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Canonical quantization of gravitational systems is obstructed by the problem of time. Due to

diffeomorphism symmetry the Hamiltonian vanishes: dynamics with respect to a background time

parameter appears “frozen.” Two strategies towards the quantization of such systems are the identification

of a clock degree of freedom before quantization (deparametrization), and quantization on a kinematical

Hilbert space which is subject to constraints (Dirac quantization). The usual canonical quantization in

quantum field theory is analogous to deparametrization. Here we introduce a frozen formalism and Dirac

quantization for a complex Klein–Gordon scalar field, and show that the resulting theory is equivalent to

usual canonical quantization. We then apply the formalism to the group field theory formalism for quantum

gravity, for which both deparametrization and a “timeless” quantization have been proposed in past work.

We show how a frozen formalism for group field theory links between these two existing approaches, and

illustrate in particular the construction of physical observables. We derive effective cosmological dynamics

for group field theory in the new formalism and compare these to previous work. The frozen formalism

could be extended to other approaches to quantum gravity that do not use a preferred time parameter.

DOI: 10.1103/PhysRevD.104.106011

I. INTRODUCTION

Canonical quantization, as presented in undergraduate

textbooks on quantum mechanics, provides an in principle

direct route from any classical to the corresponding

quantum theory: starting from a classical theory defined

by an action, one runs the Legendre transform to obtain

the corresponding Hamiltonian theory, uses its Poisson

structure to define canonical commutation relations, and

constructs quantum observables as Hermitian operators

corresponding to classical phase-space functions. In prac-

tice, ambiguities and additional choices appear for all but

the very simplest systems motivating, e.g., the more

systematic approach of geometric quantization [1].

Things become more complicated for systems with

gauge symmetries: not any phase-space variable is now

an observable, and one would like to focus on the dynamics

of observables only. Moreover, gauge symmetries are

associated with constraints which must be implemented

in the quantum theory. If the gauge symmetry involves

diffeomorphisms of time, gauge transformations and

dynamics are intertwined; the attempt to define dynamics

with respect to a given time parameter leads to a “frozen

formalism” with vanishing Hamiltonian. A Hamiltonian

formalism able to deal with gauge symmetries and in

particular with diffeomorphism-invariant theories was

developed by Dirac [2]. Constructing a quantum theory

via Dirac’s algorithm then leads to the infamous problem of

time [3]: all states and observables are independent of the

time parameter used to set up the theory. Evolution must

then be defined in relational terms, as the evolution of

some degrees of freedom with respect to others [4].

In this paper we focus on two of the most popular

approaches in the canonical quantization of generally

covariant systems: deparametrization (or reduced quanti-

zation) in which one of the dynamical variables is identified

as a “clock” before quantization, and Dirac quantization in

which one first constructs a kinematical Hilbert space and

demands that physical states satisfy the quantum version

of the constraints of the theory.
1
Deparametrization, while

often easiest to implement, suffers from ambiguities and the

lack of covariance, since it is not guaranteed that different

choices of clock lead to equivalent theories [6]. Moreover,

the degree of freedom used as a clock is often added by

hand in order to guarantee its clocklike behavior; in

quantum cosmology this is often a massless scalar field,

which is classically monotonic on almost any solution.

*
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1
One can also define a notion of quantum deparametrization

as, e.g., in Ref. [5], where the clock is identified within a theory
defined through Dirac quantization; we will not discuss this here.
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In contrast, Dirac quantization requires at least some

control over the space of physical states (solutions to the

constraint), and leads to a number of subtle technical issues

[7]. The physical Hilbert space is usually not a subspace

of the initial kinematical Hilbert space; it can be con-

structed through group averaging [8]. The relation between

the viewpoints of different clocks is clearer in Dirac

quantization [5,9].

Most of the literature on deparametrization and Dirac

quantization, and especially on comparisons between them,

focuses on finite-dimensional systems such as particle

models or homogeneous models in quantum cosmology.

The model example on which the different approaches and

challenges are often discussed is the relativistic particle

in (Minkowski) spacetime, which has a one-dimensional

diffeomorphism symmetry corresponding to reparametri-

zations on the worldline. Quantization of the relativistic

particle leads to relativistic (Klein-Gordon) quantum field

theory, where the wave function is promoted to a quantum

field and the Hilbert space is enlarged to a Fock space of

many-particle states. The usual presentation of canonical

quantization of the Klein-Gordon field, however, follows

the logic of deparametrization where a clock (here a time

coordinate on Minkowski spacetime) is chosen before

quantization. One has to ensure that the resulting formalism

remains Lorentz covariant. There is however no remnant of

the reparametrization invariance of the relativistic particle

action.

Here we propose a frozen formalism for a complex

Klein-Gordon quantum field: the quantum field is given an

additional dependence on a proper-time parameter τ but the

equations of motion imply that this dependence is trivial.

This allows defining a Dirac-type quantization in which

there is a (Hamiltonian) constraint acting on a kinematical

Hilbert space. We show how a physical inner product can

be constructed through group averaging by extending the

inner product for a relativistic particle to a Fock space. We

construct both the physical Fock space and physical

observables on this physical Fock space through “projec-

tion” maps that map operators on the kinematical Hilbert

space to operators on the physical Hilbert space. For the

Klein-Gordon field, we find that the resulting theory is then

equivalent to the usual Fock quantization.

We then extend this formalism to the group field theory

(GFT) approach to quantum gravity [10], which provides

the main motivation for this work. GFT can be seen as a

quantum field theory reformulation of the background-

independent dynamics of quantum gravity as defined by

spin foams [11] and loop quantum gravity (LQG) [12]. In

particular, the GFT setting should allow for canonical

quantization (at least for some, perhaps simplified models).

As in the direct canonical quantization of gravitational

systems, here one faces the absence of any background

time parameter, and hence a problem of time. In the

literature one finds two approaches towards defining an

operator and Hilbert space formalism of GFT. The first is a

more abstract “timeless” quantization as proposed in

Refs. [12,13]
2
: one promotes the GFT field and its con-

jugate to creation and annihilation operators on a kinemati-

cal Hilbert space similar to that of canonical LQG, and then

imposes dynamics weakly (in the sense of expectation

values, usually in a mean-field approximation). In this

approach it is not entirely clear how the choice of original

operator algebra is motivated and how the use of unphysical

states (i.e., states that are not exact solutions to the

dynamics) impacts on the validity of the formalism.

There is also a priori no distinction of which operators

correspond to observables, although relational observables

similar to the canonical quantum gravity setting have been

defined [14]. There is no distinction between kinematical

and physical inner product, which is consistent with the fact

that the states used are not exact solutions to the dynamics.

In contrast, a “deparametrized” canonical quantization

for GFT has been studied in Ref. [15] following a similar

proposal in a GFT toy model [16]. In this approach one

identifies the massless scalar field χ appearing in some GFT

models as a clock variable before quantization and per-

forms the Legendre transform, leading to a conventional

quantum theory in which states or observables evolve in χ.

This deparametrized formalism can be applied to extract

effective cosmological dynamics of GFT, leading to very

similar results compared to the timeless formalism [15–17].

Given that the effective cosmology of GFT can be under-

stood from solutions to the classical GFT equations of

motion [18], this agreement is perhaps not surprising, but

there are clear differences between the two approaches.

The deparametrized approach only works with exact

solutions to the dynamics and is hence based on a

Hilbert space of physical states (on which there are no

further constraints). Some observables which have diver-

gences in the timeless setting are well behaved in this

deparametrized approach. The usual objections of lack of

covariance would presumably also apply to the deparame-

trized quantization in GFT.

By applying the frozen formalism to GFT, we show how

a Dirac-type quantization of GFT can be achieved: the

timeless Fock space is now interpreted as a kinematical

Hilbert space on which constraints are imposed strongly.

We again define projections which map operators from the

kinematical to a physical Hilbert space, and use these to

construct physical observables. We show how the resulting

Fock space corresponds to two copies of the Fock space of

the deparametrized setting, where the two copies arise since

the GFT field is complex whereas it was taken to be real in

Ref. [15]. Thus, the frozen formalism provides a link

2
To be clear, in this paper we use the term timeless for a general

formalism based on a Hilbert space whose elements do not satisfy
dynamical equations, but frozen for a Dirac-type canonical
quantization in which fields initially depend on a parameter τ
but the dynamics state that this dependence is trivial.
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between the timeless and deparametrized quantum theories.

The effective cosmology obtained in this setting is again

analogous to effective Friedmann equations found in

previous work starting from Ref. [14]. The frozen formal-

ism proposed here may be applicable in more general

settings in quantum gravity, since it mimics the basic

assumption of Dirac quantization that no time variable

should be selected before quantization. In this sense, the

frozen formalism should be seen as part of the general

program of Dirac (constraint) quantization as an approach

to the problem of time; it can bring theories without an

obvious constraint structure into a form where a kinemati-

cal Hilbert space with subsequent constraint quantization

and group averaging may be defined.

In Sec. II we start by reviewing the dynamics of a

relativistic particle in Minkowski spacetime and its Dirac

quantization as well as the standard canonical quantization

of a complex Klein-Gordon field. We then propose a frozen

formalism defined in terms of a new action for the Klein-

Gordon field. This action does not change the classical

dynamics but it suggests a different route to canonical

quantization. We show in which sense this quantization is

equivalent to the usual one, and define maps from states and

observables in the kinematical to those in the physical

Hilbert space. In Sec. III we introduce the GFT formalism

and review previous proposals for canonical quantization.

