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An Efficient Distributed Task Offloading Scheme

for Vehicular Edge Computing Networks
Muhammad Saleh Bute, Student Member, IEEE, Pingzhi Fan, Fellow, IEEE, Li Zhang, Senior Member, IEEE, and

Fakhar Abbas, Member, IEEE

Abstract—With the recent advancement of vehicular ad-hoc
networks (VANETs) or the internet of vehicles (IoVs), vehicles
are getting more powerful and generating huge amount of traffic
data, including computation-intensive and delay-sensitive appli-
cations in the vehicular edge computing (VEC) networks, which
are difficult to be processed by an individual vehicular node.
These resource-demanding tasks can be transferred to another
vehicular node with idle computing resources for processing.
Due to high mobility and limited resources of vehicular nodes,
it is challenging to execute lengthy computation-intensive tasks
until completion within the delay constraint. There is a need
to provide an efficient task offloading strategies to support
these applications. In this paper, an efficient distributed task
offloading scheme is proposed to select nearby vehicles with
idle computing resources, to process the tasks in parallel by
considering some vital metrics, including link reliability, distance,
available computing resources, and relative velocity. In order to
complete the lengthy computation-intensive tasks in vehicular
edge computing networks, a task is divided into several subtasks
before offloading. The performance of the proposed scheme is
evaluated in several VEC network conditions. Results show that
the proposed computation task offloading scheme achieves better
performance in latency, throughput, resource utilization and
packet delivery ratio than the existing schemes.

Index Terms—Computation-intensive, reliability, service vehi-
cle, resource utilization, and infotainment.

I. INTRODUCTION

THE evolution of the internet of vehicles (IoVs) brings

about new technologies such as autonomous vehicles,

remote driving, and vehicle platooning, requiring a scal-

able infrastructure to provide services adaptively. There are

some heterogeneous vehicular applications of these emerging

technologies, usually aiming at safety, infotainment, gaming,

augmented reality and smart driving. However, due to limited

resources to execute many of these tasks, vehicles have to

offload their computation-intensive tasks to an edge server or

remote cloud server for processing [1]. Thanks to the advance-

ment in technology, vehicles are equipped with an onboard unit
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(OBU), which is a hardware that enables vehicle to everything

(V2X) communication through the network interface card,

installation of vehicular applications, task processing and other

utility functions. The human machine interface (HMI) serves

as an interface between the user and the machine for receiving

input and displaying output. Some of the tasks generated

by the vehicles are computation-intensive and delay-sensitive,

which is beyond the computing power of a single vehicle. But

offloading such tasks to a base station or remote cloud server

will incur long transmission delay because of the huge distance

from a moving vehicle to the server, and thus this approach can

not meet the data rate and latency constraints of such tasks [2],

[3]. The mobile edge computing (MEC) technology is adopted

as a powerful paradigm for computation offloading because

computing servers are located at the vehicle’s proximity, such

as the roadside unit (RSU) and the MEC server. Considering

the high mobility of vehicles and the dynamic nature of vehicle

edge computing network, the MEC servers are fixed at specific

locations and can be off communication range of a vehicular

node. In this case the idle computing resources on the vehicles

can be utilized. Vehicles with such capability are referred

to as service vehicles. They can act as mobile edge servers

to augment the MEC servers and form the vehicular edge

computing (VEC) network [4] with an enhanced computation

offloading capacity. A number of technologies are available

to support connectivity and data transmission [5], [6] between

vehicular nodes in VEC network, including the IEEE 802.11p,

dedicated short-range communication (DRSC) [7], device to

device communication (D2D), and cellular networks such

as the long-term evolution (LTE) and the fifth genertation

network (5G) [8].

However, most of the previous works do not jointly consider

vital metrics in selecting service vehicles for task processing.

Instead, only one or two metrics are considered separately

[12], [19]. These schemes might not complete the process-

ing of lengthy computation intensive task within the delay

constraint. [15]-[19] sacrifice computational resources for re-

liability, by replicating a single task and offloading them to

several service vehicles within the communication range for

processing, but the computation result from only one service

vehicle will be used, while resources used by other service

vehicles are squandered. A tradeoff between resource utiliza-

tion and reliability is needed in the resource-constrained VEC

network. In this paper, we discuss computation offloading in

decentralized, self-organizing VEC network and propose an

efficient distributed task offloading scheme, which focuses

on how to select the optimal scattered idle computational
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resources. The proposed scheme jointly considers four vital

metrics in service vehicle selection. These metrics includes

both communication and computation factors in the VEC

network. To improve the network capacity, the total task

offloading cost is minimized. In order to encourage the service

vehicles to augment the MEC, we introduce an incentive

mechanism to reward the service vehicles for their services.

An optimization problem is formulated, and it is solved in

two stages. Firstly, the selection of service vehicles and then

the task offloading decision. Moreover, to support the lengthy

computation-intensive applications, a single task is divided

into subtasks and offloaded to the selected service vehicles.

The main contributions of this work are summarized as follows

• An efficient task offloading scheme for computation-

intensive and delay-sensitive tasks is proposed to enhance

resource utilization, task completion, reliability, and la-

tency in the resource-constrained VEC network.

• The selection of optimal service vehicles is achieved

using a fuzzy logic algorithm by jointly considering four

metrics, which include link reliability, relative velocity,

distance, and available computational resources. These

factors influence the success of computation offloading

in a VEC network.

