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Abstract: The current state of cancer treatment is still far from being satisfactory considering the
strong impairment of patients’ quality of life and the high lethality of malignant diseases. Therefore,
it is critical for innovative approaches to be tested in the near future. In view of the crucial role that
is played by tumor immunity, the present review provides essential information on the immune-
mediated effects potentially generated by the interplay between ionizing radiation and cytotoxic
antitumor agents when interacting with target malignant cells. Therefore, the radiation-dependent
abscopal effect (i.e., a biological effect of ionizing radiation that occurs outside the irradiated field),
the influence of cancer chemotherapy on the antigenic pattern of target neoplastic cells, and the
immunogenic cell death (ICD) caused by anticancer agents are the main topics of this presentation. It
is widely accepted that tumor immunity plays a fundamental role in generating an abscopal effect
and that anticancer drugs can profoundly influence not only the host immune responses, but also
the immunogenic pattern of malignant cells. Remarkably, several anticancer drugs impact both
the abscopal effect and ICD. In addition, certain classes of anticancer agents are able to amplify
already expressed tumor-associated antigens (TAA). More importantly, other drugs, especially
triazenes, induce the appearance of new tumor neoantigens (TNA), a phenomenon that we termed
drug-induced xenogenization (DIX). The adoption of the abscopal effect is proposed as a potential
therapeutic modality when properly applied concomitantly with drug-induced increase in tumor cell
immunogenicity and ICD. Although little to no preclinical or clinical studies are presently available
on this subject, we discuss this issue in terms of potential mechanisms and therapeutic benefits.
Upcoming investigations are aimed at evaluating how chemical anticancer drugs, radiation, and
immunotherapies are interacting and cooperate in evoking the abscopal effect, tumor xenogenization
and ICD, paving the way for new and possibly successful approaches in cancer therapy.

Keywords: abscopal effect; xenogenization; alkylating agents; dacarbazine; temozolomide; immune
response; immune checkpoints; tumor neoantigens

1. Introduction

In the last 30 years, patients affected by most malignancies have obtained substantial
advantages in terms of treatment by early diagnosis and combined anticancer approaches.
However, survival remains unsatisfactory in many advanced solid malignancies (e.g.,
lung, gastric, colorectal, pancreatic, urological, brain tumors, and melanoma). Besides
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the classical cytotoxic chemotherapy, targeted therapy has gained an attractive area of
intervention with almost daily novel biological approaches [1]. Recent progresses and
future promises of synthetic lethality and targeted therapy (including antibody-drug
conjugates) against cancer stem cells [2–5] could foresee attractive perspectives, although in
almost all cases the onset of chemo-resistance appears to be inevitable, thus compromising
the therapeutic efficacy after an initial period of tumor regression or control.

Among anticancer approaches, a fundamental role is played by radiotherapy (RT) for
loco-regional control of several neoplastic diseases; however, in disseminated malignancies
RT alone has not been considered for therapy because of toxic [6] and severe immunosup-
pressant effects [7]. However, stereotactic RT for oligometastatic tumors has been utilized
in clinical studies (for a review, see [8]), with acceptable toxicity and potential benefit also
in terms of overall survival (OS) [9].

Hormone therapy plays a well-established role since it can be considered a treat-
ment with limited side effects and capable of inducing long-term disease-free intervals
in hormone-sensitive tumors. In the adjuvant setting for the post-surgery control of sus-
ceptible tumors, hormone therapy is considered a mainstay treatment, either alone or in
combination with chemotherapy, although the long-term treatment with this therapeu-
tic approach is not devoid of limited but clear side effects. In advanced malignancies,
endocrine therapy has a more limited role and shows often non-durable cytostatic effects.

Most encouraging is the consolidated field of cancer immunotherapy [10,11], which
is directed against essentially two types of tumor antigens, which we refer to as “tumor-
associated antigens” (TAA) and “tumor neoantigens” (TNA). All tumor antigens that can
also be detected in normal mature or embryonic cells, but are more expressed in malignant
cells and susceptible to tolerance breakage, will be considered TAA. All tumor antigens
exclusively present in tumor cells, induced by oncogenic processes or by physical or
chemical agents, will be designated as TNA. It must be underlined that immuno-mediated
tumor killing elicited by immune checkpoint inhibitors (ICIs) [12–14]), including most
recent agents of clinical interest [15], has led to substantially extension of survival in
an increasing number of malignancies, being even curative in selected conditions [12].
However, resistance to ICIs can be observed in up to 70% of patients [14], and ICI-induced
autoimmunity may be a major clinical concern [13].

Starting with the current scenario, it is reasonable to consider that the future de-
velopment of cancer treatment should be based on the rational alliance among different
therapeutic modalities, dictated by the molecular profile of the malignancy affecting a
particular patient.

In this review, we discuss the potential contribution to cancer therapy of a novel ap-
proach derived from the combination of chemotherapy, immunotherapy, and RT within the
context of the “abscopal effect.” The term, derived from “ab scopus” (meaning “outside the
target”), was introduced by R.H. Mole in 1953 [6] to describe a biological effect mediated
by ionizing radiation, which occurs outside the irradiated field. A number of preclinical
and clinical studies showed that in tumor-bearing hosts subjected to RT, regression of
non-irradiated neoplastic lesions (in most cases metastases) can occasionally occur on sites
distant from those exposed to ionizing radiation (reviewed in [16,17] and for a historical re-
view [18]). It is reasonable to predict that treatments aimed at amplifying this phenomenon
could have a considerable impact on cancer management, especially in the metastatic and
disseminated stage of the disease.

As illustrated in Figure 1, the efficacy of the abscopal effect depends on four essential
factors: (1) tumor cell immunogenicity, (2) efficient ICD, (3) a tumor microenvironment
(TME) favoring immuno-mediated response, and (4) suppression of tumor cell defenses
against a host’s immune attack. Crucial factors playing a role of primary importance are
obviously the technique and modality of radiation delivery. However, we will not deal
with this parameter in depth, since it is highly technically oriented and is outside the
scope of this review. Particular attention will be dedicated to tumor cell immunogenicity
since treatment with selected drugs, belonging notably to the class of DNA methylating
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agents, is able to induce highly immunogenic neoantigens in cancer cells (i.e., the DIX
phenomenon [19]), thus potentially intensifying the RT-mediated abscopal effect.

Figure 1. Main players involved in the chemo-radiation-induced and immuno-mediated abscopal effect. Systemic admin-
istration of selected drugs (e.g., triazene compounds) in tumor-bearing hosts can result in the induction of novel tumor
antigens (tumor neoantigens, TNA, presented by MHC molecules), a phenomenon that has been termed “drug-induced
xenogenization” (DIX, [19]). A portion of the malignant cells (e.g., a metastatic lesion in a clinical setting of a local “in situ
vaccine” for advanced solid tumors [20]) is exposed to ionizing radiation. RT must be properly delivered to avoid immune
suppression and to produce immunogenic cell death (ICD) and tumor microenvironment (TME) modifications that are
able to activate systemic cell-mediated immunity. Immunotherapy (IT) including immune checkpoint inhibitors (ICIs) also
plays an important role in generating cytotoxic effector cells against non-irradiated distant and/or disseminated xenogenized
tumor cells (abscopal effect).

2. Abscopal Effect

Local treatment of malignant cells with various physical and chemical agents can be
followed by systemic outcomes that can be classified as abscopal effects. Here, we focus
on the RT-induced abscopal effect. Preclinical and clinical investigations have produced
convincing data that the immune system plays a significant role in this process, although
other non-immunological mechanisms could be involved. Actually, Tesei et al. [21] showed
that irradiated lung tumor cells secrete vesicles expressing p53-dependent pro-senescence
molecules capable of inhibiting the growth of non-irradiated “distant” malignant cells.
Moreover, radiation has been shown to increase membrane-bound levels of ceramide by
stimulating acid sphingomyelinase (ASMase), which is able to release ceramide from sph-
ingomyelin [22], inducing wide lipid raft alterations, mainly implicated in cell apoptotic
processes [23,24] and in endothelial damage, ultimately emerging in vascular deteriora-
tion [25,26].

2.1. Preclinical and Clinical Investigations

The abscopal effect has been reported for different mouse models and irradiated targets
such as breast [27,28], lung [28], colorectal [20], and pancreatic [29] cancer and malignant
melanoma [30]. A meta-analysis of the literature concerning dose and modality of ionizing
radiation delivery in preclinical models conducted by Marconi et al. [31] illustrated the
best conditions of stereotactic ablative radiotherapy (SABR) required to obtain a reliable
abscopal effect. Moreover, Brooks and Change pointed out that higher probabilities of
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successful therapeutic outcomes could be obtained if more than one neoplastic site were
subject to appropriate RT [32].

Based on this groundwork and on the observation that the abscopal effect relies on
local RT-induced amplification of anti-tumor immunity (see below), many clinical studies
have been conducted with RT prevalently of the SABR type, often in combination with
immune checkpoint inhibitors (ICIs). Results obtained in case studies or in more structured
clinical investigations are compiled in Supplementary Material Table S1. However, as stated
by Zhuang [33], the precise role played by the abscopal effect either alone or associated with
ICIs has not been conclusively assessed in cancer therapy, since large-scale randomized
studies with definite parameters are presently not available.

The need for further sizable research efforts is dictated by the finding that in several
cases, this therapeutic design might not be able to guarantee long-lasting responses due
to limited tumor immunogenicity or to the ability of malignant cells to mount successful
strategies of escaping from immune surveillance (see below). Moreover, critical ques-
tions remain open in defining optimal dosing and treatment schedules concerning RT
either alone (as recently highlighted by Demaria et al. [34]) or in association with various
immunotherapy approaches [35,36].

2.2. Mechanism of RT-Induced Abscopal Effect and Immunogenic Consequences of Radiation

A deep understanding of the mechanism underlying the abscopal effect is needed
to identify the associated therapeutic targets and exploit this phenomenon as an efficient
therapeutic tool. An exhaustive update of our knowledge on this subject has been provided
by Rodriguez-Ruiz [37] and by Lhuillier et al. [38]. It is evident that local RT is able to
generate chemical and/or cell-mediated responses, producing factors that diffuse to distant
sites where they provoke biological effects.

Either spontaneous or drug- or radiation-induced somatic mutations, frequently oc-
curring in malignant cells, could be responsible for the appearance of TNA that can be
recognized by T cells. In particular, by generating point mutations producing immunogenic
tumor-associated peptides, RT can potentially amplify the cross T-cell responses to the
native antigens expressed by non-irradiated tumor cells. This possible scenario is reminis-
cent of the observation that mice sensitized against syngeneic lymphomas that are highly
immunogenic by drug-induced mutagenesis are also able to reject weakly immunogenic
parental lymphoma cells [39]. Actually, RT also appears to amplify the immunogenicity of
TNA through an increase in their expression, which is frequently accompanied by MHC
upregulation on cancer cells [40] and a more efficient recognition by the host’s T cells, thus
producing a sort of in situ tumor vaccine.

The immuno-mediated mechanism responsible for the abscopal effect has been at
least in part revealed by several studies showing that RT is able to induce a “viral mimicry”
effect in target cells consisting mainly of the induction of the type 1 interferon and its
release in the TME [41]. Damage of nuclear and mitochondrial [42] DNA produced by RT
generates fragments of double-stranded DNA (dsDNA) that migrate into the cytoplasm
and activate DNA-sensing molecules [43]. In particular, the presence of dsDNA is sensed
by cyclic GMP-AMP synthase (cGAS) that interacts with dsDNA, leading to the formation
of a cGAS-dsDNA dimer [41]. Thereafter, the dimer recognizes ATP and GTP substrates,
generating the cyclic dinucleotide 2’,3’-cyclic GMP-AMP (cGAMP) complex. In turn, in the
endoplasmic reticulum (ER), cGAMP activates the stimulator of interferon genes (STING)
that undergoes tetramerization and subsequent palmitoylation [44]. Palmitoylated STING
interacts with TANK-binding Kinase 1 (TBK1) [45] and phosphorylates the interferon
regulatory factor 3 (IRF3). After phosphorylation, IRF3 dimerizes, translocates to the
nucleus, and activates type 1 interferon genes [46,47].

Moreover, ionizing radiation can activate endogenous retrovirus transcription [48],
generating double-stranded RNA (dsRNA) that is shuttled to the cytoplasm [49]. Cy-
toplasmic dsRNA is sensed by the pattern-recognition receptor retinoic acid-inducible
gene-1 (RIG-1) and by the RIG-1-like receptor melanoma differentiation-associated protein
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5 (MDA5) [50]. Both RIG-1 and MDA5 after dsRNA binding activate the mitochondrial
antiviral-signaling protein (MAVS) at the mitochondrial level. MAVS activates the TNF
receptor associated factor (TRAF), which in turn activates two kinases (i.e., TBK1 and
IKKs [51]) that phosphorylate IRF3 and IRF7. Thereafter, following dimerization, both
factors migrate into the nucleus and activate the transcription of the IFN gene. In con-
clusion, both RNA and DNA short-size double-stranded nucleotide chains interact with
cytoplasmic sensors and trigger the signaling pathways, leading to an increase in type 1
IFN expression [52].

An essential role is played by the GAS/STING system that is involved in the production of
cytokines, impacting both the innate and the adaptive antitumor immunity [43,53–55], similarly
to the events elicited by viral infections, i.e., the abovementioned “viral mimicry” [47,56]. This
model of the cGAS-STING pathway describes the type I interferon response as a consequence
of cytosolic DNA. However, the relationship between irradiation, DNA damage, and immune
response can also be explained on the basis of investigations that revealed how DNA sense
might occur in cGAS-containing micronuclei created through abnormal mitosis following DNA
damage [57,58]. In addition, while several studies indicate a tumor cell-based activation of
STING [59,60], others have described how exosomes containing DNA molecules are released
and are potentially able to stimulate STING signaling in trans, fueling the radiation-related
immune response [61,62].