We then apply the frozen formalism to GFT, where we

restrict ourselves to quadratic actions as we do throughout

the paper. The dynamics of GFT are similar to Klein-

Gordon theory, with the important difference that there are

modes with oscillatory solutions but also unstable modes

with real exponential solutions. Technical subtleties asso-

ciated with this property can be overcome by using analytic

continuation of the GFT action into the complex χ plane. In

Sec. IV we show how the frozen formalism leads straight-

forwardly to the construction of relational observables,

which are analogous to those defined previously in the

timeless formalism. We also derive a simple effective

Friedmann equation, showing that its predictions agree

with previous work in GFT cosmology. As an example of

an operator on the kinematical Hilbert space that does not

become a physical observable, we discuss an operator

corresponding to the matter clock itself.

II. FROZEN FORMALISM FOR A

KLEIN-GORDON FIELD

In this section we introduce a field theoretic version of

the frozen formalism appearing in the Dirac quantization of

finite-dimensional quantum systems with gauge symmetry

under reparametrizations of a “proper-time” or worldline

parameter τ. Given that the usual Klein-Gordon field can be

introduced as the many-particle extension of the quantum

theory of a single relativistic particle, this is a natural

starting point for our formalism.

A. Relativistic particle

A relativistic particle in D-dimensional Minkowski

spacetime is the archetypal example of a dynamical system

with reparametrization invariance. It can be defined by a

worldline action

S½qμ; pμ; N� ¼
Z

dτ

�

pμ

dqμ

dτ
þ N

2
ðp2 þm2Þ

�

; ð1Þ

which is clearly invariant under reparametrizations,

τ↦ τ̃ðτÞ; dqμ

dτ
↦

dqμ

dτ̃
; NðτÞ↦ Ñðτ̃Þ¼Nðτ̃Þ

τ̃0ðτÞ : ð2Þ

Equation (1) is already in Hamiltonian form: qμ and pμ are

canonically conjugate and the Hamiltonian

H ¼ −
N

2
ðp2 þm2Þ ð3Þ

is constrained to vanish by the equation following from

varying with respect to N. This condition is of course the

mass-shell constraint of a relativistic particle.

In canonical (Dirac) quantization [2] one now introduces

operators q̂μ and p̂ν which satisfy

½q̂μ; p̂ν� ¼ iδ
μ
ν ð4Þ

and act on a kinematical Hilbert space L2ðRDÞ; for a state
jψi in this Hilbert space to be considered physical it must

satisfy

Ĉjψi ¼ 1

2
ðημνp̂μp̂ν þm2Þjψi ¼ 0: ð5Þ

The worldline parameter τ then disappears from the

quantum theory, given that all physical states satisfy

i
d

dτ
jψi ¼ 0; ð6Þ

since the Hamiltonian − N̂ Ĉ vanishes when acting on them.

The constraint Ĉ generates gauge transformations (repar-

ametrizations) in the theory; observables must commute

with the constraint to ensure that the action of an observable

preserves the space of physical states. Expectation values of

observables are then also independent of τ, and one obtains

a frozen formalism [3]. Dynamical information is encoded

in relational observables, which capture the dynamics of

degrees of freedom relative to one another rather than in an

external time.

A somewhat subtle point is the definition of a physical

inner product. Starting from a basis of states for L2ðRDÞ
normalized in the usual improper sense,
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hpjp0i ¼ ð2πÞDδðDÞðp − p0Þ; ð7Þ

one sees that solutions to Eq. (5) are not normalizable and

hence not elements of this kinematical Hilbert space. The

space of physical states hence needs a different inner

product which can be constructed by group averaging

[8]; writing any physical state as

jψphi ¼ δðĈÞjψi; ð8Þ

where jψi is an element of the kinematical Hilbert space,

the physical inner product is defined by

hϕphjψphi ≔ hϕjδðĈÞjψi; ð9Þ

where the right-hand side uses the inner product in the

kinematical Hilbert space. Concretely, if

jψi ¼
Z

dDp

ð2πÞD ψðpÞjpi; ð10Þ

written in terms of the basis (7), one finds
3

hϕphjψphi ¼
Z

dDp

ð2πÞD δ

�

1

2π
ðp2 þm2Þ

�

ϕðpÞψðpÞ

¼
Z

dD−1p

ð2πÞD−1

1

2ωp⃗

ðϕðωp⃗; p⃗Þψðωp⃗; p⃗Þ

þ ϕð−ωp⃗; p⃗Þψð−ωp⃗; p⃗ÞÞ; ð11Þ

where ωp⃗ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p⃗2 þm2
p

(see, e.g., Ref. [9] for more details

and discussion). Equation (11) is equivalent to the standard

relativistic inner product for solutions to the Klein-Gordon

equation, with a sign flipped to make it positive for positive

and negative frequency states (for which p0 ¼ �ωp⃗,

respectively). Although it can be represented as an integral

over spatial momenta only, Eq. (9) shows that this inner

product is Lorentz invariant. Maintaining the symmetries of

the Lagrangian theory is one argument for constructing an

inner product via group averaging.

Equation (11) then shows that the physical Hilbert space

is L2ðRD−1Þþ ⊕ L2ðRD−1Þ−, the direct sum of two Hilbert

spaces for positive and negative frequency states. Writing a

physical state as

jψphi ¼
Z

dD−1p

ð2πÞD−1

1
ffiffiffiffiffiffiffiffi

2ωp⃗

p ðψþðp⃗Þjp⃗;þi þ ψ−ðp⃗Þjp⃗;−iÞ

ð12Þ

defines a new basis for this physical Hilbert space with

normalization:

hp⃗;�jp⃗0;�0i ¼ ð2πÞD−1δ�;�0δðD−1Þðp⃗ − p⃗0Þ: ð13Þ

The wave functions ψ� in Eq. (12) correspond to the

components in Eq. (11) for which p0 ¼ �ωp⃗.

B. Conventional Klein-Gordon theory

The previous constructions define a consistent quantum

theory of a single relativistic particle. “Second quantiza-

tion” of this theory leads to a quantum field theory for a

complex scalar field Φ. Here the constraint (5) is not

imposed as an equation on the one-particle Hilbert space

but becomes the equation of motion for Φ,

ðημνpμpν þm2ÞΦðpÞ ¼ 0: ð14Þ

This field equation can be derived from an action

S½Φ; Φ̄� ¼ −

Z

dDp

ð2πÞD Φ̄ðpÞðημνpμpν þm2ÞΦðpÞ; ð15Þ

which can then again be used as a starting point for

canonical quantization. Conjugate momenta to the field

variables are obtained after Fourier transform from p0 to a

time coordinate t,

πðt;p⃗Þ¼ ∂L

∂ð∂tΦðt;p⃗ÞÞ; π̄ðt;p⃗Þ¼ ∂L

∂ð∂tΦ̄ðt;p⃗ÞÞ ; ð16Þ

and one can rewrite the action as

S ¼
Z

dt
dD−1p

ð2πÞD−1
ðπ∂tΦþ π̄∂tΦ̄ −HÞ;

H ¼ jπj2 þ ðp⃗2 þm2ÞjΦj2: ð17Þ

The canonical variables are then promoted to operators

satisfying

½Φ̂ðt; p⃗Þ; π̂ðt; p⃗0Þ� ¼ ½Φ̂†ðt; p⃗Þ; π̂†ðt; p⃗0Þ�
¼ ð2πÞD−1iδðD−1Þðp⃗ − p⃗0Þ: ð18Þ

To diagonalize the Hamiltonian one can introduce two sets

of annihilation operators:

âðp⃗Þ ¼ 1
ffiffiffiffiffiffiffiffi

2ωp⃗

p ðωp⃗Φ̂ðp⃗Þ þ iπ̂†ðp⃗ÞÞ;

b̂ðp⃗Þ ¼ 1
ffiffiffiffiffiffiffiffi

2ωp⃗

p ðωp⃗Φ̂
†ðp⃗Þ þ iπðp⃗ÞÞ; ð19Þ

with their Hermitian conjugates acting as creation oper-

ators; writing the Hamiltonian as Ĥ ¼
R

dD−1p

ð2πÞD−1 Ĥðp⃗Þ one

then finds (after normal ordering)

3
The additional π factor inserted in the constraint is an arbitrary

choice made for convenience of normalization.
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Ĥðp⃗Þ ¼ ωp⃗ðâ†ðpÞâðp⃗Þ þ b̂†ðpÞb̂ðp⃗ÞÞ: ð20Þ

One can think of the creation and annihilation operators as

time dependent, inheriting the t dependence of the dynami-

cal fields, or construct them from fields at some initial time

t ¼ 0. The two sets of creation operators â† and b̂† are

associated with particles and antiparticles. We will adopt

the convention that these operators do not evolve in time.