• The effect of link lifetime and vehicular speed on lengthy

task completion is investigated in order to reduce task

waiting time and overall task offloading latency.

• The performance of the proposed scheme is evaluated by

simulation. The simulation results show that the proposed

scheme can significantly improve the performance in

terms of latency, waiting time, resource utilization, and

task offloading reliability.

The remainder of this paper is organized as follows. Section

II presents the related works. In section III, we describe the

proposed system model. Section IV presents the proposed

task offloading scheme and problem formulation. Section V

presents the simulation results and discussions. Section VI

concludes the paper.

II. RELATED WORK

The challenges of computation offloading in a high mobility

vehicular scenario have attracted much research efforts over

the years. Many offloading strategies aiming at optimizing

communication and computation have been proposed.

MEC improves the vehicular ad-hoc networks’ computa-

tional strength. In [9] and [10], the authors employ the vehicle

to vehicle (V2V) communication between vehicular nodes to

reduce the data traffic in the cellular network. If there exists

a reliable route between the source and the destination nodes,

then the traffic can be offloaded to the destination through

the multi-hop V2V link. In such way, both the latency and

the traffic burden are reduced. The authors in [11] utilize the

vehicle to everything (V2X) communication to offload a task

from the vehicle to MEC servers. Tasks are routed over the

V2X link from the source vehicle to the MEC server. They

optimize offloading delay and resource balancing on the MEC

servers to improve system capability. However, the offloading

strategies in [9]-[11] mainly depend on multi-hopping to

access the MEC servers. Multi-hop links in VEC network with

large hop count may not be reliable for efficient task delivery.

The MEC network does not cover all road segments, and thus

it is not accessible in some areas.

D. Souza et al, [12] employs the use of idle resources

on vehicular nodes to offload computational tasks. In their

approach, service vehicles are selected based on link duration

and distance between nodes. Each computation task is then

offloaded to a single service vehicle. The authors in [13]

proposed a task scheduling scheme for task offloading in a

vehicular cloud environment to minimize the task completion

time on service vehicles in a quest to meet the delay require-

ments of these tasks. [14] investigates the effect of transferring

delay-sensitive tasks to the MEC servers in an edge computing

assisted vehicular network to minimize data transmission. The

works in [12]-[14] studied computation offloading in vehicular

edge computing network, where one or two metrics were

separately considered in selecting service vehicles for task

processing, thus the selected service vehicles might not be

optimum.

The authors in [15]-[18] investigates the concept of task

replication to improve task offloading efficiency and reliabil-

ity, so that lengthy computationally intensive tasks can be

completed before deadline. In this approach, a single task

is offloaded to more than one service vehicle by choosing

a number of service vehicles to host multiple processing of

a single task. The result from only one service vehicle is

returned. [19] employs the concept of flooding to offload

a single task to more than one service vehicles. Then the

result from the fastest service vehicle is transferred back to

the task vehicle. The work in [20] highlighted the state of

art computation offloading strategies in VEC network with

emphasis on the effect of high mobility in the vehicular

network, which is very difficult to model but also allows

a vehicle to have contact with other vehicles frequently

over a short period. They introduced a learning-based task

replication algorithm for computation offloading. The concept

of collaborative computation task offloading was presented

in [21]. They proposed a two-stage computation offloading

scheme in a vehicular edge environment. The concept of

replicating a single task and transferring it to several service

vehicles for processing improves offloading reliability and

enables task execution until completion. However, considering

the scarce resources in VEC, resource utilization is a crucial

performance metric. The idea of multiple execution of a single

task on several vehicles [15]-[19], tends to consume the limited

resources in VEC network, incurring excessive communication

and computation overheads.

III. SYSTEM MODEL

Here we consider a multi-lane highway with a number of

vehicular nodes. Vehicles are moving on the road following a

normal distribution with respect to their positions and relative

velocities. Assuming each vehicle is equipped with the IEEE

802.11p card, a cellular interface, and a global positioning

system (GPS). There are two categories of vehicles moving
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on the road; the neighboring vehicles and vehicles in the

need of assistance to process their tasks which are known as

task vehicles (TV). At a particular time t, a TV can send

an offloading request to its neighboring vehicles to assist in

processing its task. The neighboring vehicle will return the

execution result to the TV after processing.

Fig. 1: System Model

As illustrated in Fig.1, a TV (green color vehicle) needs

assistance to process a task, so it broadcasts an offloading

request to the neighboring vehicles (vehicles in ash color).

Upon reception of the request message, vehicles with idle

computation resources known as service vehicles responds to

the request message with some vital details like vehicle ID,

moving direction, velocity, memory capacity, and available

computational resources. Then the TV uses the received in-

formation to compute the performance value of each service

vehicle using a fuzzy logic algorithm based on four metrics:

distance, relative velocity, link reliability, and available compu-

tational resources. Then the vehicles with higher performance

value will be selected as service vehicles for computation

offloading.

Fig. 2: Computation Offloading

IV. PROPOSED COMPUTATION OFFLOADING STRATEGY

Consider a task vehicle TVi initiating an offloading re-

quest by sending a broadcast message to neighbouring ve-

hicles (NV ) within its communication range, where NV =
{nv1, nv2, nv3, ..., nvl}. It is always challenging to execute

computation-intensive tasks, due to difficulties such as com-

putation capability and wireless communication link breakage.