The immune cell features within the TME are strongly influenced by the cytokine
composition, which is highly impacted by RT. The pro-inflammatory conversion occur-
ring in the TME after irradiation contributes to the engagement of lymphocytes and the
improvement in effector T-cell activation [63]

One of the main final outcomes of the described induction of interferon release is
the activation of a subset of Th1 response associated CD11c+, CD8α+ BATF+ dendritic
cells (DCs) [64] that migrate to lymph nodes, where they provoke cross-priming of effector
CD8+ T cells that will access either the principal lesion or the non-irradiated distant sites,
contributing to tumor eradication [65].

In pre-clinical models, radiation has also been shown to stimulate the production of
T helper 1 (Th1)-related chemokine CXC-chemokine ligand 10 (CXCL10) [66], which is
strongly involved in tumor infiltration by CD8+ effector T cells through engagement to
CXCR3 [67]. The abovementioned CD11c+CD8α+ BATF+ DCs, induced by radiation, have
also been described to play a critical role in CXCL10 as well as CXCL9 production [64].

However, whereas low-dose radiation has been mainly related to a Th1-like response
in the TME, characterized by the secretion of IFN-γ and TNF-α [68], a Th1/Th2 polarization
has also been reported in association primarily with high doses [69]. Nevertheless, a single
radiation dose of 15 Gy has been shown to improve DC maturation in the B16 melanoma
model [70], whereas high single doses (> 20 Gy) significantly improve the priming of CD8+
T cells, intra-tumor T cell infiltration, and tumor regression in preclinical models of murine
tumors [71,72].

Another aspect of positive immunomodulating activities of RT concerns the dose-
dependent upregulation of MHC-I expression on tumor cells, thus favoring tumor antigen
presentation to T cells. In particular, better MHC induction was obtained with single doses
>4 and 8 up to 20 Gy in melanoma and colon cancer, respectively [73].

Remarkably, irradiation alone has also been shown to broaden tumor-specific T-cell
repertoire (TCR), probably as a consequence of neo-antigen burden widening, but is also
able to stimulate the expansion of ICI-induced oligoclonal anti-tumor T-cell clones when
used in combination with a CTLA-4 blockade [74]. This provides additional evidence of a
potential cooperation between immune therapy and RT.

2.3. RT-Induced Immunosuppression

The mechanisms underlying RT-associated immune modulation have been exhaus-
tively described in recent studies (reviewed in [75]) and include, as previously highlighted,
immuno-stimulating pathways involved in the immuno-mediated abscopal effect.
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However, exposure to RT triggers various immunosuppressive mechanisms, including
the recruitment of regulatory T (Treg) cells [76], M2 macrophages, and myeloid-derived
suppressor cells (MDSCs) [36]. Moreover, RT contributes to the generation and activation
of cancer-associated fibroblasts that provide immunosuppressive cytokine signaling [77].
Interestingly, RT also causes upregulation of PD-L1, which was shown to be mediated by
the hypoxia-inducible factor-1α (HIF-1α) [37]. Since the membrane-localized PD-L1 on
cancer cells contributes to tumor evasion from the immunological control, it is reasonable
to conclude that RT-induced PD-L1 upregulation negatively impacts curative radiation
responses, including attenuating the abscopal effect [37,78–81]. This finding provides a ra-
tional basis for introducing immunotherapy with anti-PD-1/PD-L1 monoclonal antibodies
along with RT.

Remarkably, unlike monocytes, macrophages, and DCs, a high sensitivity of T lym-
phocytes to RT has been demonstrated, with low doses sufficient to induce DNA damage
and apoptosis [82], which is supposed to cause transient T-cell depletion in the TME.

In this context, the purinergic CD39/CD73/adenosine system, already described in
2007 [83], has recently caught the attention of immunologists as a critical endogenous
regulator of the innate and adaptive immune systems with a documented role in tumor
immune escape. The importance of the negative influence of the purinergic system on
triggering the abscopal effect, and in general on RT, stems from the finding that ionizing
radiation substantially activates the CD73/adenosine signaling pathway [84]. Both CD73
and CD39 are 5′ectonucleotidases mainly produced by specific T-cell subsets, including
Tregs and several T-cell subgroups as well as stromal and tumor-associated stem cells [85].
The biological function of these enzymes concerns extracellular ATP metabolism since
CD39 converts ATP into ADP and AMP, whereas CD73 converts AMP into adenosine [86].
In turn, adenosine interacts with specific purinergic receptors [87] and provides immunode-
pressive signaling frequently exploited by tumors to evade immune surveillance. Actually,
adenosine possesses pleiotropic immunosuppressive effects and reduces activation of DC
and effector T cells while promoting the activity of Tregs [88–90]. Therefore, the purinergic
CD39/CD73/adenosine system contributes to shaping different aspects of a tumor-driven
immune scenario in the TME. This is particularly evident in hypoxic cancers [91,92] where
effector T-cell function is impaired mainly through the binding of adenosine to the A2A
receptor expressed by CD8+T cells [91].

Exposure of human and mouse breast cancer cells to irradiation is followed by in-
creased expression of CD73 [93,94], which also plays a critical role in promoting radiation-
induced toxicity, chronic inflammation, and fibrosis in normal lung tissue [95]. Presently, all
available preclinical data emphasize the worth of CD73 as a potential therapeutic target for
cancer control [96,97], encouraging clinical studies aimed at evaluating the use of anti-CD73
MEDI9447 mAb and/or LY3475070 small inhibitor molecules alone or in combination with
a PD-1 blockade in patients with advanced solid tumors [98]. Moreover, it is conceivable
that CD73 suppression can represent a favorable approach able to increase cooperation
between RT and immunotherapy. Indeed, blockade of CD73 has been shown to enhance
radiation-associated tumor infiltration by DC in the absence of type 1 IFN induction while
improving systemic antitumor T-cell responses [94]. In the LuM-1 preclinical model, a
highly metastatic murine colon cancer, expression of CD73 was significantly increased after
RT [99]. In subcutaneous lesions of the same tumor model and microscopic pulmonary
metastases occurring in Balb/c mice, characterized by increased levels of adenosine after
RT, intraperitoneal anti-CD73 antibody alone did not produce antitumor effects. In contrast,
when combined with RT, anti-CD73 treatment delayed tumor growth while suppressing
the development of lung metastases, presumably through abscopal effects, leading to
enhanced anti-tumor cytotoxicity compared to controls. However, the most favorable
approach to be employed for targeting CD73 in combination with RT has not been iden-
tified yet, in terms of either whole dose and quality of radiation, or in the sequence of
treatment [100–102]. Indeed, optimal treatment conditions must be determined, taking
into account the impact of RT and the activation of CD73/adenosine signaling in both
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tumor and normal tissues, where excessive inflammation or autoimmunity may develop
by inhibiting CD73-adenosine protective signals.

Remarkably, different radiation doses and dose-fractionation have been associated
with a distinctive degree of modulation of immune responses. In particular, while classical
portioning has been associated with an increased frequency of MDSCs and Treg cells in
the TME [103,104], low-dose RT generally promotes more immunogenic changes in the
TME, including the polarization of TAMs to an M1 phenotype [105] and a Th1 cytokine
setting [106]. Accordingly, in a study involving 47 metastatic melanoma patients treated
with ipilimumab and RT, the abscopal effect emerged as being more successful with a
reasonably hypo-fractionated dose inferior to 3 Gy compared to a dose higher than 3 Gy,
which impaired the abscopal effect by abolishing cell-mediated immune responses [107]. In
conclusion, all these observations suggest that radiation dosage and partition, along with
the distinctive TME features, contribute to explaining the double-edged sword represented
by RT in terms of immunoenhancement or immunosuppression [108]. More in-depth
individual analyses are needed, together with reliable patient response markers, to identify
how irradiation in combination with ICIs can be optimally turned into a therapeutic
advantage [36,109,110], leaving open the option of a purinergic pathway blockade.

3. Drug-Induced Upregulation of Tumor Immunogenicity

Tumor antigen(s) that can be recognized by tumor-bearing hosts provide the immuno-
logical bases of the abscopal effect. Therefore, a critical role is played by the level of
malignant cell immunogenicity. As stated in the introduction, two categories of tumor
antigens must be taken into consideration, i.e., TAA, which is preferentially present but
not solely expressed by neoplastic cells (e.g., epitopes of MUC1, HER2/neu, or CEA ori-
gin [111]), and TNA, which is exclusively expressed by malignant cells [112]. It follows that
the level of cross-reacting TAA or TNA presented either by the locally irradiated tumor or
distant metastatic lesions appears to be of great relevance for the induction of the abscopal
effect. Therefore, we will consider some pharmacological strategies that could be adopted
to increase TAA expression or to induce TNA appearance. These effects can be defined
as drug-induced antigen remodeling, and refer to any pharmacological stimulus able to
modify the antigenic pattern of malignant cells in the course of tumor growth. In particular,
certain drugs could increase the expression of pre-existing TAA (e.g., 5-fluorouracil [113],
see below) and others could be able to provoke the de novo generation of TNA (e.g.,
genotoxic antitumor agents [19,114,115]). The presence of neoantigens may also result from
“spontaneous” tumor cell mutations responsible for drug resistance [116,117]. However, it
should be stressed that antigen remodeling must not necessarily lead to favorable outcomes.
It cannot be excluded that treatment with certain drugs might also restrain the immuno-
genic properties of cancer cells by reducing TAA or TNA expression or their presentation
on cancer cells [118] or by increasing the intra-tumor heterogeneity as a consequence of
accumulating mutations in a subset of cancer cells [119,120].

It is important to consider that in most cases classical antitumor drugs (e.g., anthracy-
clines, platinum compounds, cyclophosphamide, bortezomid, etc.) are able to induce ICD
(see next section) rather than causing upregulation of TAA or TNA expression in tumor
cells [121].

Moreover, besides their influence on tumor-cell antigenic patterns, cytotoxic anticancer
drugs can provide remarkable pharmacodynamic effects on host’s immune responses
through selective killing of specific immunocompetent cell populations. An example is
provided by cyclophosphamide, which stimulates the immune response if administered
at low (non-toxic) dose levels [122,123]. This was attributed to selective cytotoxicity on
CD4+CD25+ Tregs, which turned out to be more sensitive to cyclophosphamide than
cytotoxic T cells (Tc) and Th cells, presumably due to defective repair of cyclophosphamide-
induced DNA crosslinks [124]. The hypersensitivity of Tregs is restricted to cyclophos-
phamide and does not pertain to other alkylating drugs like temozolomide. It results in a
decline in the suppressor activity of Tregs [124] and, consequently, in an increased overall



Int. J. Mol. Sci. 2021, 22, 10672 8 of 33

immune response. It is conceivable that a combination of TAA modulation and induction
of TNA by highly mutagenic anticancer drugs like temozolomide (see below) together with
abrogation of the inhibitory function of Tregs by low dose cyclophosphamide could be able
to provide full stimulation of the antitumor immune response required for triggering the
abscopal effect.

3.1. Drug-Induced TAA Upregulation

Increased expression of TAA by pharmacological procedures has been the subject of
several studies in the last 30 years, with the intent to suppress malignant cells utilizing
selective immuno-cytotoxic approaches. A detailed analysis of TAA that can be considered
for modulation by external agents has been reported previously [120]. Typical examples of
drug-induced TAA modulation are discussed below.

3.1.1. Interferons

One of the first agents that was discovered to induce a considerable TAA up-regulation
was interferon-gamma which was shown to substantially amplify CEA expression both
in vitro [125–127] and in vivo [128]. IFN-α also increased CEA in vitro [127,129] and in
carcinoma patients [130]. These agents are able to upregulate other TAAs, including
tumor-associated CA125 antigens in ovarian cancer cells [131], glycoprotein-72 (TAG-72)
in patients with colon [128,130] or breast cancer [132], and TAAs in glioma [133,134] or
breast cancer cell lines [135]. Moreover, EpCAM, a TAA detectable in colon cancer cells,
was also found to be upregulated by IFN-α and IFN-γ [136]. Tumor cell lines expressing
Her-2/neu peptide presented by HLA-A*0102 showed upregulation of the Her-2(369)-A2
epitope after exposure to IFN-γ [137], and IFN-β was found to be capable of modulating
TAA. In this report, upregulation of Melan-A/MART-1 gp-100 and MAGE-A1 in melanoma
cell lines exposed to this cytokine was described [138]. Similar results were obtained
in neuroblastoma cells concerning an increase in MAGE-A1, MAGE-A3, and NY-ESO-1
expression under the influence of IFN-γ and 5-aza-2’deozycytidine (decitabine) [139]. On
the other hand, a report showing that IFN-γ downregulates the presentation of TAA in
freshly prepared epidermal APC in mice [140] proposed that the effect of IFN-γ on TAA
presentation may be tumor-specific and has to be checked for each tumor entity carefully.

3.1.2. Epigenetic Drugs

Gene transcription is finely tuned by the interaction of DNA with histone proteins
that are organized in chromatin fibers. In the last few years, a number of drugs has
been developed to regulate these interactions [141–143], including the inhibiting histone
deacetylases (HDACs) that remove acetyl groups from the N-terminal lysine of nucleosome
histones [144]. In principle, since histone deacetylation leads to gene silencing, it is reason-
able to predict that HDAC inhibitors can upregulate TAA expression. This expression can
also potentially be regulated through the HDCA-mediated modulation of both the mRNA
elongation machinery [145] and the activity of transcription factors [146].