Equation (19) means that the time-dependent original

fields can be written as

Φ̂ðt; p⃗Þ ¼ 1
ffiffiffiffiffiffiffiffi

2ωp⃗

p ðe−iωp⃗tâðp⃗Þ þ eiωp⃗tb̂†ðp⃗ÞÞ;

Φ̂
†ðt; p⃗Þ ¼ 1

ffiffiffiffiffiffiffiffi

2ωp⃗

p ðeiωp⃗tâ†ðp⃗Þ þ e−iωp⃗tb̂ðp⃗ÞÞ; ð21Þ

where we have written out the time dependence on the

right-hand side explicitly. A one-particle state at t ¼ 0 can

then be written as

jψi ¼
Z

dD−1p

ð2πÞD−1

1
ffiffiffiffiffiffiffiffi

2ωp⃗

p ðψþðp⃗Þâ†ðp⃗Þ þ ψ−ðp⃗Þb̂†ðp⃗ÞÞj0i;

ð22Þ

where j0i is the Fock vacuum annihilated by all annihi-

lation operators; the inner product between two such one-

particle states is

hϕjψi ¼
Z

dD−1p

ð2πÞD−1

1

2ωp⃗

ðϕþðp⃗Þψþðp⃗Þ þ ϕ−ðp⃗Þψ−ðp⃗ÞÞ;

ð23Þ

which is the same as the inner product (11). The one-

particle sector of the Fock space is exactly the physical

Hilbert space of the relativistic particle, i.e., the pairs of

functions ðϕþ;ϕ−Þ and ðψþ;ψ−Þ in Eq. (23) are again

elements of L2ðRD−1Þþ ⊕ L2ðRD−1Þ−. For each p⃗ the two

solutions to the constraint p2 þm2 ¼ 0 are now associated

with particle and antiparticle excitations. The states defined

in Eq. (13) can be identified with

jp⃗;þi ¼ â†ðp⃗Þj0i; jp⃗;−i ¼ b̂†ðp⃗Þj0i: ð24Þ

C. Frozen formalism

The usual canonical quantization of a complex scalar

field extends the physical Hilbert space of a relativistic

particle constructed in Sec. II A to a Fock space which

contains arbitrary numbers of such particles. However, this

viewpoint on quantum field theory shows no trace of the

Dirac quantization performed to construct the physical

Hilbert space of a relativistic particle; there is no repar-

ametrization invariance in the Klein-Gordon theory, no

kinematical Hilbert space, and no analog of the condition

(6). In this subsection we propose a quantization of the

complex scalar field which has these features, and thus

provides a field theory extension of the frozen formalism of

Dirac quantization.

Recall that the Schrödinger equation i ∂ψ
∂t

¼ Ĥψ can be

derived from the action

S½ψ ; ψ̄ � ¼
Z

dXdt

�

i

2

�

ψ̄
∂ψ

∂t
− ψ

∂ψ̄

∂t

�

− ψ̄ Ĥψ

�

; ð25Þ

where X denotes the configuration space of the theory one

is studying, and Ĥ is a differential operator acting on the X
variables which becomes the Hamiltonian in the quantum

theory. The quantum theory of the relativistic particle can

be seen as defined by a Schrödinger equation for which

only zero-energy states are allowed. This motivates the

definition of the field theory action:

S½Φ; Φ̄; N� ¼
Z

dDp

ð2πÞD dτ

�

i

2

�

Φ̄
∂Φ

∂τ
−Φ

∂Φ̄

∂τ

�

þ Nðp2 þm2ÞjΦj2
�

: ð26Þ

Notice the similarity of Eq. (26) with the worldline action

(1) for the relativistic particle: the fields Φ and Φ̄ now

depend on a parameter τ. There is a significant literature on

such formulations of relativistic quantum mechanics in

which one introduces a worldline or proper-time parameter

τ [19]. For instance, in a theory in which the Hamiltonian is

not constrained to vanish, different energy eigenstates

correspond to all possible values for the squared mass

m2 which is then no longer a fundamental parameter of the

theory. Here we will follow a Dirac quantization, require

constrained dynamics and allow only zero-energy states,

similar to the discussion of, e.g., Ref. [20]. The equations of

motion following from Eq. (26) are

i
∂Φ

∂τ
þ Nðp2 þm2ÞΦ ¼ 0;

−i
∂Φ̄

∂τ
þ Nðp2 þm2ÞΦ̄ ¼ 0;

ðp2 þm2ÞjΦj2 ¼ 0: ð27Þ

The last equation implies that Φðτ; pÞ ¼ Φ̄ðτ; pÞ ¼ 0

unless p2 þm2 ¼ 0 and the first two equations then say

that Φ and Φ̄ must be independent of τ. The theory has

a reparametrization invariance which is rather trivial.

Classically, the theory defined by Eq. (26) is equivalent

to the one defined by Eq. (15).

One can now proceed with Dirac quantization.

Equation (26) implies that Φ and iΦ̄ are canonically

conjugate; the corresponding operators satisfy
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½Φ̂ðpÞ; Φ̂†ðp0Þ� ¼ ð2πÞDδðDÞðp − p0Þ; ð28Þ

as they do in usual nonrelativistic quantum field theory

based on actions of the form (25), but unlike in the standard

quantization of a relativistic field theory in which the field

operators commute. The field operators defined by Eq. (28)

act as creation and annihilation operators on a kinematical

Hilbert space. If we apply normal ordering, physical states

must satisfy the constraint(s)

ĈðpÞ ≔ ðp2 þm2ÞΦ̂†ðpÞΦ̂ðpÞjψi ¼ 0: ð29Þ

Φ̂
†ðpÞΦ̂ðpÞ≕ N̂ðpÞ is the number density operator for the

mode p; physical states are those for which only physical

modes with p2 þm2 ¼ 0 are excited. To construct a

physical Hilbert space for solutions of Eq. (29), we follow

the same steps as in Sec. II A for one-particle states:

jψi ¼
Z

dDp

ð2πÞD ψðpÞΦ̂†ðpÞj0ikin; ð30Þ

where j0ikin is the Fock vacuum of the kinematical Hilbert

space; for such states, in analogy with Eq. (11) we define

hϕphjψphi ¼
Z

dDp

ð2πÞD δ

�

1

2π
ðp2 þm2Þ

�

ϕðpÞψðpÞ

¼
Z

dD−1p

ð2πÞD−1

1

2ωp⃗

ðϕðωp⃗; p⃗Þψðωp⃗; p⃗Þ

þ ϕð−ωp⃗; p⃗Þψð−ωp⃗; p⃗ÞÞ; ð31Þ

where jψphi ¼ δðp2 þm2Þjψi for a general one-particle

state jψi. In general a formal insertion of δðĈðpÞÞ into the

inner product would lead to the question of how to define

δðN̂ðpÞÞ; here, instead of trying to make such a definition

more rigorous, we first only define the inner product for

single-particle states through Eq. (31). This construction

then leads to exactly the physical Hilbert space of single

particles or antiparticles defined in the previous sections,

i.e., the Hilbert space L2ðRD−1Þþ ⊕ L2ðRD−1Þ−.
We can extend the construction of a physical inner

product to the entire kinematical Fock space generated by

the repeated action of Φ̂†ðpÞ on j0ikin: this extension is

determined by the requirement that the physical Hilbert

space is also a Fock space, the second quantization of the

physical one-particle Hilbert space.

Just as for the Dirac quantization of the relativistic

particle, this physical Fock space is not a subspace of

the kinematical Fock space, but is obtained by the action of

a different set of creation operators on a different vaccum

which we denote by j0iph. In order to make the relation

between the two separate Hilbert spaces explicit we define

a “projection”P (clearly not a projection in the usual sense)

of creation and annihilation operators,

Φ̂ðpÞ ↦ PΦ̂ðpÞ; Φ̂
†ðpÞ ↦ PΦ̂

†ðpÞ; ð32Þ

such that the projected operators generate a physical Fock

space when acting on j0iph. In order to fix the explicit form
of P, we now demand that the inner product for the one-

particle sector has to be consistent with Eq. (31). This

implies that we need

PΦ̂
†ðpÞ ¼ 2π

ffiffiffiffiffiffiffiffi

2ωp⃗

p ðδðp0 −ωp⃗Þâ†ðp⃗Þ þ δðp0 þωp⃗Þb̂†ðp⃗ÞÞ;

ð33Þ

with an analogous definition (obtained by Hermitian

conjugate) for PΦ̂ðpÞ and with canonical commutators

½âðp⃗Þ; â†ðp⃗0Þ� ¼ ½b̂ðp⃗Þ; b̂†ðp⃗0Þ� ¼ ð2πÞD−1δðD−1Þðp⃗ − p⃗0Þ
ð34Þ

for the newly introduced creation and annihilation oper-

ators acting on j0iph. These definitions imply a map

jψi ¼
Z

dDp

ð2πÞD ψðpÞΦ̂†ðpÞj0ikin

↦ jψphi ¼
Z

dDp

ð2πÞD ψðpÞPΦ̂†ðpÞj0iph

¼
Z

dD−1p

ð2πÞD−1

1
ffiffiffiffiffiffiffiffi

2ωp⃗

p ðψðωp⃗; p⃗Þâ†ðp⃗Þ

þ ψð−ωp⃗; p⃗Þb̂†ðp⃗ÞÞj0iph; ð35Þ

from the kinematical to the physical one-particle Hilbert

space; the map then extends to arbitrary Fock states by

writing these as the result of the action of some operator on

the vacuum j0ikin and then applying the map (32). For

instance, the physical inner product for two-particle states

becomes (schematically)

hϕphjψphi ¼
�

ϕ

�

�

�

�

δ

�

1

2π
ðp̂2

1 þm2Þ
�

δ

�

1

2π
ðp̂2

2 þm2Þ
��

�

�

�

ψ

	

;

ð36Þ

which involves two insertions of a constraint corresponding

to the momenta of the two particles involved. This

generalized notion of Dirac quantization of a complex

scalar field based on the action (26) is then equivalent to the

canonical quantization based on Eq. (15).

