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Abstract

The insula cortex and hypothalamus are implicated in eating behaviour, and contain receptor sites for peptides and hormones
controlling energy balance. The insula encompasses multi-functional subregions, which display differential anatomical and func-
tional connectivities with the rest of the brain. This study aimed to analyse the effect of fasting and satiation on the functional con-
nectivity profiles of left and right anterior, middle, and posterior insula, and left and right hypothalamus. It was hypothesized that
the profiles would be altered alongside changes in homeostatic energy balance. Nineteen healthy participants underwent two 7-
min resting state functional magnetic resonance imaging scans, one when fasted and one when satiated. Functional connectivity
between the left posterior insula and cerebellum/superior frontal gyrus, and between left hypothalamus and inferior frontal gyrus
was stronger during fasting. Functional connectivity between the right middle insula and default mode structures (left and right
posterior parietal cortex, cingulate cortex), and between right hypothalamus and superior parietal cortex was stronger during sati-
ation. Differences in blood glucose levels between the scans accounted for several of the altered functional connectivities. The
insula and hypothalamus appear to form a homeostatic energy balance network related to cognitive control of eating; prompting
eating and preventing overeating when energy is depleted, and ending feeding or transferring attention away from food upon sati-
ation. This study provides evidence of a lateralized dissociation of neural responses to energy modulations.

Introduction

Human eating behaviour is determined and influenced by a wide
array of internal and external factors. The key motivation is hunger,
which (at least in lean individuals) results from a complex interplay
between neurochemical compounds and signalling from homeostati-
cally related brain structures. However, the neural basis of homeo-
static networks that drive us to eat requires further elucidation in
humans. This is an essential step in understanding dysfunction in
appetite regulation that may lead to conditions such as obesity.
Some people can resist appetitive food cues, while other people
have difficulty doing so (Ouwehand & Papies, 2010; Loeber et al.,
2013); possibly, differences in neural connectivity have a role to
play (Passamonti et al., 2009). The insular cortex and hypothalamus
are logical regions of interest, as they respond to both orexigenic
and anorectic compounds (Williams et al., 2000; Valassi et al.,
2008; Schloegl et al., 2011), and are reported as prominent activa-
tions in appetite imaging studies.

The insula is not a homogenous region of the cortex. Numerous
studies have revealed functional subdivisions, with the anterior
insula predominantly involved in attentional/emotional processing,
and the posterior insula in sensorimotor tasks (Kurth et al., 2010;
Cauda et al., 2011, 2012; Deen et al., 2011; Stephani et al., 2011;
Kelly et al., 2012; Chang et al., 2013). The middle insula is less
explored, but is reported to contribute to olfactory/gustatory process-
ing (Kurth et al., 2010) and interoception (Kelly et al., 2012; Sim-
mons et al., 2013). In terms of structure, cytoarchitectonic
investigation of the insula cortex has revealed three insula subre-
gions; one agranular (anterior), one dysgranular (intermediate) and
one granular (posterior) in both primates (Mesulam & Mufson,
1982) and humans (Bonthius et al., 2005).
Regarding appetite, the anterior insula constitutes part of the pri-

mary taste cortex, and contains neurons responding to a variety of
tastes and textures (Verhagen et al., 2004; Rolls, 2006). The mid-
insula contains neurons coding for taste intensity (Small et al.,
2003), is activated in response to visual food stimuli (Schur et al.,
2009; Tang et al., 2012) and is implicated in food craving (Pelchat
et al., 2004). The posterior insula is activated when people deliber-
ately induce food craving by imagining the taste and smell of food
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(Siep et al., 2012), in response to visually presented food stimuli
(Britton et al., 2006), and to consumption of highly palatable sub-
stances (Bohon & Stice, 2011).
There is also limited evidence of functional insula lateralization in

the context of appetite and food stimuli, with two recent meta-ana-
lyses indicating greater involvement of the right insula cortex (Kurth
et al., 2010; Tang et al., 2012), while another reported more
involvement of the left insula (Kelly et al., 2012). The lack of con-
sensus regarding insula lateralization and appetite could feasibly be
due to the extensive array of experimental designs and stimuli
employed between studies.
The hypothalamus plays a crucial role in food intake (Grill &

