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Abstract
Background  Solitary bees, such as the red mason bee (Osmia bicornis), provide important ecosystem services including 
pollination. In the face of global declines of pollinator abundance, such haplodiploid Hymenopterans have a compounded 
extinction risk due to the potential for limited genetic diversity. In order to assess the genetic diversity of Osmia bicornis 
populations, we developed microsatellite markers and characterised them in two populations.
Methods and results  Microsatellite sequences were mined from the recently published Osmia bicornis genome, which was 
assembled from DNA extracted from a single male bee originating from the United Kingdom. Sequences were identified 
that contained dinucleotide, trinucleotide, and tetranucleotide repeat regions. Seventeen polymorphic microsatellite markers 
were designed and tested, sixteen of which were developed into four multiplex PCR sets to facilitate cheap, fast and efficient 
genotyping and were characterised in unrelated females from Germany (n = 19) and England (n = 14).
Conclusions  The microsatellite markers are highly informative, with a combined exclusion probability of 0.997 (first parent), 
which will enable studies of genetic structure and diversity to inform conservation efforts in this bee.

Keywords  Megachilidae · Red mason bee · Osmia bicornis · Microsatellite marker · Population structure · Conservation 
genetics

Introduction

Bee species are experiencing global declines, which is of 
great concern as they are indispensable pollinators [1–3]. 
The importance of genetics and genomics to bee conserva-
tion is becoming increasingly recognised [1–3]. The risk of 
extinction can be an order of magnitude higher for bees rela-
tive to their diplodiploid counterparts [2, 3]. The increased 
risk of extinction stems from two compounding effects. (a) 
Haplodiploid bees are expected to have a 25% reduction 
in genetic diversity on average, compared to diplodiploid 
counterparts [2]. This in addition to (b) complementary sex 

determining systems that can give rise to sterile or inviable 
diploid males, which further reduce the breeding effective 
population size [2, 3]. Consequently, ascertaining genetic 
structure and genetic diversity of hymenopteran pollinators, 
alongside their sex determining system, will be critical to 
conservation efforts [1–3].

In order to conserve the valuable ecosystem service of 
insect pollination in crop production, it could suffice to focus 
on common or dominant species [4]. Members of the soli-
tary bee genus Osmia are considered such dominant crop 
pollinators, with six members of Osmia belonging to the 
top 100 of bee species with the highest mean contribution 
to crop production value (Osmia cornifrons, Osmia lignaria, 
Osmia taurus, Osmia bicornis, Osmia pumila, and Osmia 
virga; [4]). In fact, Osmia have been extensively studied 
with regard to their potential for crop pollination in green 
houses and fruit crops [5], and Osmia bicornis is already 
commercially available for this purpose in parts of Asia, 
Europe and North America. Acquiring genetic information 
on such a common and dominant species may not only aid 
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conservation efforts, but will also help inform commercial 
breeding and export practices.

Microsatellite markers are part of the molecular toolbox 
that can help inform these efforts, particularly in analyses 
where many individuals are included and subpopulations 
are of interest [6]. Neumann and Seidelmann [7] have previ-
ously identified and validated six microsatellite markers for 
O. bicornis; five dinucleotide repeats and one trinucleotide 
repeat (Table 1). However, dinucleotide repeats are among 
the least reliable as they are more prone to stutter and slip-
page [8]. The resulting shadow bands make dinucleotide 
repeats harder to call, increasing human error in genotype 
calling, which can have far reaching consequences [9]. As 
power of inference relies on the number and variability of 
loci, and the number of individuals sampled [10], the use of 
the six existing microsatellites requires large sample sizes to 
study population genetic structure in O. bicornis [11]. The 
recently sequenced and assembled O. bicornis genome [12] 
using DNA isolated from a male bee sampled in the United 
Kingdom (Penmenner Rd, Lizard, Helston TR12 7NR in 
2015; biosample: SAMN05967202) provides an opportunity 
to expand on these existing microsatellite markers. Here we 
identify seventeen new polymorphic microsatellite markers 
for O. bicornis mined from its genome [12], sixteen of which 
were designed and tested as multiplexes to allow for rapid 
and cost-effective genotyping of this species.