One can define similar projection maps from Dirac

observables on the kinematical Hilbert space
4

to

4
These are Hermitian operators that commute “weakly” with

the constraints, i.e., commutators with constraints vanish if
Eq. (29) holds. If these commutators are nonzero, self-adjointness
on the physical Hilbert space is a nontrivial requirement [9].
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observables on the physical Hilbert space. For instance,

consider the particle number

N̂ ¼
Z

dDp

ð2πÞD Φ̂
†ðpÞΦ̂ðpÞ; ð37Þ

which is a Dirac observable with discrete spectrum N0 on

the kinematical Fock space. The number operator on the

physical Fock space is

N̂ph ¼
Z

dD−1p

ð2πÞD−1
ðâ†ðp⃗Þâðp⃗Þ þ b̂†ðp⃗Þb̂ðp⃗ÞÞ: ð38Þ

If we demand that the projection map acting on bilinear

field operators maps the number operator on the kinemati-

cal Fock space to the one on the physical Fock space, this

fixes this map to be

Φ̂
†ðpÞΦ̂ðpÞ ↦ PðΦ̂†ðpÞΦ̂ðpÞÞ

¼ 2πðδðp0 − ωp⃗Þâ†ðp⃗Þâðp⃗Þ
þ δðp0 þ ωp⃗Þb̂†ðp⃗Þb̂ðp⃗ÞÞ: ð39Þ

This map differs from the one defined for single field

operators in Eq. (33). First of all we chose a different

normalization, fixed by the requirement that the number

operator on the physical Hilbert space has spectrumN0 (i.e.,

particles are counted in units of 1). In contrast, a change in

normalization in Eq. (33) could be absorbed in a redefinition

of the wave function in Eq. (35). This difference is therefore

more a matter of conventions. More importantly however,

one cannot simply apply Eq. (33) separately to each field

operator in Eq. (37), since this would result in an additional

factor δð0Þ. The reason for this is again the difference

between the kinematical and physical inner product. Similar

considerations will apply in the rest of the paper: projection

maps always have to be defined separately for single field

operators and composite operators.

Equation (39) can be applied to more general Dirac

observables of the form

Ôf ¼
Z

dDp

ð2πÞD fðpÞΦ̂†ðpÞΦ̂ðpÞ ð40Þ

on the kinematical Hilbert space. One example is the

energy Ê ¼ Ôjp0j (absolute values ensure that all excita-

tions are associated with a positive energy), which after

applying Eq. (39) becomes

Êph ¼
Z

dD−1p

ð2πÞD−1
ωp⃗ðâ†ðp⃗Þâðp⃗Þ þ b̂†ðp⃗Þb̂ðp⃗ÞÞ; ð41Þ

which is the usual Hamiltonian (20). Ê0 ¼ Ôp0 is an equally

well-defined observable, which associates negative energy

with antiparticle excitations.

Creation operators constructed from Eq. (33) can be seen

as defining a physical Hilbert space in the Heisenberg

picture: states are time independent, arising from action of

creation operators at t ¼ 0 on a Fock vacuum. Observables

of the form (40) are time independent in either the

Schrödinger or Heisenberg picture, since all particle num-

ber densities are conserved in the theory (for particle and

antiparticle sector separately). One might alternatively be

interested in time-dependent (Schrödinger) Fock states or

equivalently time-dependent single field operators, which

can be used to create time-dependent states by acting on

the vacuum j0iph. Such operators can be obtained from

Eq. (33) by inserting a time evolution factor eip
0t, which

yields a time-dependent projection:

PtΦ̂
†ðpÞ ¼ 2π

ffiffiffiffiffiffiffiffi

2ωp⃗

p ðeiωp⃗tδðp0 − ωp⃗Þâ†ðp⃗Þ

þe−iωp⃗tδðp0 þ ωp⃗Þb̂†ðp⃗ÞÞ: ð42Þ

Looking at the time dependence of a physical Fock state

defined in this way, one sees that particle and antiparticle

states evolve with opposite phase factors, in contrast to the

usual quantization where they both evolve as e−iωp⃗t. The

reason for this difference is the same we saw in defining

the energy; the kinematical variable p0 is positive for the

particle sector but negative for the antiparticle sector. This

unusual property can be traced back to the difference

between Eq. (42) and the relation (21) in conventional

Klein-Gordon theory and fundamentally to the fact that the

field Φ̂ and its Hermitian conjugate Φ̂† defined by Eq. (21)

commute whereas here they do not.

Particle and antiparticle sectors are decoupled and there

is no operational way of distinguishing the sign of a phase

factor, so this issue is not relevant for the physical content

of the theory, but it would become relevant and potentially

problematic for an interacting theory (which we will not

study in this paper).

It is possible to define time-dependent observables on the

physical Hilbert space as well. Consider for instance

Q̂f ¼
Z

dDp

ð2πÞD fðpÞΦ̂†ðpÞΦ̂ð−pÞ; ð43Þ

with fðpÞ ¼ fð−pÞ. This operator commutes weakly with

the constraints (29): the commutator of Q̂f with a constraint

ĈðpÞ vanishes on all physical states. Hence this operator

preserves the space of physical states defined by Eq. (29),

and defines a Dirac observable on the kinematical Hilbert

space [cf. the discussion above Eq. (37)].

Let us first consider the projection of such an observable

to an observable on the physical Fock space at time t ¼ 0,

when Heisenberg and Schrödinger pictures agree. Instead

of Eq. (39) we now define
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PðΦ̂†ðpÞΦ̂ð−pÞÞ ¼ 2πðδðp0 − ωp⃗Þâ†ðp⃗Þb̂ð−p⃗Þ
þ δðp0 þ ωp⃗Þb̂†ðp⃗Þâð−p⃗ÞÞ; ð44Þ

using again the normalization derived from the number

operator (38) and making sure the resulting operator is well

defined in the inner product on the physical Fock space.

Away from t ¼ 0, we can either work in the Schrödinger

picture where states evolve according to Eq. (42), or in the

Heisenberg picture where observables such as PQ̂f should

instead evolve in time. As usual, demanding that expect-

ation values agree in the two pictures fixes the time

dependence of operators in the Heisenberg picture; here

we find that we need to extend the time-dependent map (42)

to composite operators by

PtðΦ̂†ðpÞΦ̂ð−pÞÞ¼2πðe−2iωp⃗tδðp0−ωp⃗Þâ†ðp⃗Þb̂ð−p⃗Þ
þe2iωp⃗tδðp0þωp⃗Þb̂†ðp⃗Þâð−p⃗ÞÞ; ð45Þ

and hence

PtQ̂f ¼
Z

dD−1p

ð2πÞD−1
ðfðωp⃗; p⃗Þe−2iωp⃗tâ†ðp⃗Þb̂ð−p⃗Þ

þ fðωp⃗; p⃗Þe2iωp⃗tb̂†ð−p⃗Þâðp⃗ÞÞ; ð46Þ

which is a Hermitian operator on the physical Fock space

defined in the Heisenberg picture. The time dependence of

this observable is due to a mixing of particle and anti-

particle sectors, and its physical interpretation may be

unclear at this point.

III. FROZEN FORMALISM IN

GROUP FIELD THEORY

Background-independent approaches to quantum gravity

encounter a problem of time due to the absence of a global

background time parameter. This is particularly apparent in

approaches to canonical quantization of gravitational sys-

tems such as in quantum cosmology or LQG, where the

methods of Dirac quantization have mostly been applied

[8]. However, there are other approaches in which one does

not directly quantize the degrees of freedom of classical

gravity, but expects gravitational dynamics to emerge from

the interaction of different (“nonspatiotemporal”) quantum

degrees of freedom. Such approaches also face a problem

of time if they are to be compatible with general covariance.

Here we will focus on GFT [10] which incorporates much

of the structure of canonical LQG while also being

formulated in the language of quantum field theory. We

can use the insights from our discussion of Klein-Gordon

theory to define a frozen canonical quantization of GFT.

A. Group field theory formalism and

canonical quantization

In the GFT models we consider, the basic variable is a

complex scalar field φ whose arguments are elements of a

Lie group, here taken to be four copies of SUð2Þ, and a real-
valued (scalar) matter field variable χ. The field is “gauge

invariant” with respect to its SUð2Þ arguments,

φðg1;…;g4;χÞ¼φðg1h;…;g4h;χÞ ∀ h∈SUð2Þ; ð47Þ

and its dynamics are defined in terms of an action

S½φ; φ̄� ¼
Z

d4gdχφ̄ðgI; χÞKφðgI; χÞ þ V½φ; φ̄�; ð48Þ

where V½φ; φ̄� includes the interaction terms which are

usually of fourth and higher order in the fields. The kernel

K in Eq. (48) can in general be a nonlocal operator acting

on φ but we will assume that K can be written in terms of a

finite number of derivatives and coupling constants. For

GFT models for quantum gravity, K is often taken to be

initially trivial, i.e., just a constant [11], but radiative

corrections then generate Laplace-Beltrami derivative oper-

ators with respect to the arguments of the field [21]. Within

a more general class of models in which K is nonlocal, one

could obtain a local form from considering the first few

terms in a derivative expansion [14].