Kaplan, 2002; Palkovits, 2003), and is extensively involved in
homeostatic metabolic regulation (Carey et al., 2013; Coll & Yeo,
2013; Zhou & Rui, 2013). Eating (Thomas et al., 2015), and glu-
cose (Matsuda et al., 1999; Smeets et al., 2005, 2007; Flanagan
et al., 2012; Little et al., 2014) or insulin administration (Kullmann
et al., 2013), exert significant suppressive effects on the blood oxy-
gen level-dependent (BOLD) signal within the hypothalamus. Addi-
tionally, the hypothalamus is physically connected to other areas
involved in maintaining the homeostatic energy balance, and
receives projections from the gastrointestinal tract via the brainstem
(Blouet & Schwartz, 2010).
Most studies do not distinguish between the right and left

hypothalamus, but some lateralized results have been reported. The
left hypothalamus is sometimes found to be related to affect (Kulka-
rni et al., 2005; Cerqueira et al., 2008; Agroskin et al., 2014),
though it has been shown to be smaller in patients with anorexia
(Titova et al., 2013), and modulated by leptin (Rosenbaum et al.,
2008). The right hypothalamus seems more related to homeostatic
appetitive processing, demonstrating activation to visual food stimuli
(Rosenbaum et al., 2008), especially those depicting food with a
high energy content (van der Laan et al., 2011), or following weight
loss in obesity (Hinkle et al., 2013). It is at least partially responsi-
ble for the anorectic response to acute nicotine administration (Kroe-
mer et al., 2013), and its functional connectivity is modulated by
leptin (Hinkle et al., 2013).
The current study was designed to investigate appetite-induced

functional connectivity changes in anterior, middle and posterior
seeds in the left and right insula, and in the left and right hypothala-
mus seeds, using resting state functional magnetic resonance imag-
ing (fMRI). Resting state refers to a paradigm whereby participants
lie quietly in the scanner without performing any tasks. Functional
connectivity measures track temporal correlations in BOLD fluctua-
tions between brain areas, allowing for the identification of coherent
brain area networks. It was hypothesized that the seeds will exhibit
differential patterns of functional connectivity depending on partici-
pants’ satiation.

Materials and methods

Participants

MRI safety screening was carried out by a radiographer, and an
additional thorough medical screening was completed by the experi-
menter. The Three Factor Eating Questionnaire – Revised
(TFEQR18: Karlsson et al., 2000) was completed at the screening.
Nineteen healthy Caucasian volunteers (nine male) with a normal
body mass index (BMI; World Health Organisation, 2006) took part
in this study. The average age of the participants was
24.8 � 3.8 years (mean � SD). Participants gave their written
informed consent and the study was conducted in accordance with

the Declaration of Helsinki. Local ethical approval was obtained
from the University of Liverpool Research Ethics Committee.

Procedure

Participants attended two sessions, separated by 9.2 � 4 days. On
the day before both sessions, participants were reminded not to exer-
cise more than they would normally, and not to eat or drink any-
thing but water after midnight. Compliance was assessed using diary
entries and blood glucose testing upon arrival at the imaging facility
at 09:30 h or 10:00 h.
Session order was counterbalanced across participants. For the

fasted session, they completed the MRI scans after a minimum of a
9.5 h overnight fast. For the fed session they were given a fixed load
breakfast after their overnight fast, and then completed the MRI scans
after a short (approximately 20 min) delay. The total energy content
of the fixed load breakfast was 531 kcal (26.55% of the recom-
mended daily intake) for females and 670 kcal (26.8% of the recom-
mended daily intake) for males, and consisted of cornflakes, semi-
skimmed milk, toast, margarine, strawberry jam and orange juice.
Measures of hunger, desire to eat and prospective consumption

(how much food could potentially be eaten) were taken using
100 mm visual analogue scales (VAS; Stubbs et al., 2000) immedi-
ately prior to the MRI scans in both sessions. Blood glucose sam-
ples were obtained using a handheld blood glucose monitor (Model:
Accu-Chek Aviva, Roche Diagnostics, West Sussex, UK) immedi-
ately prior to the completion of the VAS scales. The Profile of
Mood States (McNair et al., 1981) was employed to measure partic-
ipants’ mood before the scans in both sessions.