For example, valproic acid, a well-known HDAC inhibitor, is able to increase the
expression of the CD20 antigen on B-cell lymphomas, thus increasing the complement-
dependent cytotoxic effects of the anti-CD20 mAb rituximab [147]. It should be noted that
IFN-β and valproic acid are also effective in sensitizing cancer cells to chemotherapeutics
directly, which was attributed to the reactivation of silenced caspases [148]. Nevertheless,
of particular interest are studies concerning the therapeutic potential of epigenetic drugs,
including HDAC inhibitors, which are associated with ICIs in tumor immunotherapy
approaches [149]. Actually, if tumor cells are scarcely immunogenic, no cytotoxic effector
cells are produced by the tumor-bearing host. In this case, treatment with ICIs is irrelevant.
However, if malignant cells acquire remarkable immunogenic properties under the influ-
ence of epigenetic drugs, it is reasonable to predict that ICIs will become highly efficient in
eliciting anticancer effects.
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DNA methyltransferase inhibitors 5-aza-cytidine and decitabine represent another
group of epigenetic drugs that have been found to be able to support antitumor immu-
nity by increasing TAA expression and presentation [139]. For example, in a model of
murine pancreatic ductal adenocarcinoma, it was shown that azacytidine can substantially
increase the TAA presentation to T cells, along with T-cell infiltration of the neoplasia and
presumably amplification of target tumor immunogenicity [150]. The increase in CEA
antigen expression in human colorectal tumor cell lines induced by 5-azacytidine renders
malignant cells more susceptible to CAR-NK-mediated cytotoxicity targeting CEA in vitro
and in SCID mice [151].

3.1.3. Antitumor Agents

Docetaxel
Hodge et al. [152] showed that docetaxel is able to increase the expression of TAA (i.e.,

CEA, MUC-1, and PSA) in docetaxel-resistant cells, thus highlighting that TAA upregula-
tion is not necessarily coincident with ICD (see the ICD section of this review). Therefore,
the authors proposed calling this phenomenon “immunogenic modulation.”

5 -Fluorouracil (5-FU)
A number of in vitro experiments on human colorectal cancer cells demonstrated that

this antimetabolite is able to substantially increase the expression of CEA epitopes on the
tumor cell membrane in vitro [113,153–162]. This effect has been exploited to facilitate the
detection of circulating colon cancer cells in patients [163,164]. In the case of melanoma
cells, treatment in vitro with 5-FU sensitized cells to lysis induced by cytotoxic CD8+ T
cells (CTL) recognizing the G209 antigen [165]. Moreover, as reported in the same study,
treatment with dacarbazine produced similar effects. We should note that this finding
needs confirmation in other cell systems since dacarbazine is a prodrug and not active
in vitro without metabolic activation [166]. In cholangiocarcinoma cells, 5-FU, gemcitabine,
and IFN-γ have been shown to upregulate MUC1 antigen expression and concomitantly
MHC and PD-L1 [167], thus suggesting that an appropriate combination of chemotherapy
and immunotherapy including ICIs might afford better results than chemotherapy alone.

Drugs Targeting Thymidylate Synthase
In a number of preclinical and clinical investigations, it was shown that the thymidy-

late synthase (TS) could be considered a TAA since this enzyme is abnormally expressed in
various neoplasia, mainly in colorectal cancer, which occurs especially under treatment
with 5-FU [157,168–174].

Platinum Compounds
Colorectal tumor-associated antigen-1, mesothelin tumor-associated antigen, and

telomerase catalytic subunit TERT were upregulated in oxaliplatin-resistant colorectal
cancer cells collected from a large number of patients treated with the drug [175]. In vitro
studies showed that oxaliplatin and other antineoplastic agents (e.g., 5-FU, mitomycin-C,
and raltitrexed) upregulated membrane Lewis(y) antigen [136] in colorectal cancer cells.
Whether this occurs during chemotherapy is yet to be demonstrated.

Gemcitabine
Investigations on the immune effects of gemcitabine revealed that this drug can

upregulate death receptors on tumor cells, rendering them more susceptible to the cytotoxic
effect of CD8+ T cells. Moreover, gemcitabine substantially upregulates NKG2D ligand in
malignant cells, which become highly susceptible to killing by NK effector cells [176,177].
However, strictly speaking, this type of drug-mediated function cannot be classified as
TAA upregulation, but rather as a drug-induced increase in tumor cell susceptibility to
immuno-mediated killing.

3.2. Drug-Induced Xenogenization (DIX)

In 1970, it was shown for the first time by two of us that treatment of mice bearing
fully histocompatible non-immunogenic L1210 leukemia cells (originating from DBA/2;
H-2d/ H-2d) with dacarbazine was effective at inducing the appearance of novel and
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unexpectedly strong transplantation antigens [178]. Dacarbazine is a triazene compound
(dimethyl-triazene-imidazolecarboxamide, DTIC) that needs metabolic activation in the
liver to yield the ultimate reactive agent MTIC, generating carbenium ions that methylate
the DNA [179]. The induction of TNA was observed following in vivo exposure of malig-
nant cells to DTIC for a number of sequential drug treatments (Figure 2A,B). The host’s
immune response against DTIC-treated cells was found to be comparable to that elicited
by MHC-incompatible malignant cells [19,180]. Actually, all intact (BALB/c xDBA2)F1
(CD2F1) mice (H-2d/ H-2d) were able to reject up to 107 L1210/DTIC cells inoculated ip,
whereas all CD2F1 mice succumbed to generalized leukemia when inoculated with a low
number (about 10) of untreated L1210 cells within 14 days after challenge [19]. Conversely,
all mice, which were immune depressed following total body irradiation or high-dose
cyclophosphamide treatment before L1210/DTIC transplantation, developed leukemia
and died. These data confirmed the immunological nature of the mechanism underlying
L1210/DTIC rejection. Similar results were obtained with different mouse leukemia cell
models treated in vivo [39,181–185] or in vitro [166,180] with metabolically activated DTIC
or with other triazene compounds that were found to be even more active than DTIC,
and in some cases not requiring metabolic activation in vitro [180]. This phenomenon was
termed “chemical xenogenization” (CX) [186] and more recently renamed “drug-induced
xenogenization” (DIX) [19], which underlines that strong immunogenicity was elicited by
treatment with an antitumor agent of therapeutic interest. Actually, the DIX acronym was
adopted to distinguish this type of xenogenization from that described later in 1976, elicited
by the chemical methylating mutagen N-methyl-N’-nitro-N-nitrosoguanidine, which is
not used therapeutically [187]. Other antitumor agents have been tested for DIX activity.
However, in no case was the level of immunogenicity achieved comparable to that obtained
following sequential treatment with triazene derivatives ([183,188] and unpublished data
from our laboratory).

Figure 2. DTIC-induced xenogenization. Quinacrine interferes with DTIC-induced xenogenization,
but not with the antitumor or immunosuppressive activity of this drug, or with the onset of resistance
to the triazene compound. (A) Graphic protocol showing the treatment scheme utilized to expose
in vivo mouse leukemia cells (MLC) to DTIC (100 mg/Kg ip, day 1–5, [178]) in the course of sequential
transplant generations (TGs). At each TG recipient mice were left untreated or treated with DTIC for
the subsequent TG. (B) Co-administration of DTIC + quinacrine abrogates the DIX effect afforded by
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DTIC alone [189]. LD line, L5178Y leukemia of DBA/2 origin, passaged (106 cells ip) in CD2F1 mice
treated with DTIC alone (D, black columns); LDQ line, same line passaged in mice treated with DTIC
+ quinacrine (Q, 20 mg/Kg ip, day 1–5 after challenge, blue letting columns). Red columns indicate
survival times of untreated controls of LD or LDQ lines. Moreover, Q treatment alone was entirely
inactive (data not shown). At TG8, the DIX effect was not detectable in the LDQ line but only in
the LD line, which became strongly immunogenic (i.e., all 8 untreated controls lived more than 60
days, whereas the DTIC-treated mice died as a result of DTIC-induced immunosuppression [190]).
Moreover, after several TGs, LDQ became entirely resistant to the antitumor effect of DTIC, thus
confirming that Q did not prevent chemo-resistance to DTIC (data not shown). (C) Early DIX
detectable in the LDQ line. CD2F1 mice were challenged with 106 cells ip of the non-immunogenic
LDQ line (collected from leukemic donors at TG9). Thereafter, the mice were treated with DTIC alone,
and at the following TG1 the majority of untreated controls survived beyond the 60-day observation
period. (D) Quinacrine does not prevent the immunosuppressive effects of DTIC. A total of 106 cells
of L5MF-22 lymphoma of B10.129(5M) (H-2b) origin were inoculated intravenously into untreated
syngeneic recipients (S) or into H-2-incompatible allogeneic (A) CD2F1 (H-2d/H-2d) mice. All CD2F1
mice (blue column) rejected the tumor whereas all syngeneic recipients (red dashed column) died
within 6–7 days. Allogeneic CD2F1 hosts treated with DTIC (50 mg/kg ip, daily, day 1 through 5
after tumor challenge) alone (D, red column), or associated with quinacrine (20 mg/Kg, day 1–5)
DQ (grey columns), died of generalized lymphoma within 6–8 days after challenge, without any
significant difference between the two groups. All allogeneic mice treated with quinacrine alone
(Q, violet dash column) rejected L5MF-22 cells. MST, median survival times. Panel B: * p < 0.05
(Mann–Whitney “U” test) respective to untreated controls at TG 0. At TG8, ** p < 0.01. In all other
panels the reported differences are highly significant (p < 0.01).

From the beginning of our observations on DTIC immuno-pharmacodynamics, we
hypothesized that triazene-induced tumor immunogenicity could have been the result of
drug-induced somatic mutations. This was supported by the finding that upon metabolic
activation, DTIC is a highly mutagenic compound. It was further confirmed by subsequent
studies on the mechanisms underlying triazene-dependent DIX. Epigenetic mechanisms
relative to DNA methylation have been essentially ruled out since triazenes do not show
hypomethylating activity, but rather a weak hypermethylating activity on DNA [191].
Moreover, it was found that CD2F1 mice rendered immunologically tolerant to weak virus-
dependent antigens expressed by the moloney virus-induced LSTRA leukemia were able
to reject DTIC-treated LSTRA cells [39]. This finding showed that the drug did not induce
xenogenization of malignant cells through a mechanism based on the enhancement of virus-
coded transplantation antigens [192]. Rather, it supported the hypothesis of neoantigen
generation following in vivo or in vitro treatment of cancer cells with triazenes.

Further experiments aimed at supporting this hypothesis were conducted by com-
bining the administration of an antimutagenic compound such as quinacrine [193] with
DTIC, as shown by Giampietri et al. [189] (see Figure 2). It was found that quinacrine
suppressed entirely DTIC-induced xenogenization. Indeed, L5178Y leukemia cells (of
DBA/2 origin) exposed in vivo to DTIC alone were rejected by intact non-DTIC-treated
(i.e., non-immunodepressed) histocompatible CD2F1 recipients, whereas leukemic cells
treated in vivo with DTIC together with quinacrine for 8 TGs were lethal for both intact
and immunodepressed hosts ([189], Figure 2B). It must be stressed that quinacrine did not
interfere with the antitumor activity of DTIC since leukemic mice treated with DTIC or with
DTIC plus quinacrine at TG-0 survived modestly, but significantly longer than control ani-
mals (Figure 2B). Moreover, quinacrine did not antagonize the immunosuppressive effects
of high doses of DTIC (Figure 2D) and did not prevent the induction of chemoresistance
to DTIC when associated with the triazene compound [194]. Notably, murine leukemia
cells that were highly resistant to DTIC and not immunogenic following serial passages
in histocompatible mice treated with DTIC + quinacrine became highly immunogenic
if exposed in vivo to only one cycle of DTIC without quinacrine (Figure 2C). All these
findings indicate that quinacrine impairs selectively DTIC-dependent DIX and suggest that
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mutations causing DIX were different from those possibly provoking cellular resistance to
the triazene compound. Although the molecular basis of this specific pharmacodynamic
antagonism has not been clarified yet, the findings appear to disclose novel approaches to
analyzing the mutation patterns involved in TNA generation.

The direct and conclusive demonstration that triazene-induced DIX is generated by so-
matic mutation was provided by studies performed by Grohmann et al. in 1995 [195]. They
found that the immunogenicity of a clone of the L5178Y/DTIC cell line was due to somatic
mutations in a specific region of a murine endogenous retrovirus. Moreover, they identified
the MHC-presented non-self-peptide(s) responsible for the leukemia graft rejection.

3.2.1. Mechanism of Action of Triazenes

Triazene derivatives (e.g., DTIC and TMZ) and hydrazine derivates (e.g., procarbazine)
are highly mutagenic compounds. Different from DTIC and procarbazine, TMZ does not
need metabolic activation. The main biochemical mechanisms underlying the mutagenic
activity of triazenes [196] leading to DIX is illustrated in Figure 3. Upon metabolic acti-
vation of dacarbazine, which occurs predominantly in the liver, the reactive metabolite
MTIC is formed, which is released into the blood stream and enters tumor cells by dif-
fusion. In the cell, the metabolite decays spontaneously, yielding carbenium ions that
methylate the tumor DNA at different sites of the purine and pyrimidine bases. One
of the DNA methylation products is O6-methylguanine (O6MeG). Although formed in
minor amounts (maximally 8% of total alkylations), it is responsible for most of the point
mutations induced by these agents, since O6MeG has highly mispairing properties, pairing
with thymine during replication [197]. This is followed by GC-to-AT transition mutations.
For this process, replication is required, which implicates that proliferating tumor cells
exhibit a high mutation rate. There is another important condition that is required for
successful mutagenicity (Figure 3B), namely, the absence or strongly reduced activity of
the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT). This protein
removes the methyl group from the O6-position of guanine through transfer to an internal
cysteine and thus restores guanine in the DNA. Therefore, it prevents point mutations
induced by DNA-methylating drugs. It is interesting that MGMT is highly regulated and
silenced in many tumors [198,199]. Thus, in malignant glioma (grades III and IV), MGMT is
completely lacking in about 20% of the tumors and epigenetically downregulated in about
40% of neoplasias, resulting in a significant decrease in MGMT repair activity [200–202].
A process that counteracts mutagenicity through O6MeG is mismatch repair (MMR), as
O6MeG:T mismatches are recognized by MMR proteins (MSH2/MSH6) [203] and erro-
neously processed in a futile repair cycle, yielding DNA double-strand breaks that trigger
cell death [204] and senescence [205]. Through this process, cells harboring premutagenic
changes can be eliminated. However, all experimental systems in which mutations through
O6MeG were measured showed that MMR does not eliminate all premutagenized cells,
and mutations increase linearly with dose and O6MeG level [206]. It is also conceivable
that in cancer cells apoptotic processes are blocked or defective, e.g., through upregulation
of antiapoptotic factors such as survivin, BCL-2, or lack of caspases [207,208]. In this case,
mutated cells will survive and propagate, and finally express mutated proteins followed
by TNA presentation.
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Figure 3. Biochemical basis of the DIX effect due to exposure to triazene compounds. (A) Dacarbazine
(DTIC) is a prodrug that requires liver metabolism to be converted into the active MTIC metabolite.
On the other hand, temozolomide, an often-used triazene compound, does not require metabolic
activation since it is spontaneously converted into MTIC in aqueous solution. Thereafter, MTIC
generates the final active molecule, diazomethane, a mono-methylating agent able to produce methyl
adducts to nucleophil centers in the DNA. (B) The most significant methyl adducts to DNA produced
by triazenes relative to their pharmacodynamic properties include O6MeG, N7-methylguanine, and
N3-methyladenine [209]. At therapeutic dose levels, particularly involved in the cytotoxic and
DIX effects of triazenes is O6MeG. If this adduct is repaired by MGMT, triazenes are essentially
inactive [19,210,211]. If the activity of MGMT is spontaneously low or downregulated by drugs (e.g.,
lomeguatrib [212]) O6MeG mispairs with thymine. If MMR is functionally active, the complex tries
to repair the mismatch by replacing the new DNA strand without success. It is presumed that several
“futile cycles” of DNA repair lead to cell death through apoptosis. However, a few resistant clones
that are inefficient for MMR or that do not trigger apoptosis continue to proliferate and display point
mutations (GC->AT), giving rise to the appearance of strong tumor neoantigens (i.e., the DIX effect).