Because of this, we divide each lengthy task into subtasks

based on available service vehicles, and then forward each

subtask from W = {w1, w2, w3, ..., wn} to a service vehicle in

S = {s1, s2, s3, ..., sm} as illustrated in Fig 2. Each computa-

tion task can be defined in three terms as wi = {di, ci, Tmax
i }

where di is the total data size of the task, ci represents the

computing resources required to process the task, while Tmax
i

is the delay constraint of the task.

TABLE I: Main Notation Summary

Symbol Description

W Set of tasks
S Set of service vehicles
NV Set of neighboring vehicles
i The task vehicle index i ∈ n
j The service vehicle index j ∈ m
rt(l) The link reliability
qi,j The uplink data rate of each vehicle
Pi The transmission power of each vehicle
Gi,j The channel gain between two vehicles
B0 The system bandwidth
di The total data size of a task wi

ci The computing resources required to process task wi

Tmax

i The delay constraint of task wi

Lr
i,j The task transmission latency

Le
i,j The task execution latency

Lt
i,j The total task offloading latency

LLT i,j The link life time
csti,j The total task offloading cost
ui,j Indicates whether task wi is offloaded to service vehicle sj
α The weight of task offloading latency
β The weight of task processing cost
γj The unit cost of resource on service vehicle sj

A. Service Nodes Selection

In this part, to achieve an optimal computation offloading

decision in the VEC network, we present a fuzzy logic algo-

rithm to select service vehicles. The service vehicle selection

is affected by various factors in a VEC environment because

of its dynamic nature and high mobility. Both communication

and computation factors have to be considered jointly for

reliable computation offloading. The fuzzy inference system

(FIS) combines all input data to reflect the impact of the

parameters in decision making. To make use of the fuzzy logic

algorithm in service vehicle selection, it is crucial to find the

factors that directly impact the vehicular nodes [22], [23]. Fig.

3 illustrates the proposed FIS model.

Fig. 3: Fuzzy System Control Model

B. Nodes Performance Value Using Fuzzy Logic

To calculate each service vehicle’s performance value, four

metrics: distance, relative velocity, link reliability, and avail-

able computation resources are measured by the task vehicle

for all the service vehicles in its communication range that

respond to its offloading request. The above metrics are trans-

formed into fuzzy values and fuzzy rules based on the defined

membership functions. Finally, fuzzy values are transformed
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into numerical values. Description of these metrics are given

below

1) Distance (DT)

A lower relative distance between the vehicular nodes

signifies lower packet transmission latency, and a more sta-

ble network connection. Service vehicles closer to the task

vehicles have higher chance to be selected as service vehicles.

When the distance is far between the vehicles, the connection

between them is unstable and hence it is not suitable for task

offloading. The distance between two nodes (V hi, V hj) can

be computed using their respective coordinates (xi, yi) and

(xj , yj).

Di,j =

√

(xj − xi)
2
+ (yj − yi)

2
(1)

2) Link Reliability (LR)

Link reliability is the probability that a communication link

between vehicles V hi and V hj will be available over a period

of time [24], the link reliability r(l) can be given as

r(l) = Pr{l is continuously available until t+Tr |l exists at t}
(2)

where l denotes a communication link, and Tr represents the

predicted interval for continuous existence of the link at t.
The velocities of the vehicles are obtained to compute the link

reliability, assuming the velocities follow normal distribution.

The probability density function (pdf) of the velocity v of a

vehicle [25] can be given as

h(v) =
1

σ
√
2π

e−
(v−ϕ)2

2σ2 (3)

where ϕ is the mean value of velocity and σ2 is the variance of

velocity. Since the velocities of vehicle V hi and V hj follow

normal distribution, their relative velocity ∆vi,j = |vi − vj |
is also a normally distributed variable. Let CR denote the

communication range of a vehicle, then 2CR is the maximum

communication distance between two vehicles. Therefore, the

link duration T must satisfy

T =
2CR

∆vi,j
(4)

The expression above is monotonous and differentiable,

based on equation (3) using the changing variable rules, we

can obtain the pdf of T , which is given as

f(T ) =
2CR

σ∆vi,j

√
2π

1

T 2
e
−
( 2CR

T
−ϕ∆vi,j )

2

2σ2∆vi,j when T ≥ 0 (5)

where σ∆vi,j and ϕ∆vi,j represent the mean and variance of

the relative velocity respectively. Let Tr denote the continuous

existence of communication link l between vehicles V hi and

V hj , which can be expressed as

Tr =
CR−Di,j

|vi − vj |
(6)

where Di,j is the distance between vehicle V hi and V hj .

f(T ) in (5) can be integrated from t to t + Tr, to obtain the

probability that, at a certain time t the communication link l
will continue to exist for a duration Tr. Therefore, the link

reliability model can be expressed as

rt(l) =







t+Tr
∫

t

f(T )dT, if Tr > 0

0, otherwise

(7)

Using the Gaussian error function erf, we can derive the

integral in equation (7). Then we have

rt(l) = erf

(

2CR
t
− ϕ∆vi,j

σ∆vi,j

√
2

)

− erf

(

2CR
t+Tr

− ϕ∆vi,j

σ∆vi,j

√
2

)

(8)

3) Relative Velocity (RV)

The relative velocity RV i,j between two moving vehicular

nodes is the velocity of vehicle V hi with respect to the vehicle

V hj [26], [27]. Using the offloading request response from the

one-hop neighboring service vehicles, the task vehicle TVi will

compute the relative velocity from each service vehicle. The

relative velocity can be obtained using

RVi,j = |vi − vj | (9)

where vi denotes the velocity of vehicle V hi and vj denotes

the velocity of vehicle V hj . A smaller value of relative

velocity signifies a small variation in velocity between vehicle

V hi and V hj . Hence network connection will be suitable for

successful task transfer between the vehicular nodes.