Materials and methods

Microsatellites were mined from the O. bicornis genome 
[12; Accession Nr. SRP065762] using MISA (MIcroSAtel-
lite; [13]). Di-, tri-, and tetra-nucleotide repeats were mined, 
with a minimum of eight repeats. Tetranucleotide repeats 
were preferred as they show less stutter and slippage [8] 
and are easier to call. Twenty sequences were selected, 
avoiding poly(N) sequences and composite repeats. Prim-
ers were designed in the sequence flanking the repeat regions 
(20–50 bp away from the repeat) using Primer3 [v 0.4.0; 14] 
with: the optimum melting temperature (Tm) set at 60 °C, 
product size ranging from 100 to 300 bp, a maximum differ-
ence in Tm of 0.5 °C between forward and reverse primers, 
a maximum poly(N) of three, a CG clamp, and using Schil-
dkraut and Lifson’s [15] original salt correction formula. 
These thresholds and conditions were relaxed only when no 
appropriate primers could be found.

Live O. bicornis were obtained from a commercial 
breeder (Dr Schubert Plant Breeding Landsberg, Ger-
many) from two breeding sites 100 km apart. Additional O. 
bicornis were obtained from MasonBees Ltd. (Shropshire, 
UK), originating from sites in North Shropshire and Surrey 
(240 km apart). The commercially bred German sites were 
treated as being part of the same population, whereas the 

English sites were treated separately. All individuals were 
delivered as live cocoons within intact nest tubes as part of 
a larger study. 45 nest tubes containing 2–16 individuals 
(mean ± SE = 8.850 ± 1.064) were acquired in total. Adults 
were sexed, with males having a white tuft on the frons, 
whereas females possess two horns. As all of the individu-
als in a single nest tube are presumed to be either siblings 
or half siblings, a single female was taken from each nest 
tube (N = 41).

DNA was extracted using hot sodium hydroxide and pH 
was adjusted using Tris–HCl [HotSHOT; 16]. Specimens 
were frozen at − 20 °C for 1 day, after which a single leg of 
each female was removed using sterile tweezers. Legs were 
placed in a 0.2 ml microcentrifuge tube (Applied Biosys-
tems) and 75 μl of HotSHOT alkaline lysis buffer (25 mM 
NaOH, 0.2 M EDTA, pH 12) was added. Samples were 
incubated at 95 °C for 30 min and cooled to 4 °C for 3 min. 
75 μl of HotSHOT neutralisation buffer (40 mM Tris–HCl, 
pH 5) was added to neutralise the pH. Samples were stored 
at − 20 °C and used within 3 months. Amplification was 
conducted in 2 μl PCR-reactions following Kenta et al. 
[17]. 0.5–20 ng of DNA template was air-dried at 50 °C for 
30 min. 2 μl PCR-reactions were prepared, containing: 1× 
Multiplex PCR Master Mix (QIAGEN) and 0.2 μM primer 
mix—containing fluorophore-labelled forward primer 
(6-FAM and HEX, Sigma-Aldrich; NED, ThermoFisher Sci-
entific) and unlabelled reverse primer in low TE. The PCR 
profile initiated at 95 °C for 15 min, followed by 45 cycles 
of 95 °C for 30 s, 57 °C for 1.5 min and 72 °C for 1.5 min. 
Final extension was performed at 60 °C for 30 min. All PCR 
reactions were performed with the annealing temperature 
of 57 °C, as primer sets were designed for the purposes of 
multiplexing and 57 °C was sufficiently low to amplify all 
primer sets (Table 1). An ABI 3730 48-well capillary DNA 
Analyser (ThermoFisher Scientific) was used for genotyp-
ing, using GeneScan 500 ROX dye Size Standard (Applied 
Biosystems). Genotype calling was performed using Gen-
eMapper (v 3.7; Applied Biosystems), with manual binning 
and scoring of alleles. Alleles were considered polymorphic 
when the minor allele frequency was larger 0.05.