Based on these considerations, it is obvious that MGMT downregulation appears to be
mandatory for DIX achievement with triazenes. It must be underlined that the majority of
preclinical studies on DIX have been conducted on mouse leukemia/lymphoma cells that
express low levels of MGMT [213,214]. Actually, there are a number of drugs able to inhibit
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or downregulate MGMT activity [210,212,215–217]. Moreover, triazenes themselves inacti-
vate the suicide enzyme MGMT due to the repair reaction, which leads to MGMT depletion
after repeated treatment cycles. There are also other anticancer drugs that may impact
MGMT expression, such as cisplatin [218], bortezomib [219–221], and PARP inhibitors [222],
which were reported to downregulate MGMT activity. However, the difficulty with these
genotoxic agents lies in the additive toxic effects produced when combined with triazene
compounds such as DTIC and TMZ. However, highly specific, potent, and non-toxic
MGMT inhibitors have been developed over the past 20 years. The classical inhibitor uti-
lized in many in vitro and in vivo preclinical studies is O6-benzylguanine (O6BG) [223,224].
This compound is a pseudo-substrate that binds MGMT, forming S-benzylcysteine at the
acceptor site of MGMT and thus inactivating the repair protein. Thereafter, inactivated
MGMT undergoes ubiquitination and degradation so that its activity can be restored only
after de novo synthesis of the protein. Another MGMT inhibitor, 6-(4-bromo-2-thienyl)
methoxylpurin-2-amine (lomeguatrib) [210,215,224–226], exhibits a similar mechanism
of action. It has a stronger affinity to MGMT and is therefore about 10-fold more active
than O6BG [210]. Importantly, both inhibitors are essentially non-toxic and are well tol-
erated, as shown in cultivated cells, animal systems, and in clinical trials [227]. In detail,
these clinical studies showed that lomeguatrib exhibits minimal toxicity and an extremely
high suppressing effect on MGMT in leukemia [209,228,229], melanoma [230–232], and
colorectal cancer [233]. However, systemic administration leads to MGMT inactivation not
only in the tumor, but also in the healthy tissue throughout the body. Therefore, MGMT
inhibitors not only amplify the antitumor activity of TMZ, but also increase its toxic side
effects, notably hematotoxicity [234]. Therefore, coadministration of methylating anticancer
drugs and MGMT inhibitors did not result in an improved therapeutic index compared to
TMZ alone. Although similar studies have not been performed with dacarbazine, similar
outcomes are anticipated. Therefore, MGMT inhibitors do not appear to be manageable
in high-dose cancer therapy with alkylating agents, unless they are locally administered,
as shown in a therapeutic approach for glioblastoma [235]. In addition, strategies are
available for hematoprotection through the transfer of a mutated form of MGMT, which
is resistant to O6BG, in hematopoietic stem cells prior to high-dose TMZ therapy [236].
Other targeting approaches have been discussed that are still in the preclinical stage [227].
Nevertheless, MGMT inhibitors appear to be mandatory in MGMT-expressing tumors for
DIX-dependent cancer therapeutic approaches in which TMZ or dacarbazine are applied
to induce cancer cell immunogenicity. Actually, persistent MGMT inactivation has been
obtained with protracted low-dose administration of TMZ [237]. As continuous low-dose
TMZ has been shown to induce low yet detectable levels of mutations (phase II trial with
recurrent malignant glioma patients [238]), a metronomic schedule involving low-dose
TMZ is likely to represent an optimal option for accumulating immunogenic mutations
notably in tumors in which MGMT is epigenetically silenced.

In conclusion, since TNAs rest on the expression of new proteins resulting from
mutations, it is reasonable to postulate that genotoxicants with high mutagenic activity
and low cell-killing ability are efficient TNA inducers. As previously stated, an example
is N-ethyl-N-nitrosourea (ENU), which is highly mutagenic and only slightly cytotoxic.
Although not employed in cancer therapy, it might be considered a powerful TNA inducer.
Moreover, the DNA methylating agent streptozotocin, a glucose conjugate with N-methyl-
N-nitrosourea, TMZ, dacarbazine, and procarbazine, is also highly mutagenic, although
clearly more toxic, at least in MGMT-deficient cells [239,240]. It is utilized in cancer therapy
and therefore can be considered to be applicable for TNA induction. We should note
that ENU and MNU are highly carcinogenic agents, which may limit their application in
cancer therapy.

3.2.2. DIX and Ionizing Radiation

Very limited information is currently available on the possible interaction between
drugs endowed with DIX activity and RT. The main preclinical and clinical literature
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on this subject concerns the combined effects of TMZ and RT in brain tumors (recently
reviewed [241]). Preclinical studies performed in one of our laboratories with L1210 cells
showed an interesting phenomenon [242] for which the underlying molecular basis is still
unknown. The results of pooled published experiments are shown in Figure 4. L1210 cells
of DBA/2 origin inoculated into CD2F1 mice were exposed in vivo to γ-rays (total body
irradiation, 4 Gy) for a number of sequential transplant generations, thus obtaining the
L1210/Irr line (Figure 4A). At the end of the first treatment, irradiated mice lived signif-
icantly longer than non-irradiated recipients. However, after a few TGs, L1210/Irr cells
became completely resistant to in vivo irradiation (data not shown). From TG6 onward,
L1210/Irr cells showed a modest degree of immunogenicity revealed by the protocol based
on immuno-chemotherapy synergism illustrated in Figure 4C. Leukemia cells collected
from irradiated donors at TG6 or TG18 and inoculated into intact or immunodepressed
(cyclophosphamide, 150 mg/kg administered 8 h before tumor challenge) mice killed
all hosts with similar MST (Figure 4B). However, if recipient mice were inoculated with
BCNU ((3.9 mg/kg ip, on day +3 after challenge), intact hosts lived significantly longer
that immunodepressed recipients, whereas no difference in MST was found in intact or
immunodepressed mice bearing untreated L1210 cells. Similarly, as shown in Figure 4C,
L1210 leukemia inoculated into fully histocompatible CD2F1 mice or into BALB/c mice
incompatible with minor histocompatibility loci showed the same MST in spite of a modest
transplantation immunity of allogeneic hosts. If recipient mice were treated with BCNU,
all histocompatible mice showed a limited increase in MST over that of untreated controls.
However, if allogeneic BALB/c mice were treated with BCNU, all recipient animals were
long-term survivors, whereas immunosuppressed hosts died with MST similar to that of
histocompatible CD2F1 recipients. These results, confirmed by a number of experiments
using various host/tumor systems, point out that this immuno-chemotherapy model is
adequate to reveal the existence of limited host-anti-leukemia immune response.

Figure 4. Radiation-induced increased immunogenicity and DIX in untreated or radioresistant mouse leukemia cells.
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(A) Protocol used to obtain radiation-resistant L1210 leukemia sublines collected from mice subjected to total-body irra-
diation (TBI, 4 Gy) on day +1 after inoculation of 106 L1210 cells ip [242]. (B) Increased immunogenicity of L1210/Irr
subline; CD2F1 mice bearing non-irradiated L1210 cells (TG0) showed an MST of 8.5 days, whereas irradiated mice showed
an MST of 11.5 days (p < 0.05 Mann–Whitney U test, data not shown). Thereafter, no significant difference was detected
between irradiated and non-irradiated recipients for up to 18 TGs (data not shown), indicating that the subline L1210/Irr
became radioresistant but not noticeably immunogenic. In order to detect weak transplantation antigens, we applied a
treatment protocol that takes advantage of synergistic effects between chemotherapy and marginal graft responses [243].
Intact mice bearing L1210/Irr cells obtained from TG6 or TG18 and treated with BCNU (red columns) lived significantly
longer than immunodepressed recipients (black columns), indicating a weak host graft response against L1210/Irr line.
(C) Immuno-chemotherapy synergism [243,244]. A total of 105 cells of L1210 leukemia were inoculated ip into histocom-
patible CD2F1 mice or into BALB/c hosts incompatible with minor histocompatibility loci. No difference was found in
the MST of histocompatible or allogeneic hosts (violet columns), which all died of leukemia. However, after treatment
with BCNU (3.9 mg/Kg ip on day +3, red columns) histocompatible mice lived slightly longer than untreated controls,
whereas all allogeneic BALB/c recipients (i.e., 8–12 mice) survived beyond the 60-day observation period. On the other
hand, the MSTs of mice immunodepressed by Cy (150 mg/kg, 8 h before tumor challenge) and treated with BCNU (black
columns) were comparable in histocompatible and allogeneic mice. The number of dead mice over the total is indicated
at the top of the columns. When not indicated, all animals died from leukemia (panels B and C). * p < 0.05, ** p < 0.01
(Mann–Whitney “U” test) considering BCNU vs. Cy-BCNU groups. (D) Comparative DTIC-induced xenogenization of
the original L1210 leukemia and in vivo-irradiated L1210/Irr subline collected after 16 transplant generations of TBI. As
obtained in a number of similar experiments, at TG5 and onward, L1210 cells exposed to DTIC (100 mg/kg/day ip for 5
days) became strongly immunogenic and all non-treated controls (violet columns) rejected malignant cells and survived
beyond the 60-day observation period. Surprisingly, in vivo-irradiated and radioresistant L1210/Irr cells underwent an
early xenogenization process since leukemia cells acquired strong immunogenicity, responsible for total graft rejection,
after only one cycle of DTIC treatment. Moreover, the same degree of immunogenicity was maintained for a number of
additional TGs of DTIC treatment. The number of dead mice over the total is indicated at the top of the columns. *p < 0.05,
** p < 0.01 (Mann–Whitney “U” test) considering control vs. DTIC-treated groups.

Much more noteworthy are data shown in Figure 4D. Radiation-resistant L1210
leukemia cells obtained from donors bearing the L1210/Irr line at 16 TG of irradiation, inoc-
ulated into CD2F1 mice and treated with DTIC, acquired strong immunogenicity only after
a single cycle of DTIC treatment instead of the five cycles usually required with the parental
L1210 cells. Therefore, it is conceivable that irradiation allowed the early appearance of
a high yield of drug-treated immunogenic clones. We hypothesize that this effect is of
therapeutic value in the course of the “dynamic dormancy” [245] of micro-metastases that
could persist after tumor RT and generate a disease relapse. Cancer “dynamic dormancy”
refers to the presence of quiescent malignant cells, surviving initial therapeutic treatment
and seeded in different organs. Following appropriate stimulatory signals, these cells
regain their ability to proliferate, ending in clinically detectable metastasis. In case of
RT-treated dormant cells, it can be speculated that they could be particularly susceptible
to DIX, as suggested by data illustrated in Figure 4, providing a rational basis for novel
therapeutic approaches.

4. Immunogenic Cell Death

Immunogenic cell death (ICD) defines the mechanism by which physically or chem-
ically induced cell death provokes a longstanding T-cell-mediated adaptive immune re-
sponse. ICD can be considered a mainstay of the abscopal effect triggered by local treatment
with ionizing radiation. The concept of ICD that emerged at the beginning of this cen-
tury [246] was recently reviewed as a general phenomenon [247] and in relationship to
RT [248] (for consensus guidelines see Ref. [249]). It should be noted that tumor cell death
induced by therapeutic procedures is not necessarily immunogenic since the TME of dying
malignant cells can be markedly immunodepressive [250]. Successful ICD is conditioned
by the presence of TNA or by adequately high levels of non-specific TAA that can be prefer-
entially targeted by an adaptive immune system [251]. For this reason, DIX based on TNA
induction and ICD plays two different roles in tumor immunology. Indeed, DIX can take
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place in cells entirely resistant to the cytotoxic effects of the chemical agent triggering the
xenogenization process [194]. On the other hand, ICD represents an important mechanism
involved in the host’s antitumor immune responses elicited by cell death. An update of
the principal factors regulating a functional definition of ICD along with procedures for its
analysis has been provided by Fucikova et al. [252].