Image acquisition

MRI scans were undertaken using a whole-body Siemens Trio 3T
scanner (Siemens, Erlangen, Germany) with an eight-channel
radiofrequency head-coil. Foam padding was used to restrict head
movement. A T2-weighted sequence was used to acquire functional
resting state images covering the whole brain (32 axial slices),
TR = 2000 ms, TE = 30 ms, slice order = interleaved ascending,
flip angle = 90°, field of view = 192 mm, slice thickness = 3.5 mm
(0.7 cm gap), voxel size at acquisition = 3.0 9 3.0 9 3.5 mm.
In the scanner, participants were asked to relax, close their eyes

and refrain from falling asleep. After the scan they were asked to
recall what they were thinking about during the scan, and give a rat-
ing between 1 (‘not at all’) and 7 (‘constantly’) in response to the
question ‘How much were you thinking about eating or food?’.

Data analysis

SPM8 (UCL, UK: www.fil.ion.ucl.ac.uk/spm) running on Matlab
version R2012a (MathWorks, Natick, MA, USA) was used to pre-
process the data. Images were first slice-timing corrected, then rea-
ligned to the first slice and unwarped, normalized to the template
EPI image, and smoothed using an 8-mm full-width half-maximum
Gaussian kernel.
Preprocessed images were imported to the functional connectivity

toolbox ‘Conn’ v.13 (www.nitrc.org/projects/conn; Whitfield-Gab-
rieli & Nieto-Castanon, 2012). The grey matter, white matter and
cerebrospinal fluid masks were produced by segmenting SPM8’s
template EPI image using the segmentation routine in SPM8, and
resliced to match the image dimensions of the preprocessed func-
tional images. No ‘partition clean-up’ was performed, and the ICBM
European brains template was used for affine regularization.
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Insula seed masks were produced using MarsBaR (http://marsbar.-
sourceforge.net/; Brett et al., 2002). A study on functional differenti-
ation within human insula (Cauda et al., 2011) was used to define
left and right anterior, middle (called ‘transitional zone’ in the origi-
nal paper), and posterior insula seeds for the current analysis. Each
insula seed was comprised of multiple 5-mm3 clusters, detailed in
Table 1.
Individual participants’ realignment parameter files were added as

first-level covariates. Data were initially bandpass filtered from
0.008 to 0.09 Hz in order to remove noise and low-frequency drift.
Finally, the signal from white matter and cerebrospinal fluid was
entered as confounds and removed using linear regression.
The remaining data were entered into first-level analysis in a

paired t-test design. Individual seed-to-voxel connectivity maps for
each insula seed and each participant were generated separately for
the fasted and fed sessions. For second-level analysis, one-sided t-
tests were employed to examine changes in seed-to-voxel connectiv-
ity between sessions. Glucose scores were entered as a second-level
covariate, expressed as a function of D (difference) between the ses-
sions. The results were thresholded at P < 0.05 FWE corrected in
order to account for multiple comparisons. While the FWE correc-
tion for the height threshold is generally considered sufficient to mit-
igate the risk of a type I error, an additional FWE corrected extent
threshold of 100 voxels was applied as an extra precaution. The
FWE correction was applied separately for each seed region of inter-
est across its multiple target voxels.
The analysis was repeated with the hypothalamus seeds. It was

identical to the insula connectivity analysis in all aspects, except for
the seeds themselves. The seed masks consisted of tracings around

the bilateral hypothalamus (as defined by the AAL atlas;
Tzourio-Mazoyer et al., 2002) produced by Sudheimer et al. (2015).
The results were again thresholded as described above.
Figures 1 and 2 were produced using xjView v.8.12 (www.alive-

learn.net/xjview8/) and MRIcron (www.nitrc.org/projects/mricron;
Rorden et al., 2007).