Individuals need to be less related than half-sibs to cor-
rectly test for both Hardy–Weinberg and linkage equilib-
rium. Using seventeen markers, all females were tested for 
possible sibship within each population using MLrelate [v 
1.0; 18]. A total of eight females were identified as possibly 
belonging to half-sib pairs, and one female was subsequently 
removed from each putative half-sib pair for analysis. This 
left 33 females to be analysed. The German individuals 
were pooled for analysis, as a previous study indicated that 
isolation by distance may be both weak and insignificant 
in this species [11]. The respective sample sizes of each 
population can be found in Table 2. Allele frequencies, null 
allele frequencies, and expected and observed heterozygosity 
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Table 1   Primer sequences of one monomorphic and seventeen poly-
morphic Osmia bicornis microsatellite loci (Obic) mined from the 
genome [12], as well as the primer sequences of the six existing 

Osmia bicornis markers (Oru) from Neumann and Seidelmann ([7] 
provided for completeness and ease of access)

a Obic428 was monomorphic, and Obic450 was dimorphic, hence these loci were not tested in multiplex
b The existing microsatellite markers from Neumann and Seidelmann [7] were not tested or incorporated here
Tm = melting temperature in °C, MS = multiplex primer set (all PCR amplified at 57 °C), FL = fluorophore label, Motif = repeat motif, and Refer-
ence = NCBI Reference Sequence ([12]; with genomic location in italics) or EMBL accession number in the case of the Oru markers from [7]

Locus FL Primer sequence (5ʹ–3 ʹ ) Tm MS Motif References

Obic113 6-FAM F: CTG​CCC​TCT​CGT​CTC​TTC​C 60.08 C (CCAG)7 NW_021683655
R: AAT​TCG​GGT​TGA​AAC​CTG​TG 59.83 3,249,555–3,249,781

Obic1176 HEX F: ACG​CTT​GTC​GCT​TTCAG​ 60.14 B (TGTA)8 NW_021683667
R: TTC​TCG​AAC​AGA​TGT​CCT​TGG​ 60.24 1,318,406–1,318,636

Obic1181 NED F: CTC​GGG​AAT​CCA​CCT​TAT​TG 59.38 A (CTTT)13 NW_021683667
R: TGC​CTA​GCG​AAA​GAG​GGT​AG 59.61 1,330,169–1,330,419

Obic1206 HEX F: CCA​ACC​TTC​CCA​CAC​CTA​AC 59.3 D (ACCT)9 NW_021683667
R: AAC​AGG​ACA​AAG​GAG​CGA​AG 59.47 1,448,980–1,449,214

Obic1238 6-FAM F: ACA​ATT​TGT​AGG​GTG​GAC​ACG​ 59.77 B (AGCA)13 NW_021683667
R: GCG​ATT​CAA​CCT​CCT​TTC​AC 59.68 268,439–268,685

Obic1252 6-FAM F: CCT​TCC​TAT​GTC​GCT​GCT​G 59.56 C (TTTC)17 NW_021683667
R: TCC​AAG​TTC​CTG​TAC​CAA​TGTG​ 59.89 362,230–362,496

Obic1374 6-FAM F:CTA​TCC​GGC​ACT​CTT​TCT​CG 59.97 A (GTTC)9 NW_021683668
R: AAA​CGC​GGA​ATG​AGA​TAT​GC 60.07 896,441–896,675

Obic168 HEX F: AGC​CAC​GTT​GAA​GTT​GTT​GC 61.28 A (TTC)10 NW_021683656
R: GGG​TTT​CTC​CGT​TCT​GCT​G 60.79 1,147,308–1,147,536