4) Available Computational Resources (AC)

The available computational resource, is referred to as the

computational capability of a vehicular node consisting of the

random-access memory (RAM), processing unit (CPU) and

the storage, this metric estimates the potential computation

power of a vehicle. To determine ∂ which is the value of the

idle resource, we use the ratio of the allocated resources to the

total amount of resource on the service vehicle. The available

computational resources on vehicle V hj can be expressed as

ACj = ∂jfj (10)

where fj denote the CPU frequency of the vehicle. The

available computional resources at time t on a service vehicle

sj , determines the computation delay of a task and whether

the task can execute till completion within the delay constraint.

The higher the available computional resources, the lower the

task processing latency.

C. Fuzzy Sets

The major objective of the proposed fuzzy logic algorithm is

to select reliable service vehicles based on the defined metrics.

In conventional set theory, elements can either belong to a

set or not. Whereas fuzzy theory extends this definition by

introducing partial membership. A fuzzy set Z in a universe

of discourse Y can be defined as
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µZ(y) : Y → [0, 1] where y ∈ Y (11)

The notation µZ(y) represents the membership degree of y
in Z. µz(y) = 1 if y ∈ Z denotes full membership, µz(y) = 0
if y /∈ Z denotes non membership, and 0 < µZ(y) < 1 indi-

cates partial membership. A finite fuzzy set can be expressed

as

Z = {µZ(y1)/y1 +µZ(y2)/y2 +µZ(y3)/y3 +...+µZ(yn)/yn}
(12)

In fuzzification process, a crisp value is converted into a

fuzzy value. The fuzzy logic uses a linguistic variable to

represent an input parameter. The value of each linguistic

variable is a real number within a defined range. Therefore,

a linguistic variable can be denoted as LV = {V b,Rn, δ}
where V b denotes the value of fuzzy input, Rn represents the

range of the variable, and δ is the fuzzy set. Table II presents

the fuzzy sets.

TABLE II: Fuzzification of Input and Output Variables

Input variable Fuzzy sets

Distance (DT) far, close
Relative Velocity (RV) low, medium, high
Link reliability (LR) reliable, adquate, not-reliable
Available computational resource (AC) adquate, high

Output variable Fuzzy sets

Performance value (PFV) worse, bad, fair, average,
good, execellent

D. Membership Functions

The membership function defines how each point in the

input space is mapped to a membership value within the range

of [0, 1], which indicates the membership degree. Membership

functions are designed by dividing each linguistic variable

into an overlapping fuzzy sets, which were obtained through

experiment. A set of membership function for each fuzzy

variable can be expressed as

ZF = {(y, µZ(y)) : y ∈ Y, µZ(y) ∈ [0, 1]} (13)

where µZ(y) is the membership function of Z, it also indicates

the degree at which y belongs to Z. In this work, based on our

input and output variables we have five membership function

sets, the membership functions are designed in a triangular

format due to its low complexity and flexibility, which can be

expressed as

µtri
Z (y) =















0, if y < a
y−a
b−a

, if a ≤ y ≤ b
c−y
c−b

, if b ≤ y ≤ c

0, if y > c

(14)

where a denotes the lower limit of the triangular curve, c
denotes the upper limit of the triangular curve, and b denotes

the modal value of the triangular curve. Fig. 4 illustrates the

membership functions used in this work.

(a) Membership Function for Distance (DT)

(b) Membership Function for Relative Velocity (RV)

(c) Membership Function for Link Reliability (LR)

(d) Membership Function for Available Computing Resources
(AC)

(e) Membership Function for Performance Value (PFV)

Fig. 4: Membership Functions for Input and Output Fuzzy

Variables
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E. Fuzzy Rules

The fuzzy rules are defined based on the If-Then logical

operation, each rule represents a fuzzy implication between a

condition and conclusion. An output can only be generated

after evaluation of the fuzzy rules, to obtain the desired result

it is essential to carefully design the fuzzy rules. The set of

fuzzy rules in Table III are formulated based on the Mamdani

inference model [35]. A set with K number of If-Then rules

is defined below.