The connection of GFT to quantum gravity is made by

expanding the GFT partition function perturbatively around

the free theory,

Z ¼
Z

DφDφ̄e−S½φ;φ̄� ¼
X

Γ

λVðΓÞ

symðΓÞA½Γ�; ð49Þ

where we have for simplicity assumed a single interaction

term including a coupling λ. The sum in Eq. (49) is over

Feynman graphs Γ; VðΓÞ is the number of vertices in Γ and

symðΓÞ a symmetry factor. For a suitable definition of the

interaction term, one can then identify each Γ with a

discrete spacetime history and A½Γ� with a spin foam

amplitude associated to Γ, i.e., with a discrete quantum

gravity (or topological field theory) path integral including

a sum over all geometric data on Γ [11]. Hence, assuming

one can somehow make mathematical sense of it, the GFT

partition function generates a sum over all possible discrete

spacetime histories weighted by quantum gravity ampli-

tudes, and can be argued to define a proposal for a theory of

quantum gravity. This correspondence is particularly well

understood for topological models such as the Ooguri

model [22] for which the amplitudes are those of a

topological field theory.

We are interested in defining a canonical quantization of

Eq. (48). For simplicity we will only consider the free

theory. Interactions contained in V½φ; φ̄� can be included

perturbatively as is standard in canonical quantization,
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although we leave this to future work. The first step is then

to bring Eq. (48) into a simpler form by using the Peter-

Weyl decomposition of functions on SUð2Þ into irreducible
representations. Define

φðgI; χÞ ¼
X

J

φJðχÞDJðgIÞ; φ̄ðgI; χÞ ¼
X

J

φ̄JðχÞDJðgIÞ;

ð50Þ

where J ¼ ðjI; mI; ιÞ is a multi-index
5
depending on four

irreducible representations jI ∈ N0=2, magnetic indices

mI ∈ f−jI;−jI þ 1;…;þjIg and intertwiners ι [SUð2Þ
invariant maps from the tensor product ⊗ jI to the trivial

representation]. DJðgIÞ are convolutions of Wigner D
matrices defined by

DJðgIÞ ¼
X

nI

I
jI ;ι
nI

Y

4

K¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jK þ 1
p

DjK ðgKÞmK
nK ; ð51Þ

where DjðgÞ are the usual Wigner matrices for the

representation j, I
jI ;ι
nI is the intertwiner for jI labeled by

ι and the normalization has been fixed so that

Z

d4gDJðgIÞDJ0ðgIÞ ¼ δJ;J0 ¼ δjI ;j0IδmI ;m
0
I
δι;ι0 : ð52Þ

The action (48), now restricted to its free part Sf and with χ
derivatives truncated at second order as in [14], then takes

the form

Sf ½φ; φ̄� ¼
X

J

Z

dχφ̄JðχÞðKð0Þ
J þK

ð2Þ
J ∂2

χÞφJðχÞ; ð53Þ

which is our starting point for canonical quantization. In the

literature one finds two approaches to defining a Hilbert

space quantization of Eq. (53). One is based on identifying

the matter variable χ with time (before quantization) and

performing a standard Legendre transform, which results in

a Fock space built from creation and annihilation operators

on which a conventional Hamiltonian evolution is defined,

as in the canonical quantization of usual bosonic quantum

field theory [15]. From the perspective of quantum gravity,

this strategy is analogous to deparametrization, in which a

time variable is identified among the dynamical degrees of

freedom before quantization [24]. Indeed a (free) massless

scalar is often used as a clock in deparametrization in

canonical quantum gravity, which was a main motivation

for introducing it also into GFT [14].

As we noted before, deparametrization amounts to a

gauge fixing before quantization; the resulting theory is not

generally covariant and one would need to show later that

the resulting theory does not depend on the choice of clock.

In general, no obvious candidate for a global clock may be

available. Dirac quantization can define a more covariant

notion of quantization.

A different quantization for GFT (which we here call

timeless) was introduced in Refs. [12,13]. Here the classical

fields are promoted to operators satisfying

½φ̂JðχÞ; φ̂†

J0ðχ0Þ� ¼ δJ;J0δðχ − χ0Þ: ð54Þ

These field operators can be seen as creation and annihi-

lation operators on a Fock space, where they generate

quanta labeled by representation labels J and matter field

values χ, such that states with different J or χ labels are

orthogonal. This is precisely the structure of (kinematical)

LQG states on a graph formed by four links meeting at a

vertex
6
if we extend the SUð2Þ holonomy variables of LQG

by a real-valued matter field at the vertex, in slight

generalization of canonical LQG where this matter field

would be valued in U(1) [25]. Repeated action of creation

operators on the Fock vacuum corresponds to adding more

vertices and links to the graph, and by integrating over

common arguments one can generate states that correspond

to LQG states on arbitrary four-valent graphs [12]. This

correspondence between Fock states generated by Eq. (54)

and quantum states in canonical LQG was one of the main

motivations for this timeless quantization. Since the GFT

dynamics have not been used to obtain Eq. (54), this

structure is purely kinematical (just as the LQG Hilbert

space in relation to the Hamiltonian constraint).

The philosophy starting from Ref. [13] has been to use

Eq. (54) to define a Hilbert space on which dynamics are

imposed, e.g., by demanding that the GFT equations of

motion are satisfied in expectation values for a class of

coherent states, leading to a mean-field approximation in

which one solves the classical GFT equations of motion.

This approximation is the basis for many results in the

application to cosmology [14]. The fact that one assumed

Eq. (54) then often appears inconsequential, given that one

only deals with classical field equations. Once the formal-

ism is pushed further, unusual features appear: two-point

functions for cosmological observables such as volume

fluctuations, evaluated in the inner product induced by

Eq. (54), are formally singular and require regularization

[26,27]. Moreover, formally any Hermitian operator

becomes an observable on the GFT Fock space, which

allows the definition of, e.g., a “total scalar field operator”

which sums up all χ labels in a general state. The

connection of this operator to the interpretation of χ as a

relational clock is not clear (see however Ref. [28] for a

possible effective relational interpretation). This is in

contrast with the deparametrized quantization in which

5
This economical notation was introduced in Ref. [23].

6
This is the sense in which Eq. (47) ensures gauge invariance:

with respect to SUð2Þ gauge transformations at a vertex in LQG.
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states or operators evolve in χ, which becomes a label as in

usual quantum mechanics.

B. Frozen GFT

The viewpoint we want to adopt in this paper is that

Eq. (54) should be understood as defining field operators

on a kinematical Hilbert space in the sense of Dirac

quantization, i.e., a Hilbert space whose states are not

physical unless they satisfy constraints. In contrast to

previous work on the timeless approach in which con-

straints are imposed weakly, here we advocate a strong

imposition of constraints. We argue that doing this clarifies

the link between deparametrized and timeless approaches.

As in the case of Klein-Gordon theory it is best to work

in momentum space, where constraints become decoupled

equations for each mode in the kinematical Fock space. Our

starting point is still the free GFT action:

Sf ½φ; φ̄� ¼
X

J

Z

dχφ̄JðχÞðKð0Þ
J þK

ð2Þ
J ∂2

χÞφJðχÞ: ð55Þ

An important feature of GFT models is that the

(J-dependent) couplings K
ð0Þ
J and K

ð2Þ
J can take either

sign
7
; in particular, different modes can have couplings of

different signs, so that solutions to the equations of motion

are either oscillatory plane waves or real (growing and

decaying) exponentials. Only modes with the latter behav-

ior lead to a realistic cosmology [18], given that for

solutions to the classical Friedmann equations the volume

grows or decays exponentially with respect to the scalar

field. Here this property poses an immediate challenge to

defining the action in Fourier space: depending on the

relative signs of K
ð0Þ
J and K

ð2Þ
J , if one wants to work with a

function space that contains at least the classical solutions

the notion of Fourier transform requires some careful

thought.

Let us define JC to be the space of multi-indices

J ¼ ðjI; mI; ιÞ such that K
ð0Þ
J and K

ð2Þ
J have the same sign,

and JR to be the space of multi-indices such that K
ð0Þ
J and

K
ð2Þ
J have opposite signs.

8
We exclude the cases in which

K
ð0Þ
J or K

ð2Þ
J vanish, which require different treatment.

For J1 ∈ J
C we then define

φJ1
ðχÞ¼

Z

dp

2π
eipχφJ1

ðpÞ; φ̄J1
ðχÞ¼

Z

dp

2π
e−ipχφ̄J1

ðpÞ;

ð56Þ

and the free action for such modes becomes

S
J1
f ½φ; φ̄� ¼

Z

dp

2π
φ̄JðpÞðKð0Þ

J −K
ð2Þ
J p2ÞφJðpÞ; ð57Þ

which is of the form of a Klein-Gordon action in ð0þ 1Þ
dimensions. The equations of motion are

ðKð0Þ
J −K

ð2Þ
J p2ÞφJðpÞ ¼ ðKð0Þ

J −K
ð2Þ
J p2Þφ̄JðpÞ ¼ 0: ð58Þ

For J2 ∈ J
R we would like to define

φJ2
ðχÞ ¼

Z

dP

2π
ePχφJ2

ðPÞ; ð59Þ

so that the field is composed of real exponential modes. But

such a formula is difficult to invert; it can at best be seen as

defining a two-sided Laplace transform whose inversion

requires continuation of χ into the complex plane. Indeed,

for imaginary χ ¼ iX Eq. (59) would be the standard

Fourier transform in X, which can be inverted.