As described in Figure 4, cytotoxic lesions produced either by RT or chemotherapy
orchestrate a series of pre-apoptotic or post-apoptotic intracellular and secretory signals
collectively termed as damage-associated molecular patterns (DAMP) [253]. One of the
main events that can be detected in the early stages of ICD is the translocation of calreticulin
from the cytoplasm to the tumor cell membrane [254,255], which provides macrophage
stimulation via the “eat me” signal that is antagonized by CD47 expressed on the tumor cell
membrane [256]. Additional events have been considered, such as DC maturation [257],
which in turn causes antigen-specific CD8+ T-cell proliferation through the release of ATP,
annexin A1 (ANXA1), and type 1 interferon [253]. Moreover, of primary importance
for ICD is the increased expression of MHC [159] accompanied by amplified levels of
non-specific TAA or highly specific TNA (see Section 3). A further critical component
of DAMP is represented by high-mobility-group box 1 (HMGB1) protein [253,258] that
is released by apoptotic cells and is involved in different physiological and pathological
processes, including those mediated by NK and CD8+ T-cell-mediated cytotoxicity [259] or
the induction of malignant cell proliferation [260].

Several investigations indicated that ICD synergizes with ICI to additionally increase
tumor-specific T-cell functionality, suggesting that ICD is able to transform tumor cells into
an endogenous vaccine, improving the clinical outcome of ICI therapy [261,262]. However,
despite the large amount of data obtained on the mechanism underlying ICD, there is still
inadequate information available about the category of antigens that become immunogenic
in response to ICD [263].

Traditional chemotherapy still represents an invaluable option in cancer treatment,
and can also play a potential critical role in improving tumor-specific T-cell functionality
through the generation of ICD [264]. The old concept that antineoplastic chemotherapy
is only detrimental to the anti-tumor immune response has been challenged by recent
studies showing that it can improve both innate and adaptive responses with different
mechanisms [262]. The immunogenic effects of chemotherapeutic drugs have been un-
derestimated for a long time, since experimental models have mainly employed immune-
deficient animals without dedicating the effort they deserve to the effects of anticancer
agents on different features of the immune response. However, the mechanisms underlying
chemotherapy-induced cancer regression cannot be ascribed simply to the cytotoxic and
cytostatic effect of anticancer drugs, but have to also consider the effects mediated by
tumor-specific T-cell responses [265,266].

Remarkably, alongside the DIX effect, chemotherapy is also able to intensify tumor cell
immunogenicity by stimulating the expression of MHC-I molecules [267]. Moreover, cyto-
toxic agents could provide additional anti-cancer mechanisms, including the activation of
NK cells by stimulating the specific NKG2D ligand and the induction of DC differentiation
as well as the improvement of T-cell functionality. All these events are also related to the
eradication of myeloid-derived suppressor cells (MDSC) and Tregs along with the induction
of a "cytokine storm" [268–273], as reported in protocols combining anti-cancer vaccination
and chemotherapy [274]. It is important to note that the major antigen-presenting cells,
DCs and macrophages, are quite resistant to anticancer drugs such as TMZ- [275,276] and
ROS-generating treatments, including ionizing radiation, compared to T cells [82,277].
Therefore, it is conceivable that they remain functionally active during therapy, stimulating
the anti-tumor immune response even in a high-dose therapeutic setting.

Unfortunately, several drugs, including cisplatin, DTIC, 5-FU, gemcitabine, irinotecan,
oxaliplatin, paclitaxel, and others, show the ability to upregulate PD-L1 expression on
cancer cells through the generation of danger signals [278]. In contrast to this, capecitabine
was found to inhibit the expression of CTLA-4 in colorectal cancer cells [279], and the
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anti-tumor activity of orlistat, an FASN inhibitor, has been associated with the reduction
of PD-L1 expression [280]. These data indicate that chemotherapeutics have the ability
to modulate the antitumor immune response by impacting the expression of important
receptors regulating cytotoxic T-cell activity.

The effects of chemotherapeutic drugs can be classified according to their ability
to cause or support ICD. For example, alkylating drugs can modify T-cell activation.
In particular, cyclophosphamide, which is immunosuppressive in high doses, impairs
regulatory Tregs when delivered in terms of metronomic schedules [269,281]. Remarkably,
when provided as metronomic repeats every 6 days, cyclophosphamide impairs tumor
growth and activates robust anti-tumor immune responses in both SCID (adaptive immune-
deficient) and fully immune-competent C57BL/6 mice [282].

Similar responses have been reported for TMZ. Although treatment with a standard
dose of TMZ plus radiation in GBM patients was associated with a strong T-cell decline,
low-dose metronomic administration of the drug was associated with fewer circulating
Tregs and a reduced extent of CD8+ T-cell exhaustion [283]. Therefore, a metronomic
schedule involving cyclophosphamide or TMZ treatment in association with RT can be
considered a strategy for generating immunogenic mutations without compromising the
anti-tumor immune response, thus supporting ICD.

Since distinctive settings have been shown to be differently responsive to drug-
mediated ICD, it is conceivable that insensitive neoplasias do not possess the intrinsic
features required for ICD induction [284]. An example is given by platinum compounds.
Although oxaliplatin strongly induces ICD [284,285], cisplatin is devoid of intrinsic ICD
activity. However, the drug induces ICD when combined with N-(2-hydroxypropyl)
methacrylamide (HPMA) copolymer (P-Cis) and digoxin [286]. Another example is 5-FU,
which, besides being a TAA upregulator, decreases the frequency of MDSCs [287] and
induces T-cell infiltration and functionality in colorectal cancer patients along with a better
clinical outcome [288]. Remarkably, both anthracyclines and bleomycin are able to improve
the host immune function through the induction of ER stress, leading to positive patient
responses [289,290].

Radiotherapy delivered at clinically significant dosages is able to stimulate signal-
ing pathways leading to ICD [291], although the immunostimulating effects are often
counteracted by the detrimental tumor-associated milieu [292,293], a condition that can
potentially be counteracted by an IC blockade [294,295]. However, as noted above, the RT
dosage and the specific schedule of treatment are both critical factors in order to obtain
proper tumor-derived antigens able to elicit an adequate T-cell-mediated immune response
through ICD and the abscopal effect. Nevertheless, the highest level of immunostimu-
lation was obtained using a fractionated schedule, and this was further potentiated by
ICI co-administration [294,295]. Overall, RT is potentially able to switch the mechanisms
underlying the effect of traditional chemotherapeutics towards ideal ICD inducers [296].

We should note that autophagy, known to interact in a complex manner with ICD [297],
can be upregulated in malignant cells (e.g., in prostate cancer under the influence of
AMBRA1 [298]), which may result in the inhibition of tumor cell death. This may attenuate
abscopal tumor-eliminating effects. Therefore, it is conceivable that in the case of autophagy
upregulation [299] autophagy inhibitors might contribute to enhancing the abscopal effect
determined by RT and supported by chemically induced ICD.

Only a limited number of actual ICD activators has been used efficiently in clini-
cal practice [300,301]. These agents can potentially play a critical role in triggering the
anti-cancer immune responses that can be enforced by immunotherapies in the setting of
combined therapeutic strategies [302,303]. According to these observations, several ICD
stimulators are currently under investigation in a situation of off-label employment for
cancer treatment in combination with ICI [304,305]. The purpose of upcoming investiga-
tions should be aimed at evaluating how traditional chemotherapies and new anticancer
drugs collaborate with RT in converting the TME from an immunosuppressive to a highly
responsive pattern.
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5. Conclusions

Experiments by us and others revealed that (a) certain anticancer drugs, particularly
triazenes, induce the appearance of TNA (i.e., DIX); (b) other chemical agents and certain
cytokines amplify the expression of TAA and TNA; (c) ionizing radiation provokes the
“abscopal effect” if delivered under particular conditions, generating a sort of “in situ
vaccine” [20,301]; and (d) ionizing radiation and cancer chemotherapy can afford ICD,
which contributes efficiently to the host immune response against malignant cells (see
Figure 5). The described features are anticipated to substantially improve the antitumor
immune response elicited through ICI.

Figure 5. Immunogenic cell death induced by chemotherapy or radiotherapy; possible biochemical
patterns. Translocation of calreticulin (CRT) [255] from cytoplasm to tumor cell membrane, facilitated
by annexin [306]. Surface CRT is able to induce an “eat me” signal to phagocytes [307], increasing
their activity along with DC maturation and antigen-presenting function [308]. The calreticulin effect
is antagonized by the interaction of CD47 present on the tumor cell membrane with SIRP-alpha
α located on macrophages and DC [309]), generating a “do not eat me” message in target phago-
cytes [310]. Increased expression of HSP90 and HSP70 by ICD inducers [247]. This is followed by DC
maturation and adhesion to tumor cells with consequent enforcement of the host’s cell-mediated
immune responses. The augmented expression of MHC and MHC-presented TNA is triggered by
ICD inducers [247] and, indirectly, by interferons that are induced by the same agents. Moreover,
agent-induced upregulation of NKG2DLs on the tumor cell membrane increases antitumor NK cell
activity following interaction with NKG2D receptors present on NK cells [311,312]. Reduced expres-
sion of CD47 along with CD46 and CD31 are normally involved in “do not eat me” signaling [313].
The release of ATP in the tumor environment during ICD activates P2RX7 purinoreceptors present
on DC. This is followed by the activation of CD8+T cells. This functional response is inhibited by
CD39/ENTPD1 that hydrolyzes ATP [83].

Major concerns that require further investigation result from the extremely complex
interaction among all the players of this intricate network. Keeping in mind that DIX is
the consequence of drug-induced somatic mutations, no data are currently available that
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indicate a way of amplifying DIX, with the exception of an appropriate use of ionizing
radiation. To our knowledge, no studies have been performed to establish whether DIX can
be amplified by epigenetic drugs. Actually, we know that pre-irradiation of target leukemia
cells consistently reduces the number of treatment cycles with triazenes required to generate
highly immunogenic blasts in the murine model illustrated in Figure 4. However, radiation
exposure may increase MGMT levels in cancer cells, as demonstrated for rat hepatoma [314].
It is still unclear whether this occurs in human tumors as well. Although studies on
cultivated human glioblastoma cells proved negative [315], it cannot be excluded that this
occurs in vivo. Given the case that MGMT is subject to upregulation in human tumors
following radiotherapy, a reduction in the antitumor and xenogenizing effects of triazene
compounds can be expected [19,211]. Is should be noted that this negative outcome was not
observed in the murine model since mouse L1210 leukemia does not express MGMT [211].
Moreover, RT upregulates PD-L1 expression in malignant cells [110] with consequent
immune escape of target cells [316]. In this case, the effect of radiation can be antagonized
by treatment with selective ICIs such as anti-PD-1 or anti-PD-L1 mAbs [316].

It is well known that an increase of mutation frequency results in enhanced intra-tumor
heterogeneity (ITH) [317], which is supposed to have negative consequences on antitumor
immune responses [119]. In a glioblastoma model, it was shown that ITH can be consider-
ably reduced by exposure of malignant cells to ionizing radiation that downsized the clonal
diversity by selecting radiation-resistant clones [318]. Therefore, it is reasonable to predict
that pharmacological approaches may also reduce ITH in order to amplify the therapeutic
value attainable with DIX-based antineoplastic immuno-radiotherapy treatments.

Natural immunity must be also considered as a potential target of radio-immuno-
chemotherapy of cancer. Only preliminary results have been obtained regarding the
relationship between DIX and natural antitumor host resistance. In our laboratory we
have shown that Hh-type natural resistance detectable in lethally irradiated mice (ac-
cording to Cudkowicz [319]) could contribute to in vivo resistance of mice against his-
tocompatible [320] or allogeneic [183] malignant cells treated with antitumor agents,
including dacarbazine.

In conclusion, we hypothesize that a therapeutically relevant abscopal effect may result
from a proper combination of drug treatment, patient-adapted RT, and immunotherapy.
Although there is still a long way to go to clinical application, the alliance of DIX and
RT-induced abscopal effect may provide a significant contribution to cancer treatment.
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macrophages; TBK1 tank-binding kinase 1; TERT telomerase reverse transcriptase; TG transplant
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factor; TMZ temozolomide; TNA tumor neoantigens(s); TRAF TNF receptor-associated factor; TS
thymidylate synthase.
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65. Kodet, O.; Němejcova, K.; Strnadová, K.; Havlínová, A.; Dundr, P.; Krajsová, I.; Štork, J.; Smetana, K., Jr.; Lukas, L. The Abscopal
Effect in the Era of Checkpoint Inhibitors. Int. J. Mol. Sci. 2021, 22, 7204. [CrossRef]

66. Parkes, E.E.; Walker, S.M.; Taggart, L.E.; McCabe, N.; Knight, L.A.; Wilkinson, R.; McCloskey, K.D.; Buckley, N.E.; Savage, K.I.;
Salto-Tellez, M.; et al. Activation of STING-dependent innate immune signaling by S-Phase-Speci c DNA damage in breast cancer.
J. Natl. Cancer Inst. 2016, 109, djw199. [CrossRef]

67. Nagarsheth, N.; Wicha, M.S.; Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy.
Nat. Rev. Immunol. 2017, 17, 559–572. [CrossRef]

68. Chen, Z.; Wu, Z.; Muluh, T.A.; Fu, S.; Wu, J. Effect of low-dose total-body radiotherapy on immune microenvironment. Transl.
Oncol. 2021, 14, 101118. [CrossRef]

69. Li, J.; Zeng, Z.; Wu, Q.; Chen, J.; Liu, X.; Zhang, J.; Luo, Y.; Sun, W.; Huang, Z.; Zhang, J.; et al. Immunological modulation of the
Th1/Th2 shift by ionizing radiation in tumors. Int. J. Oncol. 2021, 59, 50. [CrossRef]

70. Lugade, A.A.; Moran, J.P.; Gerber, S.A.; Rose, R.C.; Frelinger, J.G.; Lord, E.M. Local radiation therapy of B16 melanoma tumors
increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J. Immunol. 2005, 174, 7516–7523.
[CrossRef]

