monocyclic aromatic hydrocarbons to 324 PAHs, such as benzo[e]pyrene. To obtaindetailed information on the composition of 325 326 the liquid oil, the peak area percentage was used to analyse the relative content of different components. Fig. 2shows that >14% benzene, toluene, and xylene (BTX) 327 was directly produced from PP pyrolysis. The proportion of C10 was higher (20.8%) 328 329 than that of any otheringredient; C10corresponded to 4-phenylbut-3-ene-1-yne. When the iron-based catalyst was introduced, greater changes were observed in the liquid 330 components. For the liquid product from Fe/Al₂O₃ catalyst, BTX was barely detected, 331 although the proportion of C12, C14, C16 and C20 was largely increased. The 332 components in the catalytic pyrolysis liquid oiltended to occur in more stable forms 333 without branches. For example, naphthalene was the main form of C12 in catalytic 334 pyrolysis oil as opposed to 4-phenylbut-3-ene-1-yne. Naphthalenemay be produced 335 from monocyclic aromatics, 4-Phenylbut-3-ene-1-yne,or long chain olefins(Carlson et 336

al., 2009). Furthermore, naphthalene may also be generated from the break of 337 branched chains in 2-methyl naphthalene. Compared with theliquid oil composition 338 339 obtained using the Fe/Al₂O₃ catalyst, the use of Fe/SiO₂resulted in a similar liquid oil composition. However, xylene could continue to be collected and this may also reflect 340 341 aweaker catalytic activity of Fe/SiO₂ compared to that of the Fe/Al₂O₃ catalyst.In comparison to other catalysts, the liquid oil obtained when Fe/ZSM-5was used 342 exhibitedricher compositions, which may berelated to the intrinsic surface acid sites on 343 ZSM-5(Che et al., 2019). The presence of acid sites contributes to the formation of 344 345 aromatics and is significantly conducive to forming carbon deposits; this mayconstitute the major source of amorphous carbon(Chen et al., 2019). For 346 theFe/TiO₂ catalyst,PAHs(such as C16 and C20, corresponding to pyrene and 347 348 benzo[e]pyrene, respectively) showed an apparent increase in liquid oil;these macromolecules are considered to be the precursors during carbon depositsformation 349 (Park et al., 2019b). The increase in PAH content may be due to thelow specific surface 350 351 area and underdeveloped pores of the TiO₂ support. Notably, liquid oil is abundant inaromatics with carbon numbers between 8 and 16, which means it is feasible as 352 anadditivefor jet fuel.(Zhang et al., 2019). The liquid oil may also be used as a raw 353 material to prepare other chemical products through refinement(Wang et al., 2020b; 354 355 Xu et al., 2020; Yuan et al., 2021).

356 3.2.4 Components of reacted catalysts

Fig. 3 presents the TEM imagery and the outer diameter distribution of the CNTs in

the carbon deposits on reacted catalysts. The fibre-like carbon material and 358 themetalnanoparticleson the inside were observed in all TEM images. TEM images 359 360 of the reacted Fe/Al₂O₃ catalyst in Fig.3a confirm that irregular, convoluted, and intertwined multiwall CNTs were prepared. The lattice fringe of nanoparticles on the 361 inside was 0.204 nm, corresponding to the (110) plane of iron (Fig. 3a inset). Fig.3b 362 shows that the outer diameter distribution of CNTsobtained using the Fe/Al₂O₃ catalyst 363 was between 10 nm and 30 nm. Although the ratio of the standard deviation to the 364 average outer diameter exceeded 10%, the size of CNTs was more uniform than that 365 366 previously reported(Gong et al., 2012; Jia et al., 2020; Yao et al., 2018a). This can be attributed to the improved dispersion of active iron species in the Al₂O₃ support. This 367 better dispersion is beneficial to obtain more uniform size of CNTs, although it may 368 369 also lead to entangled CNTs. For carbon deposits from the Fe/SiO₂ catalyst (Fig.3c), a large number of silica nanoparticleswere clustered together, and CNTswere away from 370 each other withoutbeing interwoven; thismay be attributed to the improved dispersion 371 and lower concentration per m² of iron(Rossetti et al., 2013). The combination of these 372 two phenomena eventually led to an independent and uniform distribution of CNTs. A 373 small number of defects produced from the thermochemical processwere also observed 374 at the edge of the tube wall (Fig. 3c inset). The size of the produced CNTs 375 376 washomogeneous, and the outer diameter of the CNTs was between 25 nm and 34 nm, with a very small standard deviation (1.8 nm) (Fig. 3d). Based on the TEM results, 377 378 SiO₂may be a suitable support to preparenon-interlaced CNTs.Furthermore, clear bamboo-like structures were observed for CNTswith some complete and some 379

incomplete knots inside; this may be attributed to the continuous deformation of metalparticles and the restoration of cohesive forces(Lin et al., 2007).