Defining the free GFT action for modes in JR requires

analytic continuation in the matter field parameter χ. In

quantum field theory analytic continuation relies on ana-

lyticity of the quantum fields, which we need to assume

here as well. For a complex scalar field both the field φ and

its conjugate φ̄ need to be analytic in χ. This implies that

they cannot actually be complex conjugates for all values of

χ (since then one would necessarily need to be antiholo-

morphic). Our convention will be that φ and φ̄ are complex

conjugates for real values of χ. The conjugate field must

then be defined as

φ̄J2
ðχÞ ¼

Z

dP

2π
ePχφ̄J2

ðPÞ ð60Þ

if we also assume that the fields in P space are complex

conjugates of each other.

With χ ¼ iX, our analytic continuation prescription for

the free GFT action for such modes is then

S
J2
f ½φ; φ̄� ¼ i

Z

dXφ̄E
J ðXÞðK

ð0Þ
J −K

ð2Þ
J ∂2

XÞφE
J ðXÞ

¼ i

Z

dP

2π
φ̄Jð−PÞðKð0Þ

J þK
ð2Þ
J P2ÞφJðPÞ: ð61Þ

As usual in analytic continuation, this action is defined in

terms of a “Euclidean field”φE
J defined byφ

E
J ðXÞ ¼ φJðiXÞ,

and the action becomes purely imaginary. We have used the

definition (59) and (60) of φJðPÞ, which one may then

regard as the primary definition of the GFT fieldmodes. The

action leads to the equations of motion

ðKð0Þ
J þK

ð2Þ
J P2ÞφJðPÞ¼ðKð0Þ

J þK
ð2Þ
J P2Þφ̄JðPÞ¼0: ð62Þ

These can now be solved mode for mode as in the case of

standard relativistic field equations.Whendefined in Fourier

7
In all interesting applications, couplings only depend on

representation labels jI , not on magnetic indices or intertwiners.
8
This notation is supposed to remind the reader of whether the

classical solutions are complex or real exponentials.
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space all modes now have a very similar type of dynamics.

We must keep in mind that, when transforming back to χ to

define time-dependent observables, an analytic continuation

is needed to go from theEuclidean field defined in terms ofX
to the “Lorentzian field” defined in terms of the original χ.

This is similar to constructions in axiomatic quantum field

theory [29]; the field in momentum space is the primary

object, which can be transformed into either real or

imaginary time by applying two different types of Fourier

transformations, related by analytic continuation.

The total free GFT action can then be written as
9

Sf ½φ; φ̄� ¼
X

J∈JC

Z

dp

2π
φ̄JðpÞðKð0Þ

J −K
ð2Þ
J p2ÞφJðpÞ

þ
X

J∈JR

i

Z

dP

2π
φ̄Jð−PÞðKð0Þ

J þK
ð2Þ
J P2ÞφJðPÞ;

ð63Þ

and has, at least in the general case, a real and an imaginary

part. We now want to define a new GFT action similar to

what we did in Eq. (26) for Klein-Gordon theory, adding an

additional proper-time parameter τ to the arguments of the

GFT field. Our proposal is

S�½φ; φ̄; N� ¼
X

J∈JC

Z

dp

2π
dτ

�

i

2

�

φ̄J

∂φJ

∂τ
− φJ

∂φ̄J

∂τ

�

þ NðKð0Þ
J −K

ð2Þ
J p2ÞjφJj2

�

þ
X

J∈JR

Z

dP

2π
dτ

�

i

2

�

φ̄J

∂φJ

∂τ
− φJ

∂φ̄J

∂τ

�

þ NðKð0Þ
J þK

ð2Þ
J P2ÞjφJj2

�

; ð64Þ

where we again stress that the fields, for each mode J, are
now functions of both p or P and τ. As for the Klein-

Gordon field, the equations of motion then require the τ

dependence to be trivial since the fields also need to satisfy

Eqs. (58) and (62). In this sense, the classical theory is

equivalent to the one defined by Eq. (53). However, again

as before, the “frozen GFT” action (64) admits a more

straightforward (Dirac) canonical quantization: the field

operators in the canonical formalism should satisfy the

timeless commutation relations Eq. (54) or

½φ̂JðpÞ; φ̂†

J0ðp0Þ� ¼ 2πδJ;J0δðp − p0ÞðJ ∈ JCÞ;
½φ̂JðPÞ; φ̂†

J0ðP0Þ� ¼ 2πδJ;J0δðP − P0ÞðJ ∈ JRÞ; ð65Þ

and thus again generate a kinematical Fock space, equiv-

alent to the one used in GFT in the timeless setting. The

constraint on a state jψi to be physical is then

ðKð0Þ
J −K

ð2Þ
J p2Þφ̂†

JðpÞφ̂JðpÞjψi

¼ ðKð0Þ
J þK

ð2Þ
J P2Þφ̂†

JðPÞφ̂JðPÞjψi ¼ 0: ð66Þ

The fact that we impose these constraints strongly is our

departure from previous work in the timeless formalism.

Again, φ̂†
JðpÞφ̂JðpÞ and φ̂

†
JðPÞφ̂JðPÞ are number densities

on the Fock space and these constraints imply that only

modes satisfying the constraints

ðKð0Þ
J −K

ð2Þ
J p2Þ ¼ 0; ðKð0Þ

J þK
ð2Þ
J P2Þ ¼ 0 ð67Þ

can be excited for a state to be considered physical. With

the shorthands

μJ¼

ffiffiffiffiffiffiffiffiffi

K
ð0Þ
J

K
ð2Þ
J

v

u

u

t ðJ∈JCÞ; mJ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

−K
ð0Þ
J

K
ð2Þ
J

v

u

u

t ðJ∈JRÞ; ð68Þ

these constraints become more simply μ2J − p2 ¼ 0 and

m2
J − P2 ¼ 0. It should then be clear that the entire

discussion of Sec. II C can be extended to the case of

GFT: there exists a map

φ̂JðpÞ ↦ PCφ̂JðpÞ; φ̂†ðpÞ ↦ PCφ̂†ðpÞ ð69Þ

and a similar map PR for the P modes, such that the

projected operators generate a physical Fock space whose

one-particle sector is the physical Hilbert space one would

construct through group averaging. If we define

PCφ̂
†
JðpÞ¼

ffiffiffiffiffiffi

2π
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2K
ð0Þ
J K

ð2Þ
J

4

q ðδðp−μJÞâ†JþδðpþμJÞb̂†JÞ ð70Þ

for J ∈ JC and

PRφ̂
†
JðPÞ ¼

ffiffiffiffiffiffi

2π
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2K
ð0Þ
J K

ð2Þ
J

4

q ðδðP −mJÞÂ†
J þ δðPþmJÞB̂†

JÞ

ð71Þ

for J ∈ JR where âJ; â
†
J and the three other canonical pairs

satisfy the usual algebra of creation and annihilation

operators, i.e.,

½âJ; â†J0 � ¼ δJ;J0 ; ð72Þ

then the inner product between physical single-particle

Fock states associated with a J ∈ JC mode defined by

9
The imaginary part does not have any obvious boundedness

properties so that the sign of the Wick rotation and hence the sign
of the imaginary part are somewhat arbitrary.
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jψphi ¼
Z

dp

2π
ψðpÞPCφ̂†

JðpÞj0iph ð73Þ

is

hϕphjψphi¼
1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2K
ð0Þ
J K

ð2Þ
J

q ðϕðμJÞψðμJÞþϕð−μJÞψð−μJÞÞ

¼
Z

dp

2π
δðKð0Þ

J −K
ð2Þ
J p2ÞϕðpÞψðpÞ; ð74Þ

in agreement with group averaging. The same is true for the

modes J ∈ JR corresponding to real exponential solutions;

the calculation is the same up to a minus sign.

Things become more interesting if we consider the

dependence of physical states and observables on χ. We

can again insert a time evolution factor eipχ into the map

(70) to obtain physical states defined in the Schrödinger

picture at arbitrary χ. This yields

PC
χ φ̂

†
JðpÞ ¼

ffiffiffiffiffiffi

2π
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2K
ð0Þ
J K

ð2Þ
J

4

q ðeiμJχδðp − μJÞâ†J

þ e−iμJχδðpþ μJÞb̂†JÞ; ð75Þ

in analogy to Eq. (42) in the case of Klein-Gordon theory.

For the P modes we must remember the need for analytic

continuation: the evolution operator is of the form

eiPX ¼ ePχ , a real exponential when expressed in terms

of χ. Hence the χ-dependent version of Eq. (71) is

PR
χ φ̂

†
JðPÞ ¼

ffiffiffiffiffiffi

2π
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2K
ð0Þ
J K

ð2Þ
J

4

q ðemJχδðP −mJÞÂ†
J

þ e−mJχδðPþmJÞB̂†
JÞ; ð76Þ

in accordance with the classical solutions to the GFT field

equations for these modes, which are real (growing and

decaying) exponentials. Since we require φ̂ and φ̂† to be

Hermitian conjugates for real χ arguments the correspond-

ing projection for φ̂ is

PR
χ φ̂JðPÞ ¼

ffiffiffiffiffiffi

2π
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2K
ð0Þ
J K

ð2Þ
J

4

q ðemJχδðP −mJÞÂJ

þ e−mJχδðPþmJÞB̂JÞ; ð77Þ

so that, unlike for the p modes, the χ-dependent exponen-

tial factors do not switch sign between φ̂J and φ̂
†
J. This is as

it should be: for the oscillatory pmodes, for each of the two

(positive or negative frequency) solutions φ̂†
Jφ̂J should be

time independent for each mode, given that the classical

solutions are plane waves for which jφJj2 is a constant. For

the P modes, this is not the case and so the combination

φ̂
†
Jφ̂J should not be time independent.