Obic1 HEX F: CGG​TTT​ATG​GCA​GGT​AAA​CG 60.37 D (AG)14 NW_021683655
R: GTA​GCA​GCA​GCC​GGT​GTA​TC 60.83 1,045,524–1,045,750

Obic220 NED F: CTG​CAT​CAC​CTA​CGC​AAC​TG 60.47 D (CGCA)8 NW_021683656
R: AAC​GCG​CCA​AGT​AGA​ATC​TG 60.41 2,567,542–2,567,772

Obic415 6-FAM F: GAA​TGG​GCA​ACG​TCT​ATT​TACAG​ 59.91 A (CAGA)8 NW_021683658
R: ATC​CTT​TGT​TGC​CGT​TTG​TC 59.98 562,062–562,292

Obic450a 6-FAM F: TTG​CCT​TTC​GAA​ATC​AAG​C 58.98 – (GAAG)6 NW_021683659
R: CGA​CAG​ATC​GAA​ACG​TCA​TC 59.25 140,411–140,633

Obic629 HEX F: CTG​CTT​CGG​CCT​CTT​TCT​AC 59.22 B (CTTT)12 NW_021683660
R: AAG​TCG​GTT​CTT​CGC​ATA​CC 59.2 1,912,638–1,912,876

Obic73 HEX F: CCA​ATA​CCT​CCC​TCT​TCT​CCTC​ 60.44 C (TCC)14 NW_021683655
R: CCC​ACG​TTC​TGC​CAT​TAC​TC 60.52 2,545,096–2,545,330

Obic740 NED F: AGT​ACG​CGT​CAC​GAC​AAA​GAG​ 60.5 C (AAGG)17 NW_021683661
R: GTA​CAA​CCG​GCC​ATC​GTA​TC 60.22 26,681–26,947

Obic77 NED F: GAT​CTC​GTG​TTC​ACG​GTA​GG 58.16 B (GT)19 NW_021683655
R: CTG​CAG​TTT​CCT​GGA​TCG​ 57.82 2,568,116–2,568,352

Obic95 6-FAM F: TTT​AAG​GAA​ACA​GCC​AGC​AG 58.17 D (GGAA)9 NW_021683655
R: TTC​ATG​AAG​TAT​AAG​AGG​AAA​CGA​C 58.00 2,886,250–2,886,484

Obic428a 6-FAM F: GGG​TAA​AGG​GTT​AGG​GAA​CTG​ 58.88 – (TGGC)6 AJ884679
R: AGC​AAG​GGT​GGT​AGT​GAA​GG 59.21

Oru10b – F: TTT​CAT​GTT​CCG​TAT​TGT​CA 50 – (AC)11 AJ884680
R: TGT​TCG​CTT​CCA​AAA​TCA​ 50

OruS4b – F: GAA​CGA​AAC​ACC​ACT​GTC​TT 50 – (AC)10 AJ884681
R: CAC​GGC​GAG​ACG​AAT​ 50

OruE5b – F: CGG​AGA​CTT​GGT​TGA​AAA​T 50 – (GA)13 AJ884682
R: AAG​CAC​TAC​CAC​CTT​TCT​TTA​ 50

OruS8b – F: TTG​GAA​AAG​AAG​CGG​ATG​AG 51 – (AG)14 AJ884683
R: CAC​CCT​CGG​AAC​CAC​TCT​C 51

OruC4b – F: CGT​AGA​AAA​CGA​ACC​CTG​TAA​ 52 – (CT)13 AJ884684
R: CGA​TAG​CCG​TAT​GGT​AGC​AC 52

OruA8b – F: TCG​CGA​TGT​ATC​GTG​TTC​CTT​ 54 – (GAA)9 AJ884679
R: GGC​TGG​CGG​CTG​TCT​AAG​ 54
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were estimated using Cervus [v 3.0.7; 19]; Hardy–Wein-
berg equilibrium and linkage disequilibrium were tested 
using GENEPOP [v 4.7; 20,21]. Tests for Hardy–Weinberg 
equilibrium and linkage disequilibrium were carried out by 
population, and corrected using false discovery rate [22]. 
Genotyping data used are given in Online Resource 1. Four 
multiplexes (Table 1) were designed using Multiplex Man-
ager [23] and AutoDimer [24], and subsequently checked 
for allelic dropout and non-specific amplicons by comparing 
replicates of the samples carried out in simplex, duplex and 
the eventual multiplexes shown in Table 1.