382 In terms of the carbon deposited from Fe/ZSM-5(Fig. 3e), more uneven and chaotic CNFmaterialwas observed; it included tubes and fibres, which may be attributed 383 tosmaller pore sizes or narrower channels (Li et al., 2014). It is also possible that 384 385 structural collapse due to thermal instability at high temperatures resulted in the uneven dispersion and instability of metal particles, leading to diverse carbon deposits. The 386 diameters of the CNF materials are presented inFig. 3f; they were significantly 387 388 differentfrom each other.Furthermore, TEM images of the reacted Fe/TiO₂catalyst 389 (Fig.3g) showed a completely different type of carbon material from the other catalysts; this wasa CNF-like chainwith irregular iron particles within every shot of the chain. The 390 391 carbon fibrewas twisted like fried dough twist, which did not resemble CNTs. As the active metal component was continuously stretched and deformed during the growth 392 of graphene while being impacted by its own stress and reciprocation, the small metal 393 394 particles were separated (Lin et al., 2007). The distribution of the outer diameter was wider ornon-uniform(Fig. 3h). Overall, the poor dispersion of active iron produced 395 396 larger metal particles, which negatively impacted the formation of CNTs (Rossetti et al., 397 2013). These results demonstrate that various support catalysts have different effects on the formation of carbon materials.Studies have reported that the vapour-liquid-solid 398 (VLS) is the mechanism that forms CNTs during this process(Yao et al., 2020). This 399 400 process firstinvolves the adsorption and decomposition of hydrocarbons into carbon atoms in the presence of iron nanoparticles. This is followed by the dissolution and 401

402 diffusion of carbon within the molten particles; ultimately, the carbon precipitates403 from the particles and forms CNTs.

404 The reacted catalysts were evaluated using XRD to obtain information on the crystals. Fig.4a shows that two peaks located at approximately 26 ° and 44 ° correspond 405 to carbon andiron, referring to PDF card numbers 01-075-1621 and 01-089-7194, 406 respectively. The other peaks for each catalyst were associated with the relevant 407 supports.Based on the XRD patterns, the crystallite size and some other parameters of 408 the CNTsand ironwere calculatedusingScherrer equation and Bragg's law(Major et al., 409 410 2018), as shown in Table 2.In general, the half-peak width and the position of the 411 (002) carbon peakwere associated with the physical structure, such as the space of the 412 (002) peak and carbon layers of the formed CNTs. The interlayer space (d_{002}) for all reacted catalysts wasslightly larger than the theoretical value (0.335 nm); this may be 413 attributed to defects produced during thecatalytic pyrolysis depositionprocess(Xia et 414 al., 2019). This was also evident in the TEM results shown in the inset of Fig. 3c. The 415 416 carbon layer thickness (Dc), based on the (002) peak, increased from 7.759nm to 11.365 nm, and the corresponding number of carbon layers was approximately 417 418 between 22 and 35; this means that the CNTs or fibres prepared were 419 multi-walled. The graphitisation degree of deposited carbon on the reacted Fe/Al₂O₃, Fe/SiO₂, and Fe/ZSM-5 catalysts increased from 0.36 to 0.374. Moreover, the 420 graphitisation degreeofthe carbon deposits on Fe/TiO2increased up to 0.458; this 421 422 wasmuch higher than that recorded for the other catalysts. It has been reported thatiron mayenhance the graphitisation degree of carbon materials(Xia et al., 423

2020a). Therefore, the higher graphitisation degree of carbon from Fe/TiO₂may be 424 related to the large number of ironparticles evident in the TEM results(Fig. 3g). In 425 426 addition, the average diameter of the reduced iron particles for different reacted catalysts was calculated; it varied from approximately 10.978 nm to 45.376 nm. 427 Notably, the size of iron metal particles in different catalysts was inversely 428 proportional to the corresponding solid yield (Fig.4b); this indicates that large metal 429 particles are unfavourable for carbon deposits.Larger particles have been reported to 430 431 lead to a smaller active surface area, eventually leading to weaker catalytic properties 432 (Jiang et al., 2009). In this study, it was found that a smaller active surface area may decrease the contact efficiency between volatile gases and active metal particles, 433 resulting in an inadequate reaction and a decrease in catalytic activity; thisleads to 434 435 fewer carbon deposits. Moreover, the specific surface areas of catalysts, usually originating from support materials, also plays a non-negligible rolein the catalytic 436 process (Kim et al., 2002). The Fe/TiO₂ catalysts, with lower specific surface areas, 437 438 decreased the ability for mass transfer, leading to a lower contact efficiency andreduced carbon deposition yield. Other reports with different supports or active 439 metals have also observed a close relationship between particle size and carbon 440 deposit yields in Fig. 4b. 441

TGA was carried out to analyse the reacted catalysts (**Fig. 5**);**Fig. 5a** shows that when the temperature was <450 °C, the mass of all samples remained quite stable. With increasing temperature, the carbon on the reacted catalyst began to oxidise, and sample mass declined. When the temperature reached 750 °C, all carbon deposits on the

446	catalysts were completely oxidised, and mass remained stable. As such, although iron
447	was oxidised at higher temperatures, the effect of oxidation was less than 2%
448	compared with the reacted catalysts because of the lower loading. The results show
449	that the total weight losses were 37.95, 34.00, 32.54 and 27.60 wt.% for the reacted
450	Fe/Al ₂ O ₃ , Fe/SiO ₂ , Fe/ZSM-5 and Fe/TiO ₂ catalysts, respectively.A larger (smaller)
451	weight loss was observed for the reacted Fe/Al ₂ O ₃ (Fe/TiO ₂) catalyst; this is consistent
452	with the product distribution in Table 1. According to previous studies, different types
453	of carbon depositswere obtained during catalytic pyrolysis, and the TGA test may be
454	used to distinguish the types of carbon according to the oxidising temperature(Yang et
455	al., 2015). Fig. 5a shows that the maximum oxidation rate of the carbon deposits was
456	observed at approximately 650 °C. Therefore, 650 °C was selected as the boundary
457	temperature to distinguish between amorphous carbon and graphite. The weight loss
458	that occurred between 450 °C and650 °C was related to amorphous carbon on the
459	surface of the catalyst, and weight loss at higher temperatures corresponded to graphite.
460	Fig. 5b shows that he reacted Fe/Al ₂ O ₃ catalyst had a higher proportion of graphite
461	carbon (~76%), suggesting the production of a filamentous carbon with higher thermal
462	stability (Yao et al., 2018b). However, for carbon deposits from the Fe/SiO ₂ , Fe/ZSM-5,
463	and Fe/TiO ₂ catalysts, a higher proportion of amorphous carbon (over 50%)
464	wasobserved. The observation ofmore amorphous carbon materials may be related to
465	the relatively low catalytic activity of the ironparticles inside, leading to the formation
466	of amorphous carbon. Furthermore, the collected amorphous carbon may originate
467	from the oligomerisation of polycyclic aromatics(Deng et al., 2015).