Rlx : IF o is Ox,Then u is Ux (15)

In the expression above Ox and Ux are fuzzy sets, assuming

x ∈ {1, 2, 3, ...,K}. The fuzzy inference system maps the

values of the fuzzy input to output based on the defined

rules. Lastly, in the defuzzification step, the result of the

fuzzy inference is converted from linguistic value to a numeric

value. For the proposed scheme, the center of gravity (COG)

method is utilized for the defuzzification process, which can

be expressed as

η =

∫

y.µz(y)dy
∫

µz(y)dy
(16)

F. Communication and Computation Model

The computation offloading delay comprises two major

aspects i.e. the transmission and the execution, which even-

tually determine the latency and the reliability of a task

offloading scheme. In the task transmission process, the task

vehicle communicates with service vehicles using a single hop

network structure. We consider the frequency division multiple

access method, where users are assigned a fraction of the total

bandwidth. The data rate for transmission from a task vehicle

to the service vehicle can be given as

qi,j = B0log2

(

1 +
PiGi,j

N0

)

(17)

where B0 denotes the allocated bandwidth, Pi is the trans-

mission power of the task vehicle, Gi,j is the channel gain

between the communicating vehicles, and N0 represents the

additive Gaussian noise power. The task processing on the

service vehicle involves task transmission and execution. The

transmission latency can be expressed as

Lr
i,j =

di
qi,j

(18)

where di is the data size of the task. Then the task execution

latency, can be defined as

Le
i,j =

ci
fzj

(19)

where ci is the computing resources required to execute the

task, and fzj represents the computing resources allocated to

process the task. Therefore, the total offloading latency which

is the sum of transmission and execution latencies can be

expressed as

Lt
i,j = Lr

i,j + Le
i,j (20)

TABLE III: Set of Fuzzy Rules

Input Output

Rules LR RV DT AC PFV

1 Reliable Low Close High Excellent

2 Reliable Low Close Adequate Good

3 Reliable Low Far High Good

4 Reliable Low Far Adequate Average

5 Reliable Medium Close High Good

6 Reliable Medium Close Adequate Average

7 Reliable Medium Far High Average

8 Reliable Medium Far Adequate Fair

9 Reliable High Close High Average

10 Reliable High Close Adequate Fair

11 Reliable High Far High Fair

12 Reliable High Far Adequate Bad

13 Adequate Low Close High Good

14 Adequate Low Close Adequate Average

15 Adequate Low Far High Fair

16 Adequate Low Far Adequate Bad

17 Adequate Medium Close High Average

18 Adequate Medium Close Adequate Fair

19 Adequate Medium Close High Average

20 Adequate Medium Close Adequate Fair

21 Adequate High Far High Fair

22 Adequate High Far Adequate Bad

23 Adequate High Close High Fair

24 Adequate High Close Adequate Bad

25 Not-reliable Low Far High Bad

26 Not-reliable Low Far Adequate Worse

27 Not-reliable Low Close High Fair

28 Not-reliable Low Close Adequate Bad

29 Not-reliable Medium Far High Bad

30 Not-reliable Medium Far Adequate Worse

31 Not-reliable Medium Close High Fair

32 Not-reliable Medium Close Adequate Bad

33 Not-reliable High Far High Bad

34 Not-reliable High Far Adequate Worse

35 Not-reliable High Close High Bad

36 Not-reliable High Close Adequate Worse

Also, when a task is offloaded to a service vehicle for pro-

cessing, the energy consumption in the task offloading process

is computed based on the transmission cost for transferring a

content to the service vehicle. Thus, the energy consumption

for sending di bits of data from the task vehicle to the service

vehicle is given as

Ei,j = Pi,j .L
r
i,j (21)
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G. Cost Function

Let γj denote the unit cost of a resource in the service

vehicle and fzj the processing resources assigned by the

service vehicle, the offloading reward paid by the task vehicle

to the service vehicle is given as

ςti,j = γj .fzj (22)

Therefore, the task offloading cost can be expressed as the

sum of total latency and the price paid for the offloading

services, then we have

csti,j = ςti,j + Lt
i,j (23)

H. Problem Formulation

Time is divided into time slots t ∈ Ψ = {0, 1, 2, ..., tn}. At

each time slot, a subtask is allocated to at most one service

vehicle for execution. A binary variable ui,j indicates whether

subtask wi is offloaded to a service vehicle sj for execution.

ui,j =

{

1, if subtask wi is offloaded to service vehicle sj
0, otherwise

(24)

Accordingly, the major objective is to minimize the task of-

floading cost, which includes communication and computation

overhead. Here the offloading cost is defined as the weighted

sum of latency and processing cost αLt
i,j+βςti,j , where α and

β are the weights of latency and processing cost respectively.

The decision weights can be adjusted dynamically, depending

on the preference of the user. When a task has a stringent

delay requirement, the latency weight α is set to a larger value.

Similarly, when the processing cost is of serious concern, then

β is set larger. Therefore, the optimization problem can be

formulated as

minimize
{ui,j , csti,j , Ei,j}

n
∑

i=1

m
∑

j=1

(αLt
i,j + βςti,j)ui,j

subject to C1:

n
∑

i=1

m
∑

j=1

qi,j ≤ Q, ∀i ∈ n, j ∈ m,

C2: Ei,j ≤ Eh, ∀i ∈ n,

C3: Lr
i,j + Le

i,j ≤ Tmax
i , ∀i ∈ n, j ∈ m,

C4: ri,jt (l) > 0, ∀i ∈ n, j ∈ m,

C5: 0 ≤ fzj ≤ fmax, ∀j ∈ m,

C6: ui,j ∈ {0, 1}, ∀i ∈ n, j ∈ m
(25)

C1 defines the data rate constraint. C2 characterizes the

maximum limit of energy consumption. C3 guarantees that the

transmission and execution latency of a task should not exceed

the delay requirement. C4 guarantees that the transmission link

between the task vehicle and the service vehicle is reliable.