71. Lee, Y.; Auh, S.L.; Wang, Y.; Burnette, B.; Wang, Y.; Meng, Y.; Beckett, M.; Sharma, R.; Chine, R.; Tu, T.; et al. Therapeutic effects
of ablative radiation on local tumor require CD8+ T cells: Changing strategies for cancer treatment. Blood 2009, 114, 589–595.
[CrossRef]

http://doi.org/10.3389/fimmu.2019.00325
http://www.ncbi.nlm.nih.gov/pubmed/30984161
http://doi.org/10.3390/cells9040897
http://doi.org/10.1667/RADE-20-00013
http://doi.org/10.3390/cancers12030610
http://doi.org/10.4049/jimmunol.2000488
http://doi.org/10.3389/fcell.2020.00008
http://doi.org/10.1080/2162402X.2020.1797292
http://doi.org/10.1016/bs.ircmb.2018.09.002
http://doi.org/10.1093/abbs/gmaa051
http://doi.org/10.1016/j.cell.2018.06.026
http://doi.org/10.1093/annonc/mdy413
http://www.ncbi.nlm.nih.gov/pubmed/30239576
http://doi.org/10.1038/nature23470
http://www.ncbi.nlm.nih.gov/pubmed/28759889
http://doi.org/10.1038/nature23449
http://www.ncbi.nlm.nih.gov/pubmed/28738408
http://doi.org/10.1158/2159-8290.CD-18-1020
http://www.ncbi.nlm.nih.gov/pubmed/30777870
http://doi.org/10.1172/JCI127471
http://doi.org/10.1158/2326-6066.CIR-17-0581
http://www.ncbi.nlm.nih.gov/pubmed/29907693
http://doi.org/10.1016/j.immuni.2018.09.016
http://www.ncbi.nlm.nih.gov/pubmed/30332631
http://doi.org/10.1016/j.canlet.2020.12.045
http://www.ncbi.nlm.nih.gov/pubmed/33450360
http://doi.org/10.1016/j.ccell.2017.04.003
http://doi.org/10.3390/ijms22137204
http://doi.org/10.1093/jnci/djw199
http://doi.org/10.1038/nri.2017.49
http://doi.org/10.1016/j.tranon.2021.101118
http://doi.org/10.3892/ijo.2021.5230
http://doi.org/10.4049/jimmunol.174.12.7516
http://doi.org/10.1182/blood-2009-02-206870


Int. J. Mol. Sci. 2021, 22, 10672 24 of 33

72. Verbrugge, I.; Hagekyriakou, J.; Sharp, L.L.; Galli, M.; West, A.; McLaughlin, N.M.; Duret, H.; Yagita, H.; Johnstone, R.W.; Smyth,
M.J.; et al. Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory
antibodies. Cancer Res. 2012, 72, 3163–3174. [CrossRef] [PubMed]

73. Reits, E.A.; Hodge, J.W.; Herberts, C.A.; Groothuis, T.A.; Chakraborty, M.; Wansley, E.K.; Camphausen, K.; Luiten, R.M.; de Ru,
A.H.; Neijssen, J.; et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful
antitumor immunotherapy. J. Exp. Med. 2006, 203, 1259–1271. [CrossRef] [PubMed]

74. Rudqvist, N.P.; Pilones, K.A.; Lhuillier, C.; Wennerberg, E.; Sidhom, J.W.; Emerson, R.O.; Robins, H.S.; Schneck, J.; Formenti, S.C.;
Demaria, S. Radiotherapy and CTLA-4 Blockade Shape the TCR Repertoire of Tumor-Infiltrating T Cells. Cancer Immunol. Res.
2018, 6, 139–150. [CrossRef] [PubMed]

75. Ruckert, M.; Flohr, A.S.; Hecht, M.; Gaipl, U.S. Radiotherapy and the immune system: More than just immune suppression. Stem
Cells 2021, 39, 1155–1165. [CrossRef]

76. Kohno, M.; Murakami, J.; Wu, L.; Chan, M.L.; Yun, Z.; Cho, B.C.J.; de Perrot, M. Foxp3(+) Regulatory T Cell Depletion after
Nonablative Oligofractionated Irradiation Boosts the Abscopal Effects in Murine Malignant Mesothelioma. J. Immunol. 2020, 205,
2519–2531. [CrossRef]

77. Piper, M.; Mueller, A.C.; Karam, S.D. The interplay between cancer associated fibroblasts and immune cells in the context of
radiation therapy. Mol. Carcinog. 2020, 59, 754–765. [CrossRef] [PubMed]

78. Formenti, S.C.; Demaria, S. Systemic effects of local radiotherapy. Lancet Oncol. 2009, 10, 718–726. [CrossRef]
79. Kaminski, J.M.; Shinohara, E.; Summers, J.B.; Niermann, K.J.; Morimoto, A.; Brousal, J. The controversial abscopal effect. Cancer

Treat. Rev. 2005, 31, 159–172. [CrossRef] [PubMed]
80. Liang, H.; Deng, L.; Chmura, S.; Burnette, B.; Liadis, N.; Darga, T.; Beckett, M.A.; Lingen, M.W.; Witt, M.; Weichselbaum, R.R.;

et al. Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell-mediated killing. J. Immunol. 2013,
190, 5874–5881. [CrossRef]

81. Zeng, J.; See, A.P.; Phallen, J.; Jackson, C.M.; Belcaid, Z.; Ruzevick, J.; Durham, N.; Meyer, C.; Harris, T.J.; Albesiano, E.; et al.
Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int. J. Radiat. Oncol.
Biol. Phys. 2013, 86, 343–349. [CrossRef] [PubMed]

82. Heylmann, D.; Ponath, V.; Kindler, T.; Kaina, B. Comparison of DNA repair and radiosensitivity of different blood cell populations.
Sci. Rep. 2021, 11, 2478. [CrossRef]

83. Deaglio, S.; Dwyer, K.M.; Gao, W.; Friedman, D.; Usheva, A.; Erat, A.; Chen, J.F.; Enjyoji, K.; Linden, J.; Oukka, M.; et al.
Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med.
2007, 204, 1257–1265. [CrossRef]

84. De Leve, S.; Wirsdorfer, F.; Jendrossek, V. The CD73/Ado System-A New Player in RT Induced Adverse Late Effects. Cancers
2019, 11, 1578. [CrossRef] [PubMed]

85. Aponte, P.M.; Caicedo, A. Stemness in Cancer: Stem Cells, Cancer Stem Cells, and Their Microenvironment. Stem Cells Int. 2017,
2017, 5619472. [CrossRef] [PubMed]

86. Feng, L.L.; Cai, Y.Q.; Zhu, M.C.; Xing, L.J.; Wang, X. The yin and yang functions of extracellular ATP and adenosine in tumor
immunity. Cancer Cell Int. 2020, 20, 110. [CrossRef] [PubMed]

87. Burnstock, G.; Boeynaems, J.M. Purinergic signalling and immune cells. Purinergic Signal. 2014, 10, 529–564. [CrossRef]
88. Buisseret, L.; Pommey, S.; Allard, B.; Garaud, S.; Bergeron, M.; Cousineau, I.; Ameye, L.; Bareche, Y.; Paesmans, M.; Crown, J.P.A.;

et al. Clinical significance of CD73 in triple-negative breast cancer: Multiplex analysis of a phase III clinical trial. Ann. Oncol.
2018, 29, 1056–1062. [CrossRef]

89. Jiang, T.; Xu, X.; Qiao, M.; Li, X.; Zhao, C.; Zhou, F.; Gao, G.; Wu, F.; Chen, X.; Su, C.; et al. Comprehensive evaluation of
NT5E/CD73 expression and its prognostic significance in distinct types of cancers. BMC Cancer 2018, 18, 267. [CrossRef]

90. Loi, S.; Pommey, S.; Haibe-Kains, B.; Beavis, P.A.; Darcy, P.K.; Smyth, M.J.; Stagg, J. CD73 promotes anthracycline resistance and
poor prognosis in triple negative breast cancer. Proc. Natl. Acad. Sci. USA 2013, 110, 11091–11096. [CrossRef]

91. Sitkovsky, M.V. T regulatory cells: Hypoxia-adenosinergic suppression and re-direction of the immune response. Trends Immunol.
2009, 30, 102–108. [CrossRef]

92. Sitkovsky, M.V.; Hatfield, S.; Abbott, R.; Belikoff, B.; Lukashev, D.; Ohta, A. Hostile, hypoxia-A2-adenosinergic tumor biology as
the next barrier to overcome for tumor immunologists. Cancer Immunol. Res. 2014, 2, 598–605. [CrossRef]

93. Horenstein, A.L.; Chillemi, A.; Zaccarello, G.; Bruzzone, S.; Quarona, V.; Zito, A.; Serra, S.; Malavasi, F. A CD38/CD203a/CD73
ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes. Oncoimmunology 2013,
2, e26246. [CrossRef] [PubMed]

94. Wennerberg, E.; Spada, S.; Rudqvist, N.P.; Lhuillier, C.; Gruber, S.; Chen, Q.; Zhang, F.; Zhou, X.K.; Gross, S.S.; Formenti, S.C.;
et al. CD73 Blockade Promotes Dendritic Cell Infiltration of Irradiated Tumors and Tumor Rejection. Cancer Immunol. Res. 2020, 8,
465–478. [CrossRef] [PubMed]

95. De Leve, S.; Wirsdorfer, F.; Jendrossek, V. Targeting the Immunomodulatory CD73/Adenosine System to Improve the Therapeutic
Gain of Radiotherapy. Front. Immunol. 2019, 10, 698. [CrossRef] [PubMed]

96. Stagg, J.; Divisekera, U.; McLaughlin, N.; Sharkey, J.; Pommey, S.; Denoyer, D.; Dwyer, K.M.; Smyth, M.J. Anti-CD73 antibody
therapy inhibits breast tumor growth and metastasis. Proc. Natl. Acad. Sci. USA 2010, 107, 1547–1552. [CrossRef] [PubMed]

http://doi.org/10.1158/0008-5472.CAN-12-0210
http://www.ncbi.nlm.nih.gov/pubmed/22570253
http://doi.org/10.1084/jem.20052494
http://www.ncbi.nlm.nih.gov/pubmed/16636135
http://doi.org/10.1158/2326-6066.CIR-17-0134
http://www.ncbi.nlm.nih.gov/pubmed/29180535
http://doi.org/10.1002/stem.3391
http://doi.org/10.4049/jimmunol.2000487
http://doi.org/10.1002/mc.23205
http://www.ncbi.nlm.nih.gov/pubmed/32363633
http://doi.org/10.1016/S1470-2045(09)70082-8
http://doi.org/10.1016/j.ctrv.2005.03.004
http://www.ncbi.nlm.nih.gov/pubmed/15923088
http://doi.org/10.4049/jimmunol.1202612
http://doi.org/10.1016/j.ijrobp.2012.12.025
http://www.ncbi.nlm.nih.gov/pubmed/23462419
http://doi.org/10.1038/s41598-021-81058-1
http://doi.org/10.1084/jem.20062512
http://doi.org/10.3390/cancers11101578
http://www.ncbi.nlm.nih.gov/pubmed/31623231
http://doi.org/10.1155/2017/5619472
http://www.ncbi.nlm.nih.gov/pubmed/28473858
http://doi.org/10.1186/s12935-020-01195-x
http://www.ncbi.nlm.nih.gov/pubmed/32280302
http://doi.org/10.1007/s11302-014-9427-2
http://doi.org/10.1093/annonc/mdx730
http://doi.org/10.1186/s12885-018-4073-7
http://doi.org/10.1073/pnas.1222251110
http://doi.org/10.1016/j.it.2008.12.002
http://doi.org/10.1158/2326-6066.CIR-14-0075
http://doi.org/10.4161/onci.26246
http://www.ncbi.nlm.nih.gov/pubmed/24319640
http://doi.org/10.1158/2326-6066.CIR-19-0449
http://www.ncbi.nlm.nih.gov/pubmed/32047024
http://doi.org/10.3389/fimmu.2019.00698
http://www.ncbi.nlm.nih.gov/pubmed/31024543
http://doi.org/10.1073/pnas.0908801107
http://www.ncbi.nlm.nih.gov/pubmed/20080644


Int. J. Mol. Sci. 2021, 22, 10672 25 of 33

97. Terp, M.G.; Olesen, K.A.; Arnspang, E.C.; Lund, R.R.; Lagerholm, B.C.; Ditzel, H.J.; Leth-Larsen, R. Anti-human CD73 monoclonal
antibody inhibits metastasis formation in human breast cancer by inducing clustering and internalization of CD73 expressed on
the surface of cancer cells. J. Immunol. 2013, 191, 4165–4173. [CrossRef] [PubMed]

98. Identifier: NCT02503774. Available online: https://clinicaltrials.gov/ (accessed on 5 August 2021).
99. Tsukui, H.; Horie, H.; Koinuma, K.; Ohzawa, H.; Sakuma, Y.; Hosoya, Y.; Yamaguchi, H.; Yoshimura, K.; Lefor, A.K.; Sata, N.; et al.