468	To further explore the characteristics of the deposited carbon obtained, Raman
469	spectroscopy was used to identify the graphitisation degree of carbon and the purity of
470	CNTs.Fig.6 shows three peaks at approximately 1340 cm ⁻¹ (D band), 1580 cm ⁻¹ (G
471	band), and 2670 cm ⁻¹ (G' band), corresponding to the sp ³ disordered and defected in
472	graphene, planar motion of sp ² -hybridised carbon atoms in graphite layers, and
473	graphene-like sheets or CNTs, respectively(Dresselhaus et al., 2010; Malard et al.,
474	2009). Furthermore, the intensity ratio of D to G bands (I_D/I_G) was used to estimate
475	the number of disordered and defective sites in the carbon structure, andthe intensity
476	ratio of G' and G bands $(I_{G'}/I_G)$ was used to describe the purity of CNTs in the carbon
477	deposits (Yao et al., 2017).Fig.6a shows that the I _D /I _G ratios of carbon deposits on the
478	reacted Fe/Al ₂ O ₃ , Fe/SiO ₂ , Fe/ZSM-5, and Fe/TiO ₂ catalysts were 0.47, 0.55, 0.66, and
479	0.52, respectively; theseare comparable with those of the CNTs deposited from
480	commercial catalysts in other studies(Awadallah et al., 2014).A slight decrease in the
481	graphitisation degree was observed in the order of: Fe/Al ₂ O ₃ >Fe/SiO ₂ >Fe/ZSM-5
482	catalysts. For he Fe/TiO2 catalyst, the graphitisation degree showed the opposite
483	variation tendency; a higher graphitisation degree was observed for reacted Fe/TiO2,
484	which may be related to the widespread presence of iron particles in the carbon
485	materials (Xia et al., 2020b). Based on the $I_{G'}/I_G$ ratio, the carbon deposited on the
486	Fe/Al ₂ O ₃ catalysthad a higher valuethan that for the other catalysts, suggesting a
487	higher purity of the CNTs (Jonathan et al., 2016). This was also demonstrated by the
488	TEM results, which showed that the carbon deposits obtained from the Fe/Al ₂ O ₃
489	catalyst contained a greater number of CNTs than those obtained from the

490 othercatalysts. The carbon deposits on the reacted Fe/ZSM-5 and 491 Fe/TiO₂catalystsshared asimilar and lower $I_{G'}/I_{G}$ ratio, reflecting the lower purity of 492 CNTs; this may be related to widespread carbon fibresor the deformed carbon 493 material (Wepasnick et al., 2010).

Moreover, the accurate purity of CNTs was assessed based on theD-band, G-band, 494 495 and G'-band peaks(DiLeo et al., 2007);the purity was evaluated from the ratio of I_D/I_G to I_{G'}/I_G. Fig. 6b shows thataccording to the curve fit equations, the purity of different 496 samples was in accordance with the results mentioned in TGA test. Therefore, the 497 498 graphite carbon obtained in this study was assumed to be CNTs. CNTs obtained from 499 the Fe/Al₂O₃ catalyst exhibited a relatively higher purity, and there was no significant difference between the purity (>65%) determined using the ratio of I_D/I_G and $I_{G'}/I_G$. 500 501 However, for carbon deposits on he Fe/TiO₂ catalyst, there was a gap between the values calculated from the corresponding I_D/I_G and I_{G'}/I_G;the purity calculated from 502 I_D/I_G was much larger than that obtained from I_D/I_G . This may have been caused by the 503 504 impurities in the catalysts leading to the differences in the band intensities(Lehman et al., 2011). In this study, the widespread presence of iron particles within the carbon 505 506 deposits from the Fe/TiO₂ catalyst dramatically promoted the corresponding 507 graphitisationdegree, which mayhave caused thisdifference.

508 4 Conclusion

Four different materials (Al_2O_3 , SiO_2 , ZSM-5, and TiO_2) with different physical structures and metal dispersive capacities were used as iron-based catalyst supports for

the catalytic pyrolysis of PPwaste to produce high-value hydrogen, liquid fuel, and 511 CNT products. In the presence of catalysts, liquid oil was converted to carbon deposits 512 513 and lighter gaseous products such as hydrogen. The Al₂O₃ based catalyst produced higher catalytic activity in terms of higher carbon deposits (30.2 wt.%) and hydrogen 514 yield (58.7 vol.%), due to the smaller iron particles. The moderate surface area and 515 pore size may also play a critical role during the thermal conversion process. More 516 dispersive and uniform CNTs were gathered from the Fe/SiO₂catalyst with a larger 517 pore size and volume. By contrast, the Fe/TiO₂ catalyst preferentially produced carbon 518 519 fibres twisted like fried dough twist because of the larger iron particles and a small specific surface area. In addition, more liquid and CNFswere gathered from the 520 Fe/ZSM-5 catalyst, in which the liquid was abundant in aromatic hydrocarbons. 521 522 Notably, the carbon depositionyield from different catalysts was closely related to the particle size of the reduced iron. These results show that supports are more than merely 523 an inert structural substrate and their properties may significantly influence catalytic 524 525 performance.