We can now look at GFT observables. On the kinemati-

cal Hilbert space, one class of Dirac observables is of the

form

Ôf ¼
X

J∈JC

Z

dp

2π
fJðpÞφ̂†

JðpÞφ̂JðpÞ

þ
X

J∈JR

Z

dP

2π
FJðPÞφ̂†

JðPÞφ̂JðPÞ; ð78Þ

these observables preserve the space of physical states since

they do not excite any unphysical modes. If we again define

these as time-dependent operators in the Heisenberg

picture, the required projection for bilinear operators is

PC
χ ðφ̂†

JðpÞφ̂JðpÞÞ ¼ 2πðδðp − μJÞâ†JâJ þ δðpþ μJÞb̂†Jb̂JÞ
ð79Þ

for p modes, where the normalization is again fixed by

requiring these to count particles in integer amounts.

However, for P modes corresponding to J ∈ JR we have

PR
χ ðφ̂†

JðPÞφ̂JðPÞÞ ¼ 2πðe2mJχδðP −mJÞÂ†
JÂJ

þ e−2mJχδðPþmJÞB̂†
JB̂JÞ; ð80Þ

again by demanding that expectation values in the

Heisenberg and Schrödinger picture agree. Therefore, on

the physical Hilbert space the total number of particles in

the P modes takes the form

N̂P
ph ¼

X

J∈JR

ðe2mJχÂ†
JÂJ þ e−2mJχB̂†

JB̂JÞ; ð81Þ

in contrast with the total number of p particles

N̂
p
ph ¼

X

J∈JC

ðâ†JâJ þ b̂†Jb̂JÞ; ð82Þ

which is independent of time, as it was in the previous case

of conventional Klein-Gordon theory, cf. Eq. (38).

Conversely, observables can be time dependent for p
modes but time independent for P modes. Indeed, in

analogy with Eq. (43) consider

Q̂f ¼
X

J∈JC

Z

dp

2π
fJðpÞφ̂†

JðpÞφ̂Jð−pÞ

þ
X

J∈JR

Z

dP

2π
FJðPÞφ̂†

JðPÞφ̂Jð−PÞ ð83Þ

[with fJðpÞ ¼ fJð−pÞ and FJðpÞ ¼ FJð−pÞ] as observ-

ables on the kinematical Hilbert space; again these do not
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excite any unphysical modes and thus preserve the physical

Hilbert space. The relevant (time-dependent) map acting on

the bilinears appearing in Eq. (83) is

PC
χ ðφ̂†

JðpÞφ̂Jð−pÞÞ ¼ 2πðe−2iμJχδðp − μJÞâ†Jb̂J
þ e2iμJχδðpþ μJÞb̂†JâJÞ; ð84Þ

but

PR
χ ðφ̂†

JðPÞφ̂Jð−PÞÞ ¼ 2πðδðP −mJÞÂ†
JB̂J

þ δðPþmJÞB̂†
JÂJÞ; ð85Þ

so that, for fJðpÞ ¼ 0, one obtains a time-independent

observable on the physical Hilbert space:

PχQ̂f ¼
X

J∈JR

ðFJðmJÞÂ†
JB̂J þ FJðmJÞB̂†

JÂJÞ: ð86Þ

These constructions define a physical Hilbert space for

GFT, obtained from a frozen formalism and Dirac-type

quantization as previously defined for the Klein-Gordon

field, together with a set of physical observables.

The physical Hilbert space is a Fock space in which each

Peter-Weyl mode J is associated with two creation oper-

ators, either â†J and b̂†J or Â
†
J and B̂†

J, and thus two types of

excitations which one may consider as analogous to particle

and antiparticle. This Fock space is the direct sum of two

copies of the Fock space constructed in the deparametrized

setting of Ref. [15] and further studied, e.g., in Ref. [17].

This doubling of degrees of freedom is due to the fact that

we are considering a complex GFT field whereas the

previous works in the deparametrized setting focused on

the case of a real field. It is a curious feature of the frozen

formalism we have introduced that it only straightforwardly

applies to complex fields, due to the need for two basic

operators to be defined as canonically conjugate on the

kinematical Hilbert space.

The physical Hilbert space of this GFT quantization is

much smaller than the kinematical Hilbert space generated

by the initial field operators defined by Eq. (65). We have

identified maps from the kinematical to the physical Hilbert

space, which remove all p and P modes apart from the

ones satisfying Eqs. (58) or (62). These constraints were

imposed strongly, not weakly as previously in the timeless

quantization of GFT.

IV. RELATIONAL OBSERVABLES AND

EFFECTIVE COSMOLOGY

The main application of the operator formalism for GFT

has been the derivation of effective cosmological dynamics

from the fundamental theory [13,14]. This derivation

makes crucial use of relational observables whose expect-

ation values are computed for a particular class of states,

leading to effective dynamics written in terms of these

observables. Effective cosmological dynamics have been

derived in the timeless setting in a mean-field approxima-

tion, but also in the deparametrized approach [15,17]. The

effective cosmology obtained in both settings has similar

properties: the dynamics reduce to the classical Friedmann

equations at large volume but there are high-curvature

corrections which lead to a bounce interpolating between

the classical collapsing and expanding solutions. The

details of these corrections are slightly different between

the different approaches.

The most important relational observable in the timeless

GFT setting defines the total volume (of space) at a given

value of “relational time” χ. This observable was intro-

duced in Ref. [14] and mimics the analogous observable

used to characterize the dynamics of the Universe in loop

quantum cosmology [30].

In the notation used in this paper, this relational volume

observable on the kinematical Hilbert space is

V̂ðχÞ ¼
X

J

vJφ̂
†
JðχÞφ̂JðχÞ; ð87Þ

where vJ is the volume eigenvalue (“volume per GFT

quantum”) associated with the representation J. The mean-

ing of such an observable on the kinematical GFT Hilbert

space is somewhat murky, given that this Hilbert space does

not contain a subspace of modes at fixed χ; normalizable

states must be, e.g., wave packets containing different

values of χ. As a result V̂ðχÞ should really be considered as
a density to be “smeared” over a finite χ range, as already

discussed in Ref. [14] and in more detail in Refs. [26–28].

This does not necessarily affect the resulting cosmology

expressed in terms of expectation values of V̂ðχÞ, but

causes issues when higher moments, i.e., quantum fluctua-

tions are considered.

A second observable used in Ref. [14] is given by

π̂χ ¼
X

J

−
i

2
ðφ̂†

JðχÞ∂χφ̂JðχÞ − ð∂χφ̂
†
JðχÞÞφ̂JðχÞÞ ð88Þ

and identified with the conjugate momentum to the scalar

field χ, in analogy with usual arguments in quantum

mechanics (thinking of the canonical momentum as a

generator of translations in χ). πχ is conserved in the

classical and timeless quantum theory; however its con-

servation is due to a global U(1) symmetry of the theory

and at least a priori unrelated to translations in χ [14]

(see also Ref. [31] for why πχ is not the conjugate

momentum to χ). The conservation law for π̂χ is important

in the cosmological interpretation of the theory since it

justifies identifying this quantity with a conserved momen-

tum in cosmology, but it seems one should define a smeared

momentum and perhaps a smeared conservation law, which

has not been done.
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The conceptual issues with Eqs. (87) and (88) are

connected to the fact that one has defined these observables

on the kinematical Hilbert space generated by Eq. (54);

they are defined in relational terms but evaluated in the

kinematical inner product. Using the projection maps

acting on operators on the kinematical Hilbert space we

can now define the equivalent of such observables on a

physical Hilbert space. This is where observables are

defined in a Dirac-quantized theory such as, e.g., in loop

quantum cosmology [30].

The first observable defining a relational volume is

obtained straightforwardly from the general expression

(78) by setting fJðpÞ ¼ FJðpÞ ¼ vJ, i.e., by choosing

the corresponding kinematical observable to be the total

volume of all particles. Applying the maps (79) and (80) to

this operator we find the corresponding observable on the

physical Hilbert space:

V̂ph¼
X

J∈JC

vJðâ†JâJþ b̂†Jb̂JÞ

þ
X

J∈JR

vJðe2mJχÂ†
JÂJþe−2mJχB̂†

JB̂JÞ; ð89Þ

which is essentially of the form of the relational volume

observable defined in Eq. (87). Rather than defining “by

hand” relational observables at a fixed value of χ, in the

frozen formalism all observables are naturally of this form

since one can think of the physical Hilbert space as defined

at a given value of χ. This is perhaps most explicit in the

Heisenberg picture in which one can think of (Dirac)

observables as evolving in χ. Equation (89) shows that

the total volume of the oscillatory modes is constant in χ

whereas the volume of the real exponential modes has an

exponentially growing and an exponentially decaying

piece, in line with the behavior of classical solutions.

To obtain an observable analogous to the U(1) charge

(88), we integrate the classical version of Eq. (88) over χ

and apply the Fourier transform defined in Sec. III B.