CD73 blockade enhances the local and abscopal effects of radiotherapy in a murine rectal cancer model. BMC Cancer 2020, 20, 411.
[CrossRef]

100. Eltzschig, H.K.; Sitkovsky, M.V.; Robson, S.C. Purinergic signaling during inflammation. N. Engl. J. Med. 2012, 367, 2322–2333.
[CrossRef]

101. Kitabatake, K.; Kaji, Y.; Tsukimata, M. Involvement of CD73 and A2B receptor in radiation-induced DNA damage response and
cell migration in human glioblastoma A 172 cells. Biol. Pharm. Bull. 2021; 44, 197–210. [CrossRef]

102. Wirsdorfer, F.; Cappuccini, F.; Niazman, M.; de Leve, S.; Westendorf, A.M.; Ludemann, L.; Stuschke, M.; Jendrossek, V. Thorax
irradiation triggers a local and systemic accumulation of immunosuppressive CD4+ FoxP3+ regulatory T cells. Radiat. Oncol.
2014, 9, 98. [CrossRef]

103. Dovedi, S.J.; Cheadle, E.J.; Popple, A.L.; Poon, E.; Morrow, M.; Stewart, R.; Yusko, E.C.; Sanders, C.M.; Vignali, M.; Emerson, R.O.;
et al. Fractionated radiation therapy stimulates antitumor immunity mediated by both resident and infiltrating polyclonal T-cell
populations when combined with PD-1 blockade. Clin. Cancer Res. 2017, 23, 5514–5526. [CrossRef]

104. Kachikwu, E.L.; Iwamoto, K.S.; Liao, Y.-P.; DeMarco, J.J.; Agazaryan, N.; Economou, J.S.; McBride, W.H.; Schaue, D. Radiation
enhances regulatory T cell representation. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 1128–1135. [CrossRef]

105. Klug, F.; Prakash, H.; Huber, P.E.; Seibel, T.; Bender, N.; Halama, N.; Pfirschke, C.; Voss, R.H.; Timke, C.; Umansky, L.; et al.
Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell
immunotherapy. Cancer Cell 2013, 24, 589–602. [CrossRef]

106. Gao, H.; Dong, Z.; Gong, X.; Dong, J.; Zhang, Y.; Wei, W.; Wang, R.; Jin, S. Effects of various radiation doses on induced T-helper
cell differentiation and related cytokine secretion. J. Radiat. Res. 2018, 59, 395–403. [CrossRef]

107. Chandra, R.A.; Wilhite, T.J.; Balboni, T.A.; Alexander, B.M.; Spektor, A.; Ott, P.A.; Ng, A.K.; Hodi, F.S.; Schoenfeld, J.D.
A systematic evaluation of abscopal responses following radiotherapy in patients with metastatic melanoma treated with
ipilimumab. Oncoimmunology 2015, 4, e1046028. [CrossRef]

108. Vanpouille-Box, C. Immune radiobiology. J. Transl. Med. 2021, 19, 25. [CrossRef]
109. Keisari, Y.; Kelson, I. The Potentiation of Anti-Tumor Immunity by Tumor Abolition with Alpha Particles, Protons, or Carbon

Ion Radiation and Its Enforcement by Combination with Immunoadjuvants or Inhibitors of Immune Suppressor Cells and
Checkpoint Molecules. Cells 2021, 10, 228. [CrossRef]

110. Zhao, X.; Shao, C. Radiotherapy-Mediated Immunomodulation and Anti-Tumor Abscopal Effect Combining Immune Checkpoint
Blockade. Cancers 2020, 12, 2762. [CrossRef] [PubMed]

111. Peres Lde, P.; da Luz, F.A.; Pultz Bdos, A.; Brigido, P.C.; de Araujo, R.A.; Goulart, L.R.; Silva, M.J. Peptide vaccines in breast
cancer: The immunological basis for clinical response. Biotechnol. Adv. 2015, 33, 1868–1877. [CrossRef] [PubMed]

112. Jiang, T.; Shi, T.; Zhang, H.; Hu, J.; Song, Y.; Wei, J.; Ren, S.; Zhou, C. Tumor neoantigens: From basic research to clinical
applications. J. Hematol. Oncol. 2019, 12, 93. [CrossRef] [PubMed]

113. Correale, P.; Aquino, A.; Giuliani, A.; Pellegrini, M.; Micheli, L.; Cusi, M.G.; Nencini, C.; Petrioli, R.; Prete, S.P.; De Vecchis,
L.; et al. Treatment of colon and breast carcinoma cells with 5-fluorouracil enhances expression of carcinoembryonic antigen
and susceptibility to HLA-A(*)02.01 restricted, CEA-peptide-specific cytotoxic T cells in vitro. Int. J. Cancer 2003, 104, 437–445.
[CrossRef] [PubMed]

114. Franzese, O.; Aquino, A.; Fuggetta, M.P.; Roselli, M.; Bonmassar, E.; De Vecchis, L.; Torino, F. Drug-Induced Neoantigens: A New
Horizon in Cancer Immunotherapy? Clin. Oncol. 2018, 3, 1411.

115. Franzese, O.; Battaini, F.; Graziani, G.; Tentori, L.; Barbaccia, M.L.; Aquino, A.; Roselli, M.; Fuggetta, M.P.; Bonmassar, E.; Torino, F.
Drug-induced xenogenization of tumors: A possible role in the immune control of malignant cell growth in the brain? Pharmacol.
Res. 2018, 131, 1–6. [CrossRef] [PubMed]

116. Punta, M.; Jennings, V.A.; Melcher, A.A.; Lise, S. The Immunogenic Potential of Recurrent Cancer Drug Resistance Mutations: An
In Silico Study. Front. Immunol. 2020, 11, 524968. [CrossRef]

117. Pettitt, S.J.; Frankum, J.; Punta, M.; Lise, S.; Alexander, J.; Chen, Y.; Yap, T.A.; Haider, S.; Tutt, A.N.J.; Lord, C.J. Clinical BRCA1/2
reversion analysis identifies hotspot mutations and predicted neoantigens associated with therapy resistance. Cancer Discov. 2020,
10, 1–14. [CrossRef]

118. Anichini, A.; Perotti, V.E.; Sgambelluri, F.; Mortarini, R. Immune Escape Mechanisms in Non Small Cell Lung Cancer. Cancers
2020, 12, 3605. [CrossRef]

119. Trinh, A.; Polyak, K. Tumor Neoantigens: When Too Much of a Good Thing Is Bad. Cancer Cell 2019, 36, 466–467. [CrossRef]
120. Seledtsov, V.I.; Goncharov, A.G.; Seledtsova, G.V. Clinically feasible approaches to potentiating cancer cell-based immunotherapies.

Hum. Vaccines Immunother. 2015, 11, 851–869. [CrossRef]
121. Vanmeerbeek, I.; Sprooten, J.; De Ruysscher, D.; Tejpar, S.; Vandenberghe, P.; Fucikova, J.; Spisek, R.; Zitvogel, L.; Kroemer, G.;

Galluzzi, L.; et al. Trial watch: Chemotherapy-induced immunogenic cell death in immuno-oncology. Oncoimmunology 2020, 9,
1703449. [CrossRef]

http://doi.org/10.4049/jimmunol.1301274
http://www.ncbi.nlm.nih.gov/pubmed/24043904
https://clinicaltrials.gov/
http://doi.org/10.1186/s12885-020-06893-3
http://doi.org/10.1056/NEJMra1205750
http://doi.org/10.1248/bpb.b20-00654
http://doi.org/10.1186/1748-717X-9-98
http://doi.org/10.1158/1078-0432.CCR-16-1673
http://doi.org/10.1016/j.ijrobp.2010.09.034
http://doi.org/10.1016/j.ccr.2013.09.014
http://doi.org/10.1093/jrr/rry011
http://doi.org/10.1080/2162402X.2015.1046028
http://doi.org/10.1186/s12967-021-02928-w
http://doi.org/10.3390/cells10020228
http://doi.org/10.3390/cancers12102762
http://www.ncbi.nlm.nih.gov/pubmed/32992835
http://doi.org/10.1016/j.biotechadv.2015.10.013
http://www.ncbi.nlm.nih.gov/pubmed/26523780
http://doi.org/10.1186/s13045-019-0787-5
http://www.ncbi.nlm.nih.gov/pubmed/31492199
http://doi.org/10.1002/ijc.10969
http://www.ncbi.nlm.nih.gov/pubmed/12584740
http://doi.org/10.1016/j.phrs.2018.03.005
http://www.ncbi.nlm.nih.gov/pubmed/29530602
http://doi.org/10.3389/fimmu.2020.524968
http://doi.org/10.1158/2159-8290.CD-19-1485
http://doi.org/10.3390/cancers12123605
http://doi.org/10.1016/j.ccell.2019.10.009
http://doi.org/10.1080/21645515.2015.1009814
http://doi.org/10.1080/2162402X.2019.1703449


Int. J. Mol. Sci. 2021, 22, 10672 26 of 33

122. Sharabi, A.; Haran-Ghera, N. Immune recovery after cyclophosphamide treatment in multiple myeloma: Implication for
maintenance immunotherapy. Bone Marrow Res. 2011, 2011, 269519. [CrossRef]

123. Emadi, A.; Jones, R.J.; Brodsky, R.A. Cyclophosphamide and cancer: Golden anniversary. Nat. Rev. Clin. Oncol. 2009, 6, 638–647.
[CrossRef] [PubMed]

124. Heylmann, D.; Bauer, M.; Becker, H.; van Gool, S.; Bacher, N.; Steinbrink, K.; Kaina, B. Human CD4+CD25+ regulatory T cells are
sensitive to low dose cyclophosphamide: Implications for the immune response. PLoS ONE 2013, 8, e83384. [CrossRef] [PubMed]

125. Attallah, A.M.; Needy, C.F.; Noguchi, P.D.; Elisberg, B.L. Enhancement of carcinoembryonic antigen expression by interferon. Int.
J. Cancer 1979, 24, 49–52. [CrossRef] [PubMed]

126. Guadagni, F.; Witt, P.L.; Robbins, P.F.; Schlom, J.; Greiner, J.W. Regulation of carcinoembryonic antigen expression in different
human colorectal tumor cells by interferon-gamma. Cancer Res. 1990, 50, 6248–6255.

127. Leon, J.A.; Mesa-Tejada, R.; Gutierrez, M.C.; Estabrook, A.; Greiner, J.W.; Schlom, J.; Fisher, P.B. Increased surface expression and
shedding of tumor associated antigens by human breast carcinoma cells treated with recombinant human interferons or phorbol
ester tumor promoters. Anticancer. Res. 1989, 9, 1639–1647.

128. Greiner, J.W.; Guadagni, F.; Goldstein, D.; Smalley, R.V.; Borden, E.C.; Simpson, J.F.; Molinolo, A.; Schlom, J. Intraperitoneal
administration of interferon-gamma to carcinoma patients enhances expression of tumor-associated glycoprotein-72 and carci-
noembryonic antigen on malignant ascites cells. J. Clin. Oncol. 1992, 10, 735–746. [CrossRef]

129. Greiner, J.W.; Hand, P.H.; Noguchi, P.; Fisher, P.B.; Pestka, S.; Schlom, J. Enhanced expression of surface tumor-associated antigens
on human breast and colon tumor cells after recombinant human leukocyte alpha-interferon treatment. Cancer Res. 1984, 44,
3208–3214.

130. Shimada, S.; Ogawa, M.; Schlom, J.; Greiner, J.W. Comparison of the interferon-gamma-mediated regulation of tumor-associated
antigens expressed by human gastric carcinoma cells. In Vivo 1993, 7, 1–8.

131. Mobus, V.J.; Asphal, W.; Knapstein, P.G.; Kreienberg, R. Effects of interferon gamma on the proliferation and modulation of
cell-surface structures of human ovarian carcinoma cell lines. J. Cancer Res. Clin. Oncol. 1993, 120, 27–34. [CrossRef]

132. Ozzello, L.; Derosa, C.; Habif, D.; Cantell, K.; Pestka, S. Up-regulation of a tumor-associated antigen (tag-72) by interferon-alpha
and interferon-gamma in patients with cutaneous breast-cancer recurrences. Int. J. Oncol. 1995, 6, 985–991. [CrossRef]

133. Colombatti, M.; Bisconti, M.; Lorenzi, P.; Stevanoni, G.; Dipasquale, B.; Gerosa, M.; Tridente, G. Human glioma cell lines: Tumour
associated antigens distribution and sensitivity to antibody-toxin or ligand-toxin conjugates. A preliminary report. Acta Neurochir.
Suppl. 1988, 43, 121–125. [CrossRef]

134. Colombatti, M.; Dipasquale, B.; Del-l’Arciprete, L.; Gerosa, M.; Tridente, G. Heterogeneity and modulation of tumor-associated
antigens in human glioblastoma cell lines. J. Neurosurg. 1989, 71, 388–397. [CrossRef] [PubMed]

135. Tran, R.; Hand, P.H.; Greiner, J.W.; Pestka, S.; Schlom, J. Enhancement of surface antigen expression on human breast carcinoma
cells by recombinant human interferons. J. Interferon. Res. 1988, 8, 75–88. [CrossRef]

136. Flieger, D.; Hoff, A.S.; Sauerbruch, T.; Schmidt-Wolf, I.G. Influence of cytokines, monoclonal antibodies and chemotherapeutic
drugs on epithelial cell adhesion molecule (EpCAM) and LewisY antigen expression. Clin. Exp. Immunol. 2001, 123, 9–14.
[CrossRef]

137. Weidanz, J.A.; Nguyen, T.; Woodburn, T.; Neethling, F.A.; Chiriva-Internati, M.; Hildebrand, W.H.; Lustgarten, J. Levels of specific
peptide-HLA class I complex predicts tumor cell susceptibility to CTL killing. J. Immunol. 2006, 177, 5088–5097. [CrossRef]

138. Dunn, I.S.; Haggerty, T.J.; Kono, M.; Durda, P.J.; Butera, D.; Macdonald, D.B.; Benson, E.M.; Rose, L.B.; Kurnick, J.T. Enhancement
of human melanoma antigen expression by IFN-beta. J. Immunol. 2007, 179, 2134–2142. [CrossRef]

139. Bao, L.; Dunham, K.; Lucas, K. MAGE-A1, MAGE-A3, and NY-ESO-1 can be upregulated on neuroblastoma cells to facilitate
cytotoxic T lymphocyte-mediated tumor cell killing. Cancer Immunol. Immunother. 2011, 60, 1299–1307. [CrossRef]

140. Grabbe, S.; Bruvers, S.; Beissert, S.; Granstein, R.D. Interferon-gamma inhibits tumor antigen presentation by epidermal antigen-
presenting cells. J. Leukoc. Biol. 1994, 55, 695–701. [CrossRef] [PubMed]

141. Barrero, M.J. Epigenetic Strategies to Boost Cancer Immunotherapies. Int. J. Mol. Sci. 2017, 18, 1108. [CrossRef] [PubMed]
142. Kroesen, M.; Gielen, P.; Brok, I.C.; Armandari, I.; Hoogerbrugge, P.M.; Adema, G.J. HDAC inhibitors and immunotherapy; a

double edged sword? Oncotarget 2014, 5, 6558–6572. [CrossRef] [PubMed]
143. Wu, D.; Qiu, Y.; Jiao, Y.; Qiu, Z.; Liu, D. Small Molecules Targeting HATs, HDACs, and BRDs in Cancer Therapy. Front. Oncol.