Prior to realising the high-value utilisation of plastic waste, considerable research needs to be conducted.Firstly, further exploration of the conversion mechanism from plastic waste should provide guidance for improving themass and quality of the target products. Moreover, realpilot-scale or scaled experimental research should be conducted for industrial validation. Concurrent environmental and economic assessments should also be seriouslyconsidered in the application of these processes.

532 Acknowledgement

The authors wish to express their sincere thanks for the financial support from the 533 National Key Research and Development Program of China (2018YFC1901204), the 534 National Natural Science Foundation of China (51861130362), China Postdoctoral 535 536 Science Foundation (2018M640696) and the Foundation of the State Key Laboratory of Coal Combustion (FSKLCCB2001). The experiment was also assisted by the 537 Analytical and Testing Center in Huazhong University of Science & Technology 538 (http://atc.hust.edu.cn, Wuhan 430074 China). We would like to thank Editage 539 (www.editage.cn) for English language editing. 540 541

542 **Reference**

- Aboul, A., Awadallah A. Production of nanostructured carbon materials using
 Fe–Mo/MgO catalysts via mild catalytic pyrolysis of polyethylene waste. *Chem. Eng. J.*, **354**(2018), 802-816. https://doi.org/10.1016/j.cej.2018.08.046.
- Aboul-Enein, A., Awadallah, A. Impact of Co/Mo ratio on the activity of CoMo/MgO
 catalyst for production of high-quality multi-walled carbon nanotubes from
 polyethylene waste. Materials Chemistry and Physics, 238(2019), 121879.
 https://doi.org/10.1016/j.matchemphys.2019.121879.
- Acomb, J., Nahil M, Williams P. Thermal processing of plastics from waste electrical
 and electronic equipment for hydrogen production. *J. Anal. Appl. Pyrolysis.*, **103**(2013), 320-327. http://dx.doi.org/10.1016/j.jaap.2012.09.014.
- Ahmed, S., Aitani A, Rahman F, Al-Dawood A, Al-Muhaish F. Decomposition of
 hydrocarbons to hydrogen and carbon. *Appl. Catal.*, *A.*, **359**(2009), 1-24.
 https://doi.org/10.1016/j.apcata.2009.02.038.
- Awadallah, A., Aboul-Enein A, Aboul-Gheit A. Effect of progressive Co loading on
 commercial Co–Mo/Al2O3 catalyst for natural gas decomposition to COx-free
 hydrogen production and carbon nanotubes. *Energy Convers. Manage.*, **77**(2014), 143-151. <u>http://dx.doi.org/10.1016/j.enconman.2013.09.017</u>.
- Barbarias, I., Lopez G, Artetxe M, Arregi A, Bilbao J, Olazar M. Valorisation of
 different waste plastics by pyrolysis and in-line catalytic steam reforming for
 hydrogen production. *Energy Convers. Manage.*, 156(2018), 575-584.
 https://doi.org/10.1016/j.enconman.2017.11.048.
- Cai, N., Xia S, Zhang X, Meng Z, Bartocci P, Fantozzi F, Chen Y, Chen H, Williams P,
 Yang H. Preparation of Iron- and Nitrogen-Codoped Carbon Nanotubes from
 Waste Plastics Pyrolysis for the Oxygen Reduction Reaction. *ChemSusChem*,
 13(2020a), 938-944. <u>http://dx.doi.org/10.1002/cssc.201903293</u>.
- Cai, N., Yang H, Zhang X, Xia S, Yao D, Bartocci P, Fantozzi F, Chen Y, Chen H,
 Williams P. Bimetallic carbon nanotube encapsulated Fe-Ni catalysts from fast
 pyrolysis of waste plastics and their oxygen reduction properties. *Waste*

- 571 *Manag.*, **109**(2020b), 119-126. https://doi.org/10.1016/j.wasman.2020.05.003.
- 572 Carlson, T., Jae J, Huber G. Mechanistic Insights from Isotopic Studies of Glucose
 573 Conversion to Aromatics Over ZSM-5. *ChemCatChem*, 1(2009), 107-110.
 574 <u>http://dx.doi.org/10.1002/cctc.200900130</u>.
- Che, Q., Yang M, Wang X, Yang Q, Williams L, Yang H, Zou J, Zeng K, Zhu Y, Chen
 Y, Chen H. Influence of physicochemical properties of metal modified ZSM-5
 catalyst on benzene, toluene and xylene production from biomass catalytic
 pyrolysis. *Bioresour Technol*, **278**(2019), 248-254.
 https://doi.org/10.1016/j.biortech.2019.01.081.
- Chen, X., Che Q, Li S, Liu Z, Yang H, Chen Y, Wang X, Shao J, Chen H. Recent
 developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for
 the optimization of bio-oil quality and yield. *Fuel Process. Technol.*, **196**(2019), 106180. https://doi.org/10.1016/j.fuproc.2019.106180.
- Chi, Y., Xue J, Zhuo J, Zhang D, Liu M, Yao Q. Catalytic co-pyrolysis of cellulose
 and polypropylene over all-silica mesoporous catalyst MCM-41 and
 Al-MCM-41. Sci Total Environ, 633(2018), 1105-1113.
 https://doi.org/10.1016/j.scitotenv.2018.03.239.
- Dai, L., Zhou, N, Lv, Y, Cheng, Y, Wang, Y, Liu, Y, Cobb, K, Chen, P, Lei, H, Ruan, R.
 Chemical upcycling of waste polyolefinic plastics to low-carbon synthetic
 naphtha for closing the plastic use loop. *Sci Total Environ*, **782**(2021), 146897.
 https://doi.org/10.1016/j.scitotenv.2021.146897.
- 592 Deelen, T., Hernández C, Jong K. Control of metal-support interactions in
 593 heterogeneous catalysts to enhance activity and selectivity. *Nature Catalysis*,
 594 2(2019), 955–970. https://doi.org/10.1038/s41929-019-0364-x.
- Deng, Q., Zhang X, Wang L, Zou J. Catalytic isomerization and oligomerization of
 endo-dicyclopentadiene using alkali-treated hierarchical porous HZSM-5. *Chem.* Eng. Sci., 135(2015), 540-546.
 <u>http://dx.doi.org/10.1016/j.ces.2014.08.060</u>.
- 599 DiLeo, R., Landi B, Raffaelle R. . Purity assessment of multiwalled carbon nanotubes 600 by Raman spectroscopy. *J Appl Phys*, **101**(2007), 064307.