Results

MNI coordinates of seeds and their functionally connected areas are
shown in Table 2.

Self-report measures and glycaemia

In comparison to the fed session, during the fasted session partici-
pants reported feeling significantly more hungry (mean increase of
53.46 � 18.5 on the VAS scales; t18 = 12.53, P < 0.001) before the
scan, and more distracted by thoughts of food or eating (t18 = 4.31,
P < 0.001) during the scan. Participants also recorded significantly
lower blood glucose levels before the fasted scan (mean fasted read-
ing = 5.07 � 0.35 mM; mean fed reading = 6.79 � 0.72 mM;
t18 = �10.58, P < 0.001). Profile of Mood States scores were not
significantly different between sessions (t18 = �1.54, P > 0.05).

Functional connectivity of insula

When participants were fasted, enhanced functional connectivity
between the left posterior insula and right superior frontal gyrus
(SFG), and left posterior insula and left cerebellum were observed

Table 1. Coordinates of the individual 5-mm3 clusters defined by Cauda et al. (2011), grouped into the left or right anterior insula seed, middle insula seed or
posterior insula seed

Seed Clusters Left X Y Z Cluster (k) Right X Y Z Cluster (k)

Ant. Ins. 1 �34.5 12.5 �2.5 – 34.5 12.5 �2.5 –
2 �36.5 4.5 �3 – 38.5 5.5 �2.5 –
3 �30.5 18.5 5.5 – 34.5 16.5 5.5 –
4 �32.5 9 5 – 36.5 7 5 –
5 �30.5 9 11.5 936 32.5 9 11.5 864

Mid. Ins. 1 �36.5 �0.05 4.5 – 38.5 �0.5 4.5 –
2 �34.5 �3 11 432 34.5 �3 11 432

Post. Ins. 1 �36.5 �7.5 �3.5 – 36.5 �4.5 �3 –
2 �36.5 �10 4 – 38.5 �8 4 –
3 �34.5 �13 10 648 34.5 �11 10.5 648

Coordinates were given in Talairach space in the original paper; those presented here have been transformed into MNI space using the Matlab script ‘tal2mni’
(Brett, 2001), and rounded up or down to the nearest 0.5 mm. Cluster (k) refers to the number of voxels overall within the left or right anterior, middle, and
posterior insula seeds. The clusters are shown superimposed on a randomly selected participant’s structural scan in Fig. 1. Ant. Ins., right anterior insula seed;
Mid. Ins., middle insula seed; Post. Ins., posterior insula seed.

A B

Fig. 1. Seeds superimposed on a typical participant’s T1 scan. (A) anterior insula (magenta), middle insula (yellow), and posterior insula (green); (B) left
hypothalamus (blue), right hypothalamus (red). L, left; R, right.
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(Fig. 2A). When participants were fed, they exhibited enhanced
functional connectivity between the right mid-insula and left inferior
parietal cortex (IPC), right IPC and cingulate cortex (Fig. 2B). The
enhanced functional connectivities between the left posterior insula

and SFG, and right middle insula and cingulate cortex disappeared
when glycaemia was added as a second-level covariate. This finding
indicates that the augmented connectivities were at least partially
related to differences in blood glucose levels across sessions.

A

B

Fig. 2. Slice locations, insula seeds and connectivity maps. L, left; R, right; AI, anterior insula; MI, mid insula; PI, posterior insula; CER, cerebellum; SFG,
superior frontal gyrus; IPC, inferior parietal cortex; PCC, posterior cingulate cortex.
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To further explore the connectivities dependent on blood glucose,
correlations between D functional connectivities of the left posterior
insula–SFG and D glycaemia (Fig. 4A), and between the right mid-
dle insula–cingulate cortex and D glycaemia (Fig. 4B) were plotted.