C5 indicates that the computing resources allocated shouldn’t

exceed the maximum available resources. C6 ensures that a

subtask cannot be allocated to more than one service vehicle.

To solve the optimization problem above, algorithms with

exponential computation complexity have to be applied, which

is not suitable for real-time decision making in a dynamic VEC

network. Task allocation in the VEC network is a special case

of 0/1 Knapsack problem [38], which is NP-hard. Therefore,

we propose heuristic algorithms to obtain task offloading

decisions and resource allocation. Algorithm 1 selects a set of

service vehicles, and algorithm 2 provides the task offloading

decision.

I. Computation Task Offloading

To meet delay requirements and completion of tasks, se-

lecting appropriate service vehicle is necessary. It is crucial to

optimize the communication latency, computation latency, and

also avoid the system instability that may degradate system’s

performance. In the proposed scheme, both communication

and computation factors are jointly considered in the fuzzy

system to compute the performance value of each service

vehicle. Vehicles with higher performance value are selected

for task execution as presented in algorithm 1. For safety

concerns, in algorithm 2 we consider social relationship which

involves discovering the interaction pattern among users i.e.,

social networks. Using the pattern, we can estimate the level

of trust among users based on previous their interactions. Xi,j

represents the level of trust between users, which is within

the range 0 ≤ Xi,j ≤ 1. Assuming the probability of secure

communication is denoted by the degree of trust between the

users, computation offloading request can only be accepted if

Xi,j is greater than or equal to a predefined threshold.

J. Task Completion and Waiting Time

A task can only be offloaded if a service vehicle is in a

task vehicle’s communication range. Otherwise, a generated

task waits until when there is a service vehicle in the com-

munication range. A task that cannot be processed within the

delay requirement is declared failed and has to be re-initiated.

Conventionally in a VEC network, computation offloading

can be successful only if the link duration between a service

vehicle and a task vehicle is higher than the task’s maximum

latency. Otherwise, the task has to wait for a service vehicle

with its desired link duration. However, in a highway scenario

as presented in Fig. 5, having a longer link duration is always

difficult. In the proposed scheme, task offloading latency is

optimized with consideration of link reliability, link lifetime,

and task completion. A task is divided into subtasks and

offloaded to service vehicles for execution, with the concept of

multiprocessing even if the link duration is less than the delay

requirement of a task. In this way, the task can be processed

within its delay constraint.

Fig. 5: Link Life Time
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Algorithm 1: Service Vehicles Selection Algorithm

inputs : Ω, W
output: set of selected service vehicles S
i← n, j ← m
foreach TVi ∈ Ω do

⊲ TVi is a task vehicle, Ω is a vehicular graph

topology

broadcast task offloading request
end

foreach Vi ∈ Ω do

⊲ Vi is a vehicle, Ω is a graph topology of vehicles

if recieve offloading request ==1 then

Vi is a neighbor

Vi ∈ NV
if Vi reply request ==1 then

Vi is a service vehicle

Vi ∈ S̄
foreach s̄j ∈ S̄ do

calculate the value of each metric

using equations (1-11)

end

else

Vi /∈ S̄
Vi is not a service vehicle

end

else

recieve offloading request == 0
Vi is out of communication range

end

Ns ← count(S̄)
⊲ Number of available service vehicles

end

Service vehicle selection (S̄, Ns)
foreach s̄j ∈ S̄ do

compute PFV using fuzzy logic algorithm

sort PFV in descending order

return S
⊲ S is the set of service vehicles with high PFV

if |S| ≥ 1 then
There are available service vehicles with higher

performance value

else

|S| < 1
no service vehicle with performance value

above threshold

retry offloading task later
end

end

1) Link Life Time

The link lifetime (LLT ) is an estimated duration for which

a transmission link l will exist between vehicular nodes

(V hi, V hj) [28], [29]. LLT can be obtained by the equation

below

LLT i,j =
−(ef + gh) +

√

(e2 + g2)r2 − (eh− fg)
2

e2 + g2
(26)

where e = vi cos θi − vj cos θj , f = xi − xj , g = vi sin θi −
vj sin θj and h = yi−yj while (i, j) are two vehicular nodes,

vi and vj are their velocities, (xi, yi) and (xj , yj) are the

positions of the nodes, θi and θj (0 ≤ θi, θj ≤ 2π) are their

directions of motion, respectively. Note that when vehicles are

moving thesame direction θi = θj . When a task is generated,

the task vehicle computes the link lifetime between a task

vehicle and the service vehicle. The estimated link duration is

used to determine whether to offload a task or to wait for a

better link.