- 601 https://doi.org/10.1063/1.2712152.
- Dresselhaus, M., Jorio A, Hofmann M, Dresselhaus G, Saito R. . Perspectives on
 carbon nanotubes and graphene Raman spectroscopy. *Nano Lett*, **10**(2010),
 751-8. <u>http://www.ncbi.nlm.nih.gov/pubmed/20085345</u>.
- Ellis, L., Rorrer, N, Sullivan, K, Otto, M, McGeehan, J, Román-Leshkov, Y, Wierckx,
 N, Beckham, G. Chemical and biological catalysis for plastics recycling and
 upcycling. *Nature Catalysis*, 4(2021), 539-556.
 https://doi.org/10.1038/s41929-021-00648-4.
- Geyer, R., Jambeck J, Law K. Production, use, and fate of all plastics ever made. *Sci. Adv.*, 3(2017), 1-5. https://doi.org/10.1126/sciadv.1700782.
- Gong, J., Liu J, Wan D, Chen X, Wen X, Mijowska E, Jiang Z, Wang Y, Tang T.
 Catalytic carbonization of polypropylene by the combined catalysis of
 activated carbon with Ni2O3 into carbon nanotubes and its mechanism. *Appl. Catal.*, *A.*, **449**(2012), 112-120.
 http://dx.doi.org/10.1016/j.apcata.2012.09.028.
- Hamid, Z., Azim A, Mouez F, Rehim S. Challenges on synthesis of carbon nanotubes
 from environmentally friendly green oil using pyrolysis technique. *J. Anal. Appl. Pyrolysis.*, **126**(2017), 218-229.
 http://dx.doi.org/10.1016/j.jaap.2017.06.005.
- Huo, E., Lei H, Liu C, Zhang Y, Xin L, Zhao Y, Qian M, Zhang Q, Lin X, Wang C,
 Mateo W, Villota E, Ruan R. Jet fuel and hydrogen produced from waste
 plastics catalytic pyrolysis with activated carbon and MgO. *Sci Total Environ*, **727**(2020), 138411. https://doi.org/10.1016/j.scitotenv.2020.138411.
- Jia, J., Veksha A, Lim T, Lisak G. In situ grown metallic nickel from X–Ni (X=La,
 Mg, Sr) oxides for converting plastics into carbon nanotubes: Influence of
 metal–support interaction. J. Cleaner Prod., 258(2020), 120633.
 https://doi.org/10.1016/j.jclepro.2020.120633.
- Jiang, L., Hsu, A, Chu, D, Chen, R. Size-Dependent Activity of Palladium
 Nanoparticles for Oxygen Electroreduction in Alkaline Solutions. *Journal of The Electrochemical Society*, **156**(2009), B643.

- 631 https://doi.org/10.1149/1.3098478.
- Jonathan, A., Wu C, Williams P. . The use of different metal catalysts for the
 simultaneous production of carbon nanotubes and hydrogen from pyrolysis of
 plastic feedstocks. *Appl. Catal. B: Environ.*, 180(2016), 497-510.
 http://dx.doi.org/10.1016/j.apcatb.2015.06.054.
- Kim, S. The catalytic oxidation of aromatic hydrocarbons over supported metal oxide. *Journal of Hazardous Materials*, **91**(2002), 285–299.
 https://doi.org/10.1016/S0304-3894(01)00396-X.
- López, A., Marco I, Caballero B, Laresgoiti M, Adrados A, Aranzabal A. Catalytic 639 pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite 640 641 and Red Mud. Appl. Catal. *B*: Environ., **104**(2011), 211-219. http://dx.doi.org/10.1016/j.apcatb.2011.03.030. 642
- Lehman, J., Terrones M, Mansfield E, Hurst K, Meunier V. Evaluating the
 characteristics of multiwall carbon nanotubes. *Carbon*, 49(2011), 2581-2602.
 https://doi.org/10.1016/j.carbon.2011.03.028.
- Li, C., Zhang C, Gholizadeh M, Hu X. Different reaction behaviours of light or heavy
 density polyethylene during the pyrolysis with biochar as the catalyst. J *Hazard Mater*, **399**(2020a), 123075.
 http://www.ncbi.nlm.nih.gov/pubmed/32544769.
- Li, Q., Faramarzi A, Zhang S, Wang Y, Hu X, Gholizadeh M. Progress in catalytic
 pyrolysis of municipal solid waste. *Energy Convers. Manage.*, 226(2020b),
 113525. https://doi.org/10.1016/j.enconman.2020.113525.
- Li, X., Zhu G, Qi S, Huang J, Yang B. Simultaneous production of hythane and
 carbon nanotubes via catalytic decomposition of methane with catalysts
 dispersed on porous supports. *Appl. Energy.*, **130**(2014), 846-852.
 http://dx.doi.org/10.1016/j.apenergy.2014.01.056.
- Lin, M., Tan J, Boothroyd C, Loh K, Tok E, Foo Y. Dynamical Observation of
 Bamboo-like Carbon Nanotube Growth. *Nano Lett.*, 7(2007), 2234-2238.
 https://doi.org/10.1021/nl070681x.
- 660 Liu, Q., Hu, C., Peng, B., Liu, C., Li, Z., Wu, K., Zhang, H., Xiao, R. High H2/CO