Functional connectivity of the hypothalamus

During fasting, there was enhanced functional connectivity between
the left hypothalamus and right inferior frontal gyrus (IFG;
Fig. 3A); and, during satiety, between the right hypothalamus and a
cluster in the left superior parietal cortex (SPC), spanning the left
postcentral gyrus and precuneus (Fig. 3B). D Glycaemia was at least
partly responsible for the enhanced connectivity between the left
hypothalamus and IFG, and the right hypothalamus and SPC.
During the fasted session, the correlation between the left

hypothalamus/IFG functional connectivity and the Cognitive Res-
traint scale of the TFEQR18 was significant (r = �0.514,
P < 0.05), while during the fed session the correlation between the
right hypothalamus/SPC functional connectivity and the Cognitive
Restraint scale of the TFEQR18 was also significant (r = �0.662,
P < 0.01). These correlations are presented in Fig. 4C and D,
respectively.

Discussion

In support of the current hypothesis, the resting state functional con-
nectivities of some insula regions and the right and left hypothala-
mus were altered by changes in the homeostatic energy balance.

Insula

During the fasted session, the left posterior insula displayed
enhanced connectivity with the cerebellum and right SFG. The

Table 2. MNI coordinates refer to the peak activated voxels

Seed Cluster
Cluster
MNI x, y, z (mm) k t1,18

P-FWE
cluster

Fasted > Fed
LPI SFG 16, 50, 50 142 5.72 0.03

Cerebellum �26, �80, �38 208 4.72 0.004
LHYP IFG 36, 32, �14 127 5.56 0.03

Fed > Fasted
RMI Cingulate 2, �38, 38 206 5.02 0.004

L IPC �40, �54, 48 236 5.05 0.002
R IPC 38, �68, 42 302 6.85 0.0003

RHYP L SPC �6, �58, 68 162 2.33 0.02

FWE, family-wise error; IFG, inferior frontal gyrus; k, cluster size (voxels);
LHYP, left hypothalamus; L IPC, left inferior parietal cortex; LPI, left poste-
rior insula; L SPC, left superior parietal cortex; MNI, Montreal Neurological
Institute; RHYP, right hypothalamus; R IPC, right inferior parietal cortex;
RMI, right middle insula; SFG, superior frontal gyrus.

A

B

C

D

Fig. 4. (A) y axis is D connectivity between sessions from left posterior insula (LPI) to SFG; (B) y axis is D connectivity between sessions from right middle
insula (RMI) to posterior cingulate cortex (PCC); (C) is the connectivity between left hypothalamus/IFG and the cognitive restraint subscale of the TFEQR18;
(D) is the connectivity between right hypothalamus/SPC and the cognitive restraint subscale of the TFEQR18.

A B

Fig. 3. Hypothalamus seeds and connectivity maps. L, left; R, right; A, anterior;
P, posterior; IFG, inferior frontal gyrus; SPC, superior parietal cortex.
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posterior insula has been shown to be activated during hunger
(Tataranni et al., 1999), deliberately induced food craving (Siep
et al., 2012), in response to a preferred food odour (Bragulat et al.,
2010) and on receiving an appetitive drink (Bohon & Stice, 2011),
and represents a wide range of homeostatically related sensations in
addition to hunger, such as thirst, dyspnoea (hunger for air) and pain
(Craig, 2002, 2003).
The cerebellum contains a dense population of leptin receptors