The corresponding operator on the kinematical Hilbert

space is then

Π̂¼
X

J∈JC

Z

dp

2π
pφ̂†

JðpÞφ̂JðpÞ− i
X

J∈JR

Z

dP

2π
Pφ̂†

JðPÞφ̂Jð−PÞ;

ð90Þ

this is mapped to an observable on the physical Hilbert

space that is conserved for each mode separately,

Π̂ph¼
X

J∈JC

μJðâ†JâJ− b̂†Jb̂JÞ− i
X

J∈JR

mJðÂ†
JB̂J− B̂†

JÂJÞ: ð91Þ

Equation (91) corresponds to a quantization of classically

conserved quantities: writing a classical oscillatory solution

as φ ¼ αeiμχ þ βe−iμχ and a real exponential solution as

φ ¼ Aemχ þ Be−mχ , the conserved quantities associated

with the U(1) symmetry of the theory are μðjαj2 − jβj2Þ
for the first and −imðĀB − B̄AÞ for the second (see, e.g.,

Ref. [18]). This is obviously also the expression one finds

when evaluating Eq. (88) in a mean-field approximation.

Π̂ph is relational in the sense that one can think of it as a

χ-dependent observable which happens to be a constant of

motion. Notice that the expectation value of Eq. (90) would

either be zero or divergent on any physical state, just as

classically the integral of a conserved quantity over time is

either zero or diverges.

It is clear that one can similarly define observables on the

physical Hilbert space from any well-defined (Dirac)

observable on the kinematical Hilbert space. The resulting

physical observables are generally time dependent (in

the Heisenberg picture) but their fluctuations and higher

n-point functions are regular functions in χ and do not

encounter the divergences seen in Refs. [26,27]. They can

then be used to define an effective cosmology in analogy

with previous work in GFT [14,15,17].

We can illustrate this by focusing on the simplest case in

which one considers only a single J mode with real

exponential solutions; then from Eq. (89) we have

�

1

hV̂phi
dhV̂phi
dχ

�

2

¼ 4m2
J

�

1 − 4
v2JhÂ†

JÂJihB̂†
JB̂Ji

hV̂phi2
�

ð92Þ

as our effective Friedmann equation. The effective cosmol-

ogy has the general features previously found both in the

timeless and deparametrized settings [14,15,17]: if the GFT

couplings are such that m2
J ¼ 3πG with G the low-energy

Newton’s constant, at large volumes the dynamics reduce to

the classical Friedmann equation:

�

1

VGR

dVGR

dχ

�

2

¼ 12πG: ð93Þ

The correction to the the classical Friedmann equation

appearing in Eq. (92) scales as 1=V2 and hence can be

written as −ρ=ρc if one identifies ρ ¼ M=V2, where M is a

positive constant, with the classical energy density of a

massless scalar field and where ρc is a constant. Such a term

leads to a bounce when the energy density reaches ρ ¼ ρc,

just as it does in loop quantum cosmology. (To make this

identification more precise we would need to identify a

specific relation between the occupation numbers hÂ†
JÂJi

and hB̂†
JB̂Ji and the constant M.) Only very special initial

conditions such that hÂ†
JÂJi ¼ 0 or hB̂†

JB̂Ji ¼ 0 do not

feature such a bounce; indeed, from Eq. (89) it is clear that

such states follow exactly either the classical contracting or

the expanding solution. We do not see a second correction

term scaling as 1=V, as found in Ref. [14], which can be

traced back to the fact that dynamics were not imposed

strongly in Ref. [14].
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Operators on the kinematical Hilbert space that are not

well defined on physical states cannot be given a clear

definition within the frozen formalism. The most important

example of this is a would-be operator corresponding to the

massless scalar field χ, which after Fourier transform

becomes

χ̂¼ i
X

J∈JC

Z

dp

2π
φ̂
†
JðpÞ

dφ̂JðpÞ
dp

þ
X

J∈JR

Z

dP

2π
φ̂
†
Jð−PÞ

dφ̂JðPÞ
dP

:

ð94Þ

There seems to be no straightforward way to make sense of

the derivative of a field operator on the physical Hilbert

space, given that for each J only two isolated values of p or

P correspond to physical states. This observation is not

surprising: it is the GFT equivalent of the statement that

there is no time observable in quantum mechanics or

quantum field theory, which goes back to Pauli [32].

Pauli’s statement relies on having a Hamiltonian that is

bounded from below, which may not exist in GFT;

Hamiltonians constructed in the deparametrized setting

are unbounded [15]. The observation does not imply that

there is no useful notion of “time” observable in the frozen

formalism for GFT. Indeed, given that Eq. (94) does not

work, one could try to construct more general notions of

time observable, e.g., by using the sophisticated machinery

of positive operator valued measures [5]. It would be

interesting to find an explicit construction of this type

in GFT.

V. CONCLUSIONS

We have proposed a new perspective on the canonical

quantization of quantum field theories: we have suggested

an action for a complex scalar field in which fields depend

on a parameter τ, which can be seen as the analog of proper

time for a relativistic particle. Dynamical equations force

the fields to be independent of τ. We call this a frozen

formalism in analogy with the quantum dynamics of a

relativistic particle for which reparametrization invariance

forces states and observables to be independent of τ. Dirac

quantization of this new action leads to a kinematical Fock

space and, after the imposition of constraints, a physical

Hilbert space equivalent to the usual Fock space. We

have introduced projection maps from states and (Dirac)

observables on the kinematical to those on the physical

Hilbert space.

We then applied this frozen formalism to group field

theory models for quantum gravity coupled to a massless

scalar field χ, showing how the kinematical Hilbert space of

the frozen formalism is equivalent to the Hilbert space

proposed in a timeless quantization in the literature.

Imposing the constraints strongly and not weakly as

was done previously, we obtain a physical Hilbert space

which is equivalent to one found through a different,

deparametrized canonical quantization. Thus the frozen

formalism links between the timeless and deparametrized

approaches and shows in particular how physical observ-

ables can be defined on the physical Hilbert space, taking

into account the fact well known from Dirac quantization

that the inner products on kinematical and physical Hilbert

spaces cannot be assumed to be the same. This more careful

construction avoids some of the pathologies encountered

for the timeless formalism in previous work. It does not

alter the main results for effective cosmology, which are

based on expectation values only.

In this paper, we restricted ourselves to quadratic GFT

actions, which made it straightforward to implement a

Dirac quantization and construct the physical Fock space.

Models of physical interest for quantum gravity include

higher-order terms which make an explicit construction of

the physical Hilbert space for such theories very difficult. In

this more general case, it may then be necessary to accept

that the dynamics are solved only approximately, such as

in expectation values, as often suggested for GFT in the

timeless formalism [12,13]. Also the inner product and

physical observables may then only be known approxi-

mately. This situation for the canonical quantization of

GFT can be compared to canonical LQG, where imple-

menting group averaging to construct a physical inner

product from the full Hamiltonian constraint of general

relativity is not straightforwardly possible and serious

efforts have focused on developing novel techniques,

e.g., Ref. [33]. While the relatively simple scalar field

theory structure of GFT may make the task look easier than

for LQG, only future work can show whether there are any

prospects for achieving an exact Dirac quantization for an

interacting GFT. Nevertheless, it seems that the general

lessons drawn from the quadratic case have to hold also in

this situation: physical and kinematical Hilbert space

cannot be identified and not all Hermitian operators on

the kinematical Hilbert space are physical observables. The

meaning of calculations done on the kinematical Hilbert

space can be obscure, as in LQG [34]. It would be

important to understand how the constructions in this

paper can be extended to a more general setting in an

approximate sense. Effective methods such as developed

in Ref. [35], which do not require knowledge of the full

Hilbert space but use expectation values and higher

moments, may also be useful. In contrast, the deparame-

trized approach can be extended more straightforwardly to

interacting models, given that the scalar χ remains a good

clock also in this more general case. A simple interaction

term has been studied in Ref. [17]. However, it is unclear

whether the deparametrized approach can be generally

covariant, as is already apparent when multiple scalars are

coupled [31].

Some peculiarities of the frozen formalism are

related to general properties of the Dirac quantization of

relativistic systems. The formalism we defined can only be
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straightforwardly applied to complex scalar fields; the

physical Fock space then always contains both particle

and antiparticle excitations. The underlying reason for this

can be understood from the Dirac quantization of a single

relativistic particle, in which the physical Hilbert space

constructed through group averaging contains positive and

negative frequency solutions, associating a positive norm

with both. This is in contrast to the standard treatment of a

real Klein-Gordon field, which only treats positive fre-

quency modes as physical excitations. Of course, one can

decide to work only with particles or antiparticles, and

reduce the physical Hilbert space to that of a real field

theory by hand. It is not clear how one would define a Dirac

quantization directly for real fields, just as it is not clear

how to construct a group averaging procedure that uses

only one of the two classical solutions to the constraint for

the relativistic particle. In GFT, both the general perspective

of Sec. III A and the deparametrized quantization of

Ref. [15] allow for real fields; the interpretation of GFT

Feynman amplitudes as spin foam amplitudes only requires

real fields [11]. When complex fields are used, one ends up

with two copies of the Hilbert space that would seem

required from the perspective of LQG. As we mentioned

below Eq. (42), an interaction between particle and

antiparticle sectors might lead to unphysical results, so

one would have to study whether a GFT that couples these

two sectors has a good interpretation from the perspective

of LQG. One might decide that such interactions are

forbidden.

The frozen formalism proposed here is in principle more

generally applicable to quantum systems which do not have

any “time parameter” with respect to which evolution could

be defined, such as GFT models without a massless scalar

field, but also more general combinatorial approaches to

quantum gravity such as matrix and tensor models [36]. It

would be very interesting to study further applications in

this direction.
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