- ratio syngas production from chemical looping co-gasification of biomass and
 polyethylene with CaO/Fe2O3 oxygen carrier. *Energy Convers. Manage.*, **199**(2019), 111951.
- Liu, X., Zhang Y, Nahil M, Williams P, Wu C. Development of Ni- and Fe- based
 catalysts with different metal particle sizes for the production of carbon
 nanotubes and hydrogen from thermo-chemical conversion of waste plastics. J.
- 667
 Anal.
 Appl.
 Pyrolysis,
 125(2017),
 32-39.

 668
 http://dx.doi.org/10.1016/j.jaap.2017.05.001.
- Major, I., Pin J, Behazin E, Rodriguez A, Misra M, Mohanty A. Graphitization of
 Miscanthus grass biocarbon enhanced by in situ generated FeCo nanoparticles. *Green Chem.*, 20(2018), 2269-2278. https://doi.org/10.1039/c7gc03457a.
- Malard, L., Pimenta M, Dresselhaus G, Dresselhaus M. Raman spectroscopy in
 graphene. *Phys. Rep.*, 473(2009), 51-87.
 http://dx.doi.org/10.1016/j.physrep.2009.02.003.
- Modekwe, H., Mamo, M, Moothi, K, Daramola, M. Effect of Different Catalyst
 Supports on the Quality, Yield and Morphology of Carbon Nanotubes
 Produced from Waste Polypropylene Plastics. Catalysts, 11(2021), 692.
 https://doi.org/10.3390/catal11060692.
- Nahil, M., Wu C, Williams P. Influence of metal addition to Ni-based catalysts for the
 co-production of carbon nanotubes and hydrogen from the thermal processing
 of waste polypropylene. *Fuel Process. Technol.*, **130**(2015), 46-53.
 <u>http://dx.doi.org/10.1016/j.fuproc.2014.09.022</u>.
- Panda, A., Singh, R, Mishra, D. Thermolysis of waste plastics to liquid fuelA suitable
 method for plastic waste management and manufacture of value added
 products—A world prospective. *Renewable and Sustainable Energy Reviews*,
 14(2010), 233-248. https://doi.org/10.1016/j.rser.2009.07.005.
- Park, K., Jeong Y, Guzelciftci B, Kim J. Characteristics of a new type continuous
 two-stage pyrolysis of waste polyethylene. *Energy*, 166(2019a), 343-351.
 https://doi.org/10.1016/j.energy.2018.10.078.
- 690 Park, Y., Lee B, Lee H, Watanabe A, Jae J, Tsang Y, Kim Y. Co-feeding effect of waste

- plastic films on the catalytic pyrolysis of Quercus variabilis over microporous
 HZSM-5 and HY catalysts. *Chem. Eng. J.*, **378**(2019b), 122151.
 https://doi.org/10.1016/j.cej.2019.122151.
- Prata, J.C.S., A. L. P. Walker, T. R. Duarte, A. C. Rocha-Santos, T. COVID-19
 Pandemic Repercussions on the Use and Management of Plastics. *Environ Sci Technol*, 54(2020), 7760-7765. https://dx.doi.org/10.1021/acs.est.0c02178.
- Rossetti, I., Gallo A, Dal Santo V, Bianchi C, Nichele V, Signoretto M, Finocchio E,
 Ramis G, DiMichele A. Nickel Catalysts Supported Over TiO2, SiO2and
 ZrO2for the Steam Reforming of Glycerol. *ChemCatChem*, 5(2013), 294-306.
 <u>http://dx.doi.org/10.1002/cctc.201200481</u>.
- Santos, B., Almeida D, Marques M, Henriques C. Petrochemical feedstock from
 pyrolysis of waste polyethylene and polypropylene using different catalysts. *Fuel*, 215(2018), 515-521. https://doi.org/10.1016/j.fuel.2017.11.104.
- Shen, Y., Lua, A. Synthesis of Ni and Ni–Cu supported on carbon nanotubes for
 hydrogen and carbon production by catalytic decomposition of methane. *Appl. Catal.*, *B.*, **164**(2015), 61-69.
- Takenaka, S., Ogihara H, Yamanaka I, Otsuka K. Decomposition of methane over
 supported-Ni catalysts:effects of the supports on the catalytic lifetime. *Appl. Catal., A,* 217 (2001), 101-110.
- 710 <u>http://dx.doi.org/10.1016/S0926-860X(01)00593-2</u>.
- Tang, Z., Chen W, Chen Y, Yang H, Chen H. Co-pyrolysis of microalgae and plastic:
 Characteristics and interaction effects. *Bioresour Technol*, 274(2019), 145-152.
 https://doi.org/10.1016/j.biortech.2018.11.083.
- Tang, Z., Chen W, Hu J, Li S, Chen Y, Yang H, Chen H. Co-pyrolysis of microalgae
 with low-density polyethylene (LDPE) for deoxygenation and denitrification. *Bioresour Technol*, **311**(2020), 123502.
 https://doi.org/10.1016/j.biortech.2020.123502.
- Torres, D., Pinill, J, Lázaro M, Moliner R, Suelves I. Hydrogen and multiwall carbon
 nanotubes production by catalytic decomposition of methane:
 Thermogravimetric analysis and scaling-up of Fe–Mo catalysts. *Int. J.*