(Couce et al., 1997; Burguera et al., 2000; Harvey, 2003, 2007;
London et al., 2011), is activated during hunger (Tataranni et al.,
1999) and exhibits significant decreases in activation after feeding
(Gautier et al., 2000, 2001; Del Parigi et al., 2002; Haase et al.,
2011). The enhanced functional connectivity seen between the left
posterior insula and cerebellum suggests a homeostatic circuit moti-
vating food ingestion after fasting.
The SFG is part of a frontal network that represents the motiva-

tional or reward value of different foods (Killgore et al., 2003; Hare
et al., 2009). It has been frequently theorized to be involved in
inhibiting approaches to food (Tataranni et al., 1999; Gautier et al.,
2000; DelParigi et al., 2006; McCaffery et al., 2009; Batterink
et al., 2010), and is also activated in response to appetitive stimuli
when participants are fasted (Burger & Stice, 2011; Malik et al.,
2011; Martens et al., 2013). It therefore appears to serve a dual pur-
pose, motivating either approach to food or restraint from eating,
according to the homeostatic energy balance. While no appetitive
stimuli were presented during the resting state scan, participants
nevertheless reported experiencing significantly more thoughts about
food or eating during the fasted session scan, raising the possibility
that their thoughts acted as appetitive stimuli.
The enhanced connectivity between the posterior insula and SFG

during the fasted session was abolished when D glycaemia was
added as a covariate, indicating that changes in blood glucose levels
were at least partially responsible for the augmented functional con-
nectivity. Taken together, the results suggest that fasting-induced
alterations in functional connectivity appear to be related to alleviat-
ing an acute homeostatic energy deficit.
During the fed session, the right mid-insula was more strongly

functionally connected to the left and right IPC, and to the cingulate
cortex. Many studies have cited the left IPC, right IPC and cingulate
cortex as being part of the default mode network (DMN; Greicius
et al., 2003; McKiernan et al., 2003; Fox et al., 2005; Fransson,
2005; Vincent et al., 2006; Laird et al., 2009; McFadden et al.,
2013). The DMN activations represent the ‘resting state’ of the
brain, deactivating in response to task demands. It appears to under-
lie self-referential and memory-related processes, with memory con-
solidation (Miall & Robertson, 2006), remembering and thinking
about the future (Buckner & Carroll, 2007), and mind-wandering
(Mason et al., 2007) being among the observed functions of the
DMN.
Other functional connectivity studies report resting state connec-

tivity between the insula and areas of DMN (Taylor et al., 2009;
Zou et al., 2009; Li et al., 2012b; Liang et al., 2013). While
research has demonstrated the involvement of the mid-insula in
feeding behaviour (Small et al., 2001; Li et al., 2012a), and some
association between DMN activity and obesity (Tregellas et al.,
2011; Kullmann et al., 2012; McFadden et al., 2013), it is likely
in the context of the current study that its enhanced functional
connectivity with DMN areas has more to do with introspective
processes, as the homeostatic energy balance had already been
restored. The mid-insula has previously been cited as a region
strongly associated with interoception (Kelly et al., 2012; Simmons
et al., 2013), and in the current study with healthy participants,

the enhanced mid-insula to default mode structures connectivity
was accompanied by a reduction in self-reported thinking about
food and eating.

Hypothalamus

The left hypothalamus was more strongly functionally connected to
the IFG during the fasted session. Previous studies suggest that the
activation of the IFG is related to cognitive control (Hare et al.,
2009; Sundermann & Pfleiderer, 2012). It is involved in suppressing
the desire for food (Hollmann et al., 2012) and successfully resisting
temptation (Lopez et al., 2014), and is more strongly activated by
food stimuli in successful weight loss maintainers than in obese or
normal weight participants (Sweet et al., 2012). Additionally, IFG
grey matter volume (Brooks et al., 2013) and activation to satiety (Le
et al., 2009) is significantly reduced in obesity. There is also a rela-
tionship between hypoactivation of prefrontal cortices and elevated
BMI (Le et al., 2006, 2007; Volkow et al., 2009; Page et al., 2011;
Willeumier et al., 2011). In the current study, IFG was more strongly
functionally connected to the left hypothalamus when participants
were fasted, and this enhanced functional connectivity was signifi-
cantly correlated with Cognitive Restraint subscale scores on the
TFEQR18. Rather than driving food consumption when there is an
energy deficit, IFG appears to attempt to ensure that overfeeding does
not occur. It seems likely that the hypothalamic drive to eat is being
tempered (Tataranni et al., 1999), though the analysis method used
here does not allow for the specification of directional modulation.
During the fed session, the right hypothalamus was more strongly