The link lifetime LLT can be used in measuring link

stability between nodes. Consider a vehicle V hi in a set of

vehicular nodes. The link stability of vehicle V hi with respect

to vehicle V hj can be given as

LSi,j =

∑

V hj∈NVi

LLT i,j

∑

V hj∈NVi

∑

V hk∈NVj

LLT j,k

(27)

Where NV i denotes a set of one-hop neighbors of vehicle

V hi, NV j denotes a set of one-hop neighbors of vehicle V hj ,

LLTi,j represents the link duration between vehicle V hi and

V hj , and LLTj,k is the link duration between vehicle V hj

and V hk. From equation (27) the link lifetime is proportional

to the link stability. When the link duration is high, the link

stability is also high [36], [37]. For a task wi to be transmitted

over a link with data rate qi,j between vehicle V hi and vehicle

V hj , the probability of successful data transmission can be

expressed as

Psi,j = Pr{t′ij ≥
di
qi,j
} (28)

Assuming ti,j = di

qi,j
is the minimum required duration

between vehicle V hi and V hj , t′i,j is the average link duration

between the vehicles, and di represents the size of the task.

V. SIMULATION RESULTS AND DISCUSSIONS

To evaluate the proposed computation task offloading scheme,

the microscopic traffic simulator (SUMO v1.5) is used to

generate vehicular traffic and mobility [30]. In the experiments

a 2500 x 2500m2 area is considered. A multi-lane road is

generated, vehicles are moving with random speed, position,

and arrival time following a normal distribution. We follow

the urban and highway simulation scenario, as stated in 3GPP

TR [31]. Furthermore, for network simulation, the mobility

traces obtained through SUMO were passed to the network

simulator (NS3.8.1) [32] to simulate the vehicular ad-hoc

network (VANETs) scenario with parameters stated in table

IV [33], [20], [34].
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Algorithm 2: Task Offloading Decision

inputs : S, TVi, threshold, W
output: offloading decision

i← n
j ← m
foreach sj ∈ S do

if Xi,j ≥ threshold then

⊲ social relationship exists

calculate LLT i,j

⊲ LLT is the link life time
else

do not accept offloading request

end

return LLT i,j

end

if LLTi,j ≥ Tmax
i then

obtain Psi,j
TV i offloads task wi

sj processes and return results
else

the value of LLT i,j is not enough

request rejected
end

TABLE IV: Summary of Simulation Parameters

Parameter Value

Simulation Area 2500 x 2500m2

Simulation Time 500s
Number of Vehicles 20-500
Service Vehicles Ratio 15%
Transmission Range 250-300m
Task Size 5-10mb
Vehicle Speed 40-130km/h
Connection Type UDP

A. Simulation Environment

The proposed scheme is compared against other benchmark

schemes.

• Distance aware offloading scheme [12]: in this scheme,

service vehicles for task offloading are selected based

on the relative distance between the task vehicle and the

service vehicle, if the link duration is enough to complete

a task.

• Task replication offloading scheme [20]: is a learning

algorithm that replicates task and offloads tasks to all

available service vehicles. The algorithm learns the av-

erage offloading delay of each service vehicle gradually

before convergence.

• Two-stage task offloading scheme [21]: the algorithm op-

erates in two phases; at the first stage, a cluster is formed.

In the next phase offloading request is sent through the

cluster head, which selects the service vehicles based on

vehicular velocity and transmission link.

In the simulation, two types of experiments are conducted,

with 30 simulations executed for each experiment to obtain

averaged results.

Experiment 1: the proposed computation offloading scheme

is evaluated with several vehicular densities. The performance

metrics considered are as follows

• End to End Delay: is the time consumed to offload a task

from task vehicle to service vehicle to process and return

the result to the task vehicle. Delay is usually measured

in seconds.

• Resource Utilization: is a performance metric that indi-

cates how the resource in a network is efficiently utilized.

Resource utilization is measured in percentage.

• Successful Offloading: is a performance metric that indi-

cates the percentage of successful offloads over the total

number of offloads.

• Communication Overhead: is a metric that indicates com-

munication resources used by vehicles in the procedure

of offloading a particular task.

Experiment 2: the proposed computation offloading scheme

is evaluated with several vehicular speed. the performance

metrics considered are as follows

• Throughput: is the actual amount of packets successfully

transmitted between a task vehicle and service vehicle

within time t. Throughput is presented in megabits per

second (mbps).
• Packet Delivery Rate (PDR): this is the ratio of the

number of packets successfully delivered over the total

number of packets sent from a task vehicle to the service

vehicle. PDR is measured in percentage.

• Size of Task: is the size of the task offloaded to a

service vehicle for processing. Task size is measured in

a megabyte.

B. Discussions

In this section, we present and discuss the simulation results.

1) Performance Over Varying Number of Vehicles

In experiment 1, urban road traffic is considered with a

density of 100-500 vehicles. The vehicle’s maximum speed

limit is set at 20m/s. To analyze the effect of computation-

intensive and delay-sensitive task, a task of size 5Mb is

generated on a random vehicle for offloading at a particular

time slot after a specified interval. At each simulation session,

five task offloading requests are successfully generated, and

the result is recorded.

In Fig. 6, the offloading delay is analyzed with respect to

vehicle density and the number of selected service vehicles.

In this section, the number of selected service vehicles is two.

Fig. 6 shows that as the number of vehicles increases in the

network, the offloading delay reduces. This is because the

relative distance between vehicles is higher when the vehicular

density is lower. In such case, there are fewer number of

service vehicles and the task vehicle may not be able to find an

appropriate service vehicle. However, as the number of vehi-

cles increases, the relative distance between nodes reduces,

and a more significant number of service vehicles will be

available, which will enable improved offloading decisions by

jointly minimizing communication and computation latency.

The proposed computation offloading scheme has much lower

offloading latency than the existing schemes [12], [20], [21].