721	Hydrogen	Energy,	39 (2014),	3698-3709.			
722	http://dx.doi.org/1	10.1016/j.ijhydene	.2013.12.127.				
723	Tsai, W., Chen, H, Hsieh, M, Sun, H, Chien, S. Regeneration of spent bleaching earth						
724	by pyrolysis in a	rotary furnace. Ja	ournal of Analytica	l and Applied Pyrolysis,			
725	63 (2002), 157–17	0. https://doi.org/	10.1016/S0165-237	/0(01)00150-4.			
726	Wang, J., Jiang J, Meng X, Li M, Wang X, Pang S, Wang K, Sun Y, Zhong Z, Ruan R,						
727	Ragauskas A. Promoting Aromatic Hydrocarbon Formation via Catalytic						
728	Pyrolysis of Poly	carbonate Wastes	over Fe- and Ce-L	oaded Aluminum Oxide			
729	Catalysts.	Environ	Sci	<i>Technol</i> (2020a).			
730	https://dx.doi.org/	/10.1021/acs.est.00	c00899.				
731	Wang, S., Zhao S, Uzo	ejinwa B, Zheng	A, Wang Q, Hu	ang J, Abomohra A. A			
732	state-of-the-art re	eview on dual pu	rpose seaweeds ut	ilization for wastewater			
733	treatment and cru	de bio-oil product	ion. Energy Conve	rs. Manage., 222 (2020b),			
734	113253. https://do	oi.org/10.1016/j.en	nconman.2020.1132	253.			
735	Wei, Y., Eres G, Merkulo	ov V, Lowndes D.	Effect of catalyst	film thickness on carbon			
736	nanotube growth	by selective area c	chemical vapor dep	osition. Appl. Phys. Lett.,			
737	8 (2001), 1394-13	96. https://doi.org/	/10.1063/1.135465	8.			
738	Wepasnick, K., Smith B, Bitter J, Howard Fairbrother D. Chemical and structural						
739	characterization of carbon nanotube surfaces. Anal Bioanal Chem, 396 (2010),						
740	40 1003-14. <u>http://www.ncbi.nlm.nih.gov/pubmed/20052581</u> .						
741	Williams, P. Hydrogen	and Carbon Nan	otubes from Pyrol	ysis-Catalysis of Waste			
742	Plastics: A Re	eview. Waste H	Biomass Valoriza	<i>tion</i> , 12 (2020), 1-28.			
743	https://doi.org/10.	.1007/s12649-020	-01054-w.				
744	Xia, S., Cai N, Wu J, X	Ciao H, Hu J, Che	en X, Chen Y, Yan	g H, Wang X, Chen H.			
745	Synthesis and for	rmation mechanis	m of biomass-base	ed mesoporous graphitic			
746	carbon. Fuel	Processing	Technology,	209 (2020a), 106543.			
747	https://doi.org/10.	.1016/j.fuproc.202	20.106543.				
748	Xia, W., Tang J, Li J, Z	Zhang S, Wu K, I	He J, Yamauchi Y	. Defect-Rich Graphene			
749	9 Nanomesh Produced by Thermal Exfoliation of Metal-Organic Frameworks						
750	0 for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl, 58(2019),						

13354-13359. http://www.ncbi.nlm.nih.gov/pubmed/31407475.

- Xu, S., Cao B, Uzoejinwa B, Odey E, Wang S, Shang H, Li C, Hu Y, Wang Q,
 Nwakaire J. Synergistic effects of catalytic co-pyrolysis of macroalgae with
 waste plastics. *Process Saf. Environ. Prot.*, **137**(2020), 34-48.
 https://doi.org/10.1016/j.psep.2020.02.001.
- Yang, R., Chuang K, Wey M. Effects of Nickel Species on Ni/Al2O3 Catalysts in
 Carbon Nanotube and Hydrogen Production by Waste Plastic Gasification:
 Bench- and Pilot-Scale Tests. *Energy Fuels*, **29**(2015), 8178-8187.
 https://doi.org/10.1021/acs.energyfuels.5b01866.
- Yao, D., Wang C. Pyrolysis and in-line catalytic decomposition of polypropylene to
 carbon nanomaterials and hydrogen over Fe- and Ni-based catalysts. *Appl. Energy*, 265(2020), 114819. https://doi.org/10.1016/j.apenergy.2020.114819.
- Yao, D., Wu C, Yang H, Zhang Y, Nahil M, Chen Y, Williams P. Chen H.
 Co-production of hydrogen and carbon nanotubes from catalytic pyrolysis of
 waste plastics on Ni-Fe bimetallic catalyst. *Energy Convers. Manage.*,
 148(2017), 692-700. http://dx.doi.org/10.1016/j.enconman.2017.06.012.
- Yao, D., Yang H, Chen H, Williams P. Co-precipitation, impregnation and so-gel
 preparation of Ni catalysts for pyrolysis-catalytic steam reforming of waste
 plastics. *Appl. Catal. B: Environ.*, 239(2018a), 565-577.
 https://doi.org/10.1016/j.apcatb.2018.07.075.
- Yao, D., Yang, H., Hu, Q., Chen, Y., Chen, H., Williams, Paul T. Carbon nanotubes
 from post-consumer waste plastics: Investigations into catalyst metal and
 support material characteristics. *Appl. Catal. B: Environ.*, 280(2021), 119413.
 https://doi.org/10.1016/j.apcatb.2020.119413.
- Yao, D., Zhang Y, Williams P, Yang H, Chen H. Co-production of hydrogen and
 carbon nanotubes from real-world waste plastics: Influence of catalyst
 composition and operational parameters. *Appl. Catal. B: Environ.*, 221(2018b),
 584-597. <u>http://dx.doi.org/10.1016/j.apcatb.2017.09.035</u>.
- Yuan, C., El-Fatah Abomohra, A, Wang, S, Liu, Q, Zhao, S, Cao, B, Hu, X, Marrakchi,
- 780 F, He, Z, Hu, Y. High-grade biofuel production from catalytic pyrolysis of