functionally connected to a cluster in the SPC, which encompassed
the postcentral gyrus and precuneus. The precuneus is deactivated in
response to satiation (Gautier et al., 2000), and consciously sup-
pressing food craving also reduces activation in the precuneus
(Yokum & Stice, 2013). Both areas are altered in obesity; the left
postcentral gyrus grey matter volume is reduced (Brooks et al.,
2013) and the precuneus shows a reduced response to visual food
stimuli (Heni et al., 2014).
Taking this and previous findings into account, the enhanced

functional connectivity that was observed appears to have been
modulated by the homeostatic energy balance, especially because
the addition of the glycaemia covariate cancels this enhanced con-
nectivity. In the absence of an energy deficit, it is possible that the
functional connectivity between the right hypothalamus and SPC
might represent the suppression of the eating drive. The strong cor-
relation between this functional connectivity during the fed session
and the Cognitive Restraint subscale of the TFEQR18 lends support
to this hypothesis. It might also be the case that when the energy
balance was restored, the participants were able to move their atten-
tion away from food. Participants reported being significantly less
distracted by thoughts of food or eating during the fed session, and
the SPC is considered to be a core area involved in many types of
attentional processing (Corbetta et al., 2000).

Limitations

Blood glucose samples were obtained using a handheld blood glu-
cose monitor and, as such, serum samples are not available for fur-
ther analysis. Blood glucose sampling was included initially as a
crude verification of clear differences between the fed and fasted
states. Ultimately it proved a much more important measure than
originally anticipated, and taking a comprehensive profile of blood
serum may well have provided additional interesting results.
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However, some inferences regarding commonly studied appetite-
related hormones can be drawn on the basis of other research using
similar designs and healthy weight participants.
Alterations in free leptin levels are associated with activation

changes in the insular cortex and other homeostasis-related brain
areas (Farr et al., 2014; Olivia et al., 2014). However, leptin has
previously been shown to remain at a stable level for at least 2 h
after a test meal (Korbonits et al., 1997; Carlson et al., 2009), and
only begins to fall significantly after about 16 h of fasting
(Korbonits et al., 1997). Both these timing parameters exceed those
utilized in the present study (minimum 8 h fast; scanned approxi-
mately 20 min after breakfast), and therefore it seems unlikely that
changes in leptin were a factor in the current results.
Feeding has a more acute effect on ghrelin release; the levels

appear to be significantly decreased approximately 20–30 min after
a test meal (Carroll et al., 2007; Carlson et al., 2009). Insulin con-
centration is significantly increased from baseline fasting levels
approximately 15 min after a test meal, and does not begin to drop
noticeably for at least 30 min (Carroll et al., 2007; Carlson et al.,
2009). Both compounds are associated with the modulation of the
insula cortex and hypothalamic activation (Nakazato et al., 2001;
Malik et al., 2008; Wang et al., 2008; Berthoud, 2011; Schloegl
et al., 2011; Li et al., 2012a; Kullmann et al., 2013), and both exhi-
bit peak changes in concentration at about the length of time after a
meal that the current participants were being scanned. It is therefore
likely that there are unaccounted for additional hormonal factors
influencing or being influenced by changes in these functional
connectivities.

Conclusion

The insula and hypothalamic functional connectivity patterns are
altered by changes in the homeostatic energy balance. Functional
connectivity with subregions of the frontal cortex seems to form part
of a circuit motivating feeding, preventing overeating and terminat-
ing feeding upon satiation. Further research could examine func-
tional connectivity differences between lean and obese participants;
possibly alterations in insula or hypothalamus functional connectiv-
ity would be found in obesity. If so, this could represent a new
target for interventions.
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