Results

A single locus (Obic428) was found to be monomorphic, 
and was subsequently excluded from analysis. The remain-
ing seventeen loci were in Hardy Weinberg equilibrium 
(p > 0.05; Table 2). Out of all 136 marker combinations 
(n*[n − 1]/2), for each of the three populations, none 
showed significant linkage disequilibrium (p > 0.05). Esti-
mates for null allele frequencies could only be obtained 
for the pooled German population (n = 19), this was due 
to the high variability at each locus coupled with the low 
sample size in the English populations (n = 7, in each). 
Obic113 and Obic1374 showed a high estimated null 
allele frequency (> 0.1) for the pooled German population 

(Table 2). For the English populations, a large disparity 
between observed and expected heterozygosity (Δ > 0.2) 
may be indicative of the presence of null alleles, which 
Obic168 and Obic450 showed for the North Shropshire 
population (Table 2). Obic740 likewise showed a dif-
ference in observed and expected heterozygosity in this 
population (Table 2), albeit below 0.2 (Δ = 0.19). For the 
Surrey population, the expected and observed heterozy-
gosities of Obic415 and Obic113 were also suggestive of 
the presence of null alleles (Table 2). Because null alleles 
for several markers in this study (Obic113, Obic1374, 
Obic168, Obic450, and Obic415) are population specific 
(Table 2) care must be taken when using these markers 
in future studies. Null alleles (as well as allelic drop out) 
might occur for any marker depending on the population. 
Therefore, estimating null allele frequency and accounting 
for error rates by using appropriate tests is necessary for 
any analysis [9].

Discussion

Solitary bee species tend to be understudied genetically, 
compared to their social cousins [25]. Osmia bicornis 
is only one of two Megachilid bees to have its genome 
sequenced [3], and here we present seventeen newly 
mined and validated microsatellite markers. Additionally, 

Table 2   Characterisation of the seventeen multiplexed Osmia bicornis microsatellite loci for three populations

NA = number of alleles, Ho = observed heterozygosity, HE = expected heterozygosity, HWE = p-value for Hardy–Weinberg equilibrium test, 
Null = estimed null allele frequency, and PSA = proportion of individuals successfully amplified. Markers in bold showed estimates of null 
alleles > 0.1 or disparate observed and expected heterozygosities that may be suggestive of null allleles

Locus North Shropshire, England (N = 7) Surrey, England (N = 7) Landsberg, Germany (N = 19)