781	waste clay oil using modified activated seaweed carbon-based catalyst.
782	Journal of Cleaner Production, 313 (2021), 127928.
783	https://doi.org/10.1016/j.jclepro.2021.127928.
784	Zhang, Y., Duan D, Lei H, Villota E, Ruan R. Jet fuel production from waste plastics
785	via catalytic pyrolysis with activated carbons. Appl. Energy, 251(2019),
786	113337. https://doi.org/10.1016/j.apenergy.2019.113337.
787	Zhang, Y., Wu C, Nahil M, Williams P. Pyrolysis-Catalytic Reforming/Gasification of
788	Waste Tires for Production of Carbon Nanotubes and Hydrogen. Energy Fuels,
789	29 (2015), 3328-3334. https://doi.org/10.1021/acs.energyfuels.5b00408.
790	Zou, J., Oladipo J, Fu S, Al-Rahbi A, Yang H, Wu C, Cai N, Williams P, Chen H.
791	Hydrogen production from cellulose catalytic gasification on CeO2/Fe2O3
792	catalyst. <i>Energy Convers. Manage.</i> , 171 (2018), 241-248.
793	https://doi.org/10.1016/j.enconman.2018.05.104.
794	

	No catalyst	Fe/Al ₂ O ₃	Fe/SiO ₂	Fe/ZSM-5	Fe/TiO ₂
Gas yield, wt.%	45.3 ± 1.0	41.7 ± 0.9	42.6 ± 1.3	42.9 ± 0.8	45.7 ± 1.5
Liquid yield,	46.1 ±1.4	18.1 ± 1.2	16.5 ±0.2	20.6 ± 1.3	19.6 ± 1.1
wt.%					
Solid yield, wt.%	-	30.2 ± 0.5	29.4 ± 0.3	28.2 ± 0.3	26.0 ± 0.2
Mass balance,	~ 91.4	~ 90	~ 88.5	~ 91.7	~ 91.3
wt.%					
Gas composition, v	ol.%				
H ₂	22.8	58.7	45.2	45.3	40.8
CH_4	54.8	32.4	42.0	42.9	45.2
СО	0	4.2	5.5	4.4	5.4
C_2H_4	20.5	3.7	6.0	6.0	6.9
C_2H_6	1.8	0.7	1.0	0.9	1.0
C ₃₊	0.1	0.3	0.3	0.5	0.7
LHV of gaseous	36.8	21.3	25.2	25.3	26.0
product, MJ Nm ⁻³	30.0	21.3	23.2	23.3	20.9

Table 1 Product distribution and gaseous composition from different catalysts

Table 2. Graphitisation of carbon deposits and iron particles from XRD for the reacted catalysts

Sample	$D_{C}(nm)$	Ν	D _{Fe} (nm)	d ₀₀₂ (nm)	g^d
Fe/Al ₂ O ₃	7.8 ± 0.2	23 ± 2	11.0 ± 0.4	0.344 ± 0.001	0.364 ± 0.003
Fe/SiO ₂	10.3 ± 0.3	30 ± 2	22.7 ± 1.2	0.341 ± 0.001	0.374 ± 0.002
Fe/ZSM-5	11.4 ± 0.2	33 ± 3	34.0 ± 2.6	0.343 ± 0.001	0.360 ± 0.002
Fe/TiO ₂	8.3 ± 0.1	24 ± 1	45.4 ± 2.4	0.340 ± 0.002	0.458 ± 0.003

Fig. 1. Structural characterisation of prepared catalysts: (a) XRD diffraction patterns;

and (b) isothermal adsorption curve and pore size distribution.

Fig. 2. Carbon number (% area) and the corresponding components of liquid products

810 from the catalytic pyrolysis of PP waste in the presence of different catalysts.

811

814 Fig. 3. TEM images of carbon deposits from catalytic pyrolysis PP waste: (a, b)

- 815 Fe/Al₂O₃; (c, d) Fe/SiO₂; (e, f) Fe/ZSM-5; and (g, h) Fe/TiO₂).

Fig. 4. (a) X-ray diffraction patterns of reacted catalysts; and (b) the association of
carbon deposit yields and the size of iron particles (comparisons: NiMo/CaO from
(Aboul-Enein et al., 2019), Co/MgO from (Modekwe et al., 2021) and Fe/SiO₂ from
(Liu et al., 2017).

Fig. 5. (a) TG curves; and (b) proportion of different carbon types from carbon deposits