This is because the introduction of the four metrics in service
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Fig. 6: Offloading delay with two selected service vehicles

Fig. 7: Offloading delay with four selected service vehicles

vehicle selection, which is different with all other existing

schemes, has immensely minimized the offloading delay.

Fig. 7 shows that when the number of selected service

vehicles is increased to four, the delay in [20] increases ex-

ponentially because of the task transmission latency, which is

related to its flooding nature where a single task is transmitted

to all the available service. Also, in [12], the delay increases

because of its single processing nature, in which the selected

service node might not be optimal. In [21], delay reduces

because of its multiprocessing approach, but this scheme’s

service node selection does not consider distance and link

reliability, which are vital factors to consider in minimizing

the transmission delay. The proposed scheme’s delay reduces

further because of the multiprocessing nature and the selection

of service nodes based on four vital metrics, which jointly

minimizes transmission and computation delay, supporting the

completion of computation-intensive tasks.

Fig. 8: Successful offloading with respect to the percentage of

service nodes

Fig. 9: Resource utilization

Fig. 8 shows the percentage of successful task offloading

for different percentages of service vehicles in the network.

It can be seen when the ratio of service vehicles is 5% the

network recorded a low success of task offloading. When the

number of vehicle is lower due to the vehicular sparsity in the

network, service vehicles may not be available. Even if there

is a service vehicle available, the relative distance is high, and

the link between service vehicle and task vehicle is unstable.

As the number of vehicles increases, the percentage of service

vehicles also increases, providing more offloading opportunity,

as a result, the success rate of offloading increases.

Fig. 9 shows that [20] recorded lower resource utilization

because a task is offloaded to all available service vehicles, and

the result from only one service vehicle is returned to the task
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vehicle. In this case communication and computation resources

on other service vehicles are wasted. The proposed scheme

achieves the highest resource utilization because service nodes

are selected based on communication and computation metrics.

[21] also recorded higher resource utilization because of the

multiprocessing approach exploited by the scheme.

Fig. 10: Communication overhead

Communication overhead is related to the number of mes-

sages exchanged among vehicles to initiate task offloading.

Fig. 10 shows that [20] recorded the lowest overhead because

it is a learning-based scheme. A task is offloaded to all service

vehicles in the communication range, without prior knowledge

of available resources on the service nodes. The scheme learns

and improves by the response of the environment. [21] incurs

the highest communication overhead because of the two-stage

offloading approach, where a task is offloaded through an edge

vehicle to the service vehicles to process. And this involves

much more beaconing between vehicles. The proposed scheme

recorded a fair overhead because service vehicles are selected

based on some vital metrics. The information is obtained

through communication between vehicles before task offload-

ing.

2) Performance with Different Vehicle Speeds

In experiment 2, highway road traffic is generated with a

density of 20 vehicles. The vehicle’s speed is between 20-

34m/s. A task of size 5-10mb, with the delay constraint

of 5-10s is generated on a random vehicle after a specified

interval. At each simulation session, five offloading requests

are successfully conducted, and the average result is recorded

for analysis.

In Fig. 11, tasks offloading delay with respect to the size

of a task is evaluated. As the size of the task increases,

the offloading delay increases as expected. The task delay

requirement is set between 5-10s to evaluate all schemes

and analyze whether the tasks can be processed within the

minimum delay requirement. The task’s size determines the

task waiting time. Suppose the estimated computation delay of

Fig. 11: Impact of waiting time on offloading delay

the task is higher than the link lifetime between two vehicles.

The task has to wait for a link with a higher link duration to

enable successful offloading. The proposed scheme recorded

lower offloading latency because a task is divided into subtasks

before offloading, thereby minimizing the waiting time of a

task. Also, the scheme selects the optimal service vehicles,

which reduces the task transmission latency. In comparison,

[12] and [20] incur much waiting time.

Fig. 12: Packet delivery rate

The effect of vehicle speed on the packet delivery rate is

shown in Fig. 12. The packet delivery rate of [20] is lower

because the packets need to be transferred to all available

service vehicles. Therefore, the packet queue has to drop some

packet that cannot be transferred to a service vehicle before

the maximum queuing delay. [12] recorded less packet loss

because a task is transferred to a single service vehicle, so

the number of packets transmitted is not much compared
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Fig. 13: Throughput

to [20]. The proposed scheme recorded the highest packet

delivery rate because a task is divided into subtasks before

transmission to respective service vehicles. Therefore, the

number of packets is less for each destination, so packet loss is

minimized. Fig. 13 shows that the proposed scheme achieves

the highest throughput because it has the highest successful

packet delivery than the other schemes.

VI. CONCLUSIONS

A distributive task offloading scheme is proposed to support

task completion for delay-sensitive and computation-intensive

tasks in vehicular edge computing networks. The fuzzy logic

algorithm is applied to select the optimal number of service

vehicles for task execution by jointly considering some vital

metrics such as distance, relative velocity, link reliability, and

available computation resources of the service vehicles. We

further investigate the effect of vehicular speed and task wait-

ing time on computation offloading in sparse vehicular density

scenarios. Through extensive simulations, we have shown that

the proposed scheme achieves significantly better performance

in terms of throughput, latency, resource utilization and packet

delivery ratio in comparison with existing schemes.
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