NA HO HE PHW PSA NA HO HE PHW PSA NA HO HE PHW Null PSA

Obic113 3 0.29 0.28 1 1 5 0.29 0.66 0.096 1 6 0.42 0.49 0.467 0.114 1
Obic1176 7 0.71 0.88 1 1 5 0.71 0.85 1 1 6 0.74 0.74 0.467 − 0.024 1
Obic1181 4 0.71 0.65 1 1 4 0.57 0.71 1 1 8 0.68 0.78 0.716 0.063 1
Obic1206 4 0.86 0.7 1 1 2 0.29 0.26 1 1 6 0.63 0.69 0.737 0.042 1
Obic1238 4 0.57 0.65 0.94 1 4 0.71 0.66 1 1 6 0.79 0.74 0.971 − 0.04 1
Obic1252 5 0.71 0.8 1 1 5 0.83 0.82 1 0.86 8 0.68 0.82 0.716 0.079 1
Obic1374 3 0.71 0.67 1 1 4 0.57 0.69 1 1 6 0.53 0.72 0.467 0.152 1
Obic168 3 0.29 0.62 0.84 1 2 0.29 0.44 1 1 6 0.63 0.76 0.467 0.064 1
Obic1 2 0.14 0.14 NDa 1 1 0 0 NDa 1 5 0.47 0.5 1 0.016 1
Obic220 2 0.57 0.53 1 1 2 0.57 0.53 1 1 3 0.53 0.5 1 − 0.049 1
Obic415 3 0.57 0.47 1 1 4 0.43 0.71 0.533 1 7 0.42 0.52 0.716 0.058 1
Obic450 2 0.14 0.36 0.94 1 2 0.29 0.44 1 1 2 0.47 0.37 0.813 − 0.134 1
Obic629 6 0.86 0.84 1 1 4 0.86 0.74 1 1 6 0.68 0.79 0.716 0.055 1
Obic73 3 0.43 0.56 1 1 3 0.71 0.7 1 1 5 0.74 0.7 1 − 0.04 1
Obic740 8 0.71 0.90 0.84 1 7 0.71 0.88 0.533 1 11 0.79 0.86 1 0.031 1
Obic77 3 0.43 0.39 1 1 2 0.29 0.26 1 1 3 0.32 0.28 1 − 0.081 1
Obic95 3 0.86 0.70 1 1 5 0.71 0.76 1 1 6 0.74 0.74 0.716 − 0.008 1
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the markers work in conjunction with a relatively easy 
extraction method [16], which lends itself to non-invasive 
sampling. The existing microsatellites [7] have already 
been used to gauge genetic differentiation in subpopula-
tions across Europe [11]. However, even with the large 
sample sizes used, patterns such as isolation by distance 
could not be definitively inferred [11]. Power of inference 
relies heavily on the number and variability of loci [10], 
and the markers presented here are a marked improvement 
upon this. The markers will prove valuable in gauging the 
genetic diversity, inbreeding and effective population 
sizes of this common solitary bee. For instance, nothing 
is known on the impact of the species’ commercial move-
ment on the genetic structure and health of wild popula-
tions. Furthermore, the marker set could be used to: char-
acterize population densities and foraging range [3], help 
identify cryptic species [1], perform a genetic test of the 
mating system of the species, and study genetic diversity 
in relation to immunity for instance [1]. Ultimately, such 
studies will help inform and establish robust breeding and 
conservation programs [1–3]. Our new markers will sup-
plement the six existing markers [7], bolstering the power 
of inference in genetic studies. The new markers have been 
combined and validated for use in multiplex PCR, to create 
a robust and powerful set of markers, suitable for cost- and 
time-effective genotyping.

As bee declines threaten the integrity of ecosystem 
function and food security [1, 3], managed and semi-
managed pollinators such as O. bicornis and related 
Osmia species are becoming increasingly important as a 
supplementary pollinator force [5]—particularly for use 
in greenhouses and orchards. For instance, Osmia corni-
frons and Osmia excavata are used in parts of Asia, where 
Osmia pedicornis and Osmia taurus are also being con-
sidered as managed pollinators [5]. Osmia cornuta is used 
alongside O. bicornis in Europe, and Osmia lignaria, O. 
cornifrons, and Osmia ribifloris are all used in the United 
States [5]. All of these agriculturally managed Osmia spe-
cies (excepting Osmia ribifloris) belong to the ‘bicornis 
clade’, originating 5.6 Ma ago (4.2–7.1 Ma; [5]). Due to 
this close phylogenetic relationship (O. pedicornis and O. 
taurus having the closest relation [5]), many of the mark-
ers developed for O. bicornis here are likely to work in 
these species as well. As no other Osmia have had their 
genomes sequenced so far [3] and no microsatellite mark-
ers yet exist for these species, the microsatellite markers 
that are available for Osmia bicornis may provide a timely 
answer for monitoring and studying these species. Espe-
cially, considering Osmia species are being introduced to 
non-native areas due to their utility as managed pollina-
tors, potentially driving decline in native congeners [5].

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11033-​021-​06796-x.
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