2020, 10, 560487. [CrossRef]
144. Milazzo, G.; Mercatelli, D.; Di Muzio, G.; Triboli, L.; De Rosa, P.; Perini, G.; Giorgi, F.M. Histone Deacetylases (HDACs): Evolution,

Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes 2020, 11, 556. [CrossRef] [PubMed]
145. Adams, G.E.; Chandru, A.; Cowley, S.M. Co-repressor, co-activator and general transcription factor: The many faces of the Sin3

histone deacetylase (HDAC) complex. Biochem. J. 2018, 475, 3921–3932. [CrossRef] [PubMed]
146. Villagra, A.; Sotomayor, E.M.; Seto, E. Histone deacetylases and the immunological network: Implications in cancer and

inflammation. Oncogene 2010, 29, 157–173. [CrossRef] [PubMed]
147. Shimizu, R.; Kikuchi, J.; Wada, T.; Ozawa, K.; Kano, Y.; Furukawa, Y. HDAC inhibitors augment cytotoxic activity of rituximab by

upregulating CD20 expression on lymphoma cells. Leukemia 2010, 24, 1760–1768. [CrossRef] [PubMed]
148. Roos, W.P.; Jost, E.; Belohlavek, C.; Nagel, G.; Fritz, G.; Kaina, B. Intrinsic anticancer drug resistance of malignant melanoma cells

is abrogated by IFN-beta and valproic acid. Cancer Res. 2011, 71, 4150–4160. [CrossRef] [PubMed]

http://doi.org/10.1155/2011/269519
http://doi.org/10.1038/nrclinonc.2009.146
http://www.ncbi.nlm.nih.gov/pubmed/19786984
http://doi.org/10.1371/journal.pone.0083384
http://www.ncbi.nlm.nih.gov/pubmed/24376696
http://doi.org/10.1002/ijc.2910240109
http://www.ncbi.nlm.nih.gov/pubmed/478691
http://doi.org/10.1200/JCO.1992.10.5.735
http://doi.org/10.1007/BF01200721
http://doi.org/10.3892/ijo.6.5.985
http://doi.org/10.1007/978-3-7091-8978-8_26
http://doi.org/10.3171/jns.1989.71.3.0388
http://www.ncbi.nlm.nih.gov/pubmed/2769391
http://doi.org/10.1089/jir.1988.8.75
http://doi.org/10.1046/j.1365-2249.2001.01435.x
http://doi.org/10.4049/jimmunol.177.8.5088
http://doi.org/10.4049/jimmunol.179.4.2134
http://doi.org/10.1007/s00262-011-1037-z
http://doi.org/10.1002/jlb.55.6.695
http://www.ncbi.nlm.nih.gov/pubmed/8195694
http://doi.org/10.3390/ijms18061108
http://www.ncbi.nlm.nih.gov/pubmed/28545238
http://doi.org/10.18632/oncotarget.2289
http://www.ncbi.nlm.nih.gov/pubmed/25115382
http://doi.org/10.3389/fonc.2020.560487
http://doi.org/10.3390/genes11050556
http://www.ncbi.nlm.nih.gov/pubmed/32429325
http://doi.org/10.1042/BCJ20170314
http://www.ncbi.nlm.nih.gov/pubmed/30552170
http://doi.org/10.1038/onc.2009.334
http://www.ncbi.nlm.nih.gov/pubmed/19855430
http://doi.org/10.1038/leu.2010.157
http://www.ncbi.nlm.nih.gov/pubmed/20686505
http://doi.org/10.1158/0008-5472.CAN-10-3498
http://www.ncbi.nlm.nih.gov/pubmed/21493591


Int. J. Mol. Sci. 2021, 22, 10672 27 of 33

149. Chen, X.; Pan, X.; Zhang, W.; Guo, H.; Cheng, S.; He, Q.; Yang, B.; Ding, L. Epigenetic strategies synergize with PD-L1/PD-1
targeted cancer immunotherapies to enhance antitumor responses. Acta Pharmacol. Sin. B 2020, 10, 723–733. [CrossRef] [PubMed]

150. Ebelt, N.D.; Zuniga, E.; Johnson, B.L.; Diamond, D.J.; Manuel, E.R. 5-Azacytidine Potentiates Anti-tumor Immunity in a Model of
Pancreatic Ductal Adenocarcinoma. Front. Immunol. 2020, 11, 538. [CrossRef]

151. Shiozawa, M.; Chang, C.H.; Huang, Y.C.; Chen, Y.C.; Chi, M.S.; Hao, H.C.; Chang, Y.C.; Takeda, S.; Chi, K.H.; Wang, Y.S.
Pharmacologically upregulated carcinoembryonic antigen-expression enhances the cytolytic activity of genetically-modified
chimeric antigen receptor NK-92MI against colorectal cancer cells. BMC Immunol. 2018, 19, 27. [CrossRef] [PubMed]

152. Hodge, J.W.; Garnett, C.T.; Farsaci, B.; Palena, C.; Tsang, K.Y.; Ferrone, S.; Gameiro, S.R. Chemotherapy-induced immunogenic
modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. Int. J. Cancer
2013, 133, 624–636. [CrossRef]

153. Aquino, A.; Formica, V.; Prete, S.P.; Correale, P.P.; Massara, M.C.; Turriziani, M.; De Vecchis, L.; Bonmassar, E. Drug-induced
increase of carcinoembryonic antigen expression in cancer cells. Pharmacol. Res. 2004, 49, 383–396. [CrossRef]

154. Aquino, A.; Prete, S.P.; Greiner, J.W.; Giuliani, A.; Graziani, G.; Turriziani, M.; De Filippi, R.; Masci, G.; Bonmassar, E.; De Vecchis,
L. Effect of the combined treatment with 5-fluorouracil, gamma-interferon or folinic acid on carcinoembryonic antigen expression
in colon cancer cells. Clin. Cancer Res. 1998, 4, 2473–2481.

155. Aquino, A.; Prete, S.P.; Guadagni, F.; Greiner, J.W.; Giuliani, A.; Orlando, L.; Masci, G.; De Santis, S.; Bonmassar, E.; Graziani, G.
Effect of 5-fluorouracil on carcinoembryonic antigen expression and shedding at clonal level in colon cancer cells. Anticancer Res.
2000, 20, 3475–3484.

156. Cappelletti, D.; Cardillo, A.; Bonanno, E.; Prete, S.P.; Cucchiara, G.; Turriziani, M.; Greiner, J.W.; Cottarelli, A.; Breda, E.; Aquino,
A.; et al. Drug-induced modulation of carcinoembryonic antigen (CEA) expression in neoplastic cells from a patient with rectal
cancer. J. Exp. Clin. Cancer Res. 2000, 19, 467–469.

157. Correale, P.; Cusi, M.G.; Del Vecchio, M.T.; Aquino, A.; Prete, S.P.; Tsang, K.Y.; Micheli, L.; Nencini, C.; La Placa, M.; Montagnani,
F.; et al. Dendritic cell-mediated cross-presentation of antigens derived from colon carcinoma cells exposed to a highly cytotoxic
multidrug regimen with gemcitabine, oxaliplatin, 5-fluorouracil, and leucovorin, elicits a powerful human antigen-specific CTL
response with antitumor activity in vitro. J. Immunol. 2005, 175, 820–828. [CrossRef] [PubMed]

158. De Filippi, R.; Prete, S.P.; Giuliani, A.; Silvi, E.; Yamaue, H.; Nieroda, C.A.; Greiner, J.W.; De Vecchis, L.; Bonmassar, E. Differential
effects of recombinant interferon-alpha and 5-fluorouracil against colon cancer cells or against peripheral blood mononuclear
cells. Anticancer Res. 1994, 14, 1767–1773.

159. Ohtsukasa, S.; Okabe, S.; Yamashita, H.; Iwai, T.; Sugihara, K. Increased expression of CEA and MHC class I in colorectal cancer
cell lines exposed to chemotherapy drugs. J. Cancer Res. Clin. Oncol. 2003, 129, 719–726. [CrossRef]

160. Prete, S.P.; Aquino, A.; Masci, G.; Orlando, L.; Giuliani, A.; De Santis, S.; De Vecchis, L.; De Filippi, R.; Greiner, J.W.; Bonmassar, E.;
et al. Drug-induced changes of carcinoembryonic antigen expression in human cancer cells: Effect of 5-fluorouracil. J. Pharmacol.
Exp. Ther. 1996, 279, 1574–1581. [PubMed]

161. Prete, S.P.; Rossi, L.; Correale, P.P.; Turriziani, M.; Baier, S.; Tamburrelli, G.; De Vecchis, L.; Bonmassar, E.; Aquino, A. Combined
effects of protein kinase inhibitors and 5-fluorouracil on CEA expression in human colon cancer cells. Pharmacol. Res. 2005, 52,
167–173. [CrossRef] [PubMed]

162. Prete, S.P.; Turriziani, M.; Massara, M.C.; De Rossi, A.; Correale, P.; De Vecchis, L.; Torino, F.; Bonmassar, L.; Aquino, A. Combined
effects of 5-fluorouracil, folinic acid and oxaliplatin on the expression of carcinoembryonic antigen in human colon cancer cells:
Pharmacological basis to develop an active antitumor immunochemotherapy. J. Exp. Clin. Cancer Res. 2008, 27, 5. [CrossRef]

163. Aquino, A.; Prete, S.P.; Balduzzi, A.; Fossile, E.; Formica, V.; Torino, F.; Bonmassar, L.; Di Giacomo, A.; Cappelletti, D.; Cardillo,
A.; et al. A novel method for monitoring response to chemotherapy based on the detection of circulating cancer cells: A case
report. J. Chemother. 2002, 14, 412–416. [CrossRef]

164. Bonmassar, L.; Fossile, E.; Scoppola, A.; Graziani, G.; Prete, S.P.; Formica, V.; Cappelletti, D.; De Vecchis, L.; Cardillo, A.; Concolino,
F.; et al. Detection of circulating tumor cells is improved by drug-induced antigen up-regulation: Preclinical and clinical studies.
Anticancer Res. 2010, 30, 4721–4730.

165. Yang, S.; Haluska, F.G. Treatment of melanoma with 5-fluorouracil or dacarbazine in vitro sensitizes cells to antigen-specific CTL
lysis through perforin/granzyme- and Fas-mediated pathways. J. Immunol. 2004, 172, 4599–4608. [CrossRef]

166. Contessa, A.R.; Bonmassar, A.; Giampietri, A.; Circolo, A.; Goldin, A.; Fioretti, M.C. In vitro generation of a highly immunogenic
subline of L1210 leukemia following exposure to 5-(3,3’-dimethyl-1-triazeno)imidazole-4-carboxamide. Cancer Res. 1981, 41,
2476–2482. [PubMed]

167. Koido, S.; Kan, S.; Yoshida, K.; Yoshizaki, S.; Takakura, K.; Namiki, Y.; Tsukinaga, S.; Odahara, S.; Kajihara, M.; Okamoto, M.; et al.
Immunogenic modulation of cholangiocarcinoma cells by chemoimmunotherapy. Anticancer Res. 2014, 34, 6353–6361. [PubMed]

168. Botta, C.; Bestoso, E.; Apollinari, S.; Cusi, M.G.; Pastina, P.; Abbruzzese, A.; Sperlongano, P.; Misso, G.; Caraglia, M.; Tassone, P.;
et al. Immune-modulating effects of the newest cetuximab-based chemoimmunotherapy regimen in advanced colorectal cancer
patients. J. Immunother. 2012, 35, 440–447. [CrossRef] [PubMed]

169. Correale, P.; Botta, C.; Martino, E.C.; Ulivieri, C.; Battaglia, G.; Carfagno, T.; Rossetti, M.G.; Fioravanti, A.; Guidelli, G.M.;
Cheleschi, S.; et al. Phase Ib study of poly-epitope peptide vaccination to thymidylate synthase (TSPP) and GOLFIG chemo-
immunotherapy for treatment of metastatic colorectal cancer patients. Oncoimmunology 2016, 5, e1101205. [CrossRef]

http://doi.org/10.1016/j.apsb.2019.09.006
http://www.ncbi.nlm.nih.gov/pubmed/32528824
http://doi.org/10.3389/fimmu.2020.00538
http://doi.org/10.1186/s12865-018-0262-z
http://www.ncbi.nlm.nih.gov/pubmed/30075754
http://doi.org/10.1002/ijc.28070
http://doi.org/10.1016/j.phrs.2003.12.007
http://doi.org/10.4049/jimmunol.175.2.820
http://www.ncbi.nlm.nih.gov/pubmed/16002679
http://doi.org/10.1007/s00432-003-0492-0
http://www.ncbi.nlm.nih.gov/pubmed/8968385
http://doi.org/10.1016/j.phrs.2004.12.007
http://www.ncbi.nlm.nih.gov/pubmed/15967383
http://doi.org/10.1186/1756-9966-27-5
http://doi.org/10.1179/joc.2002.14.4.412
http://doi.org/10.4049/jimmunol.172.7.4599
http://www.ncbi.nlm.nih.gov/pubmed/7016315
http://www.ncbi.nlm.nih.gov/pubmed/25368235
http://doi.org/10.1097/CJI.0b013e31825943aa
http://www.ncbi.nlm.nih.gov/pubmed/22576349
http://doi.org/10.1080/2162402X.2015.1101205


Int. J. Mol. Sci. 2021, 22, 10672 28 of 33

170. Correale, P.; Cusi, M.G.; Tsang, K.Y.; Del Vecchio, M.T.; Marsili, S.; Placa, M.L.; Intrivici, C.; Aquino, A.; Micheli, L.; Nencini, C.;
et al. Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX 4 followed by subcutaneous
granulocyte macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in
metastatic colon cancer patients. J. Clin. Oncol. 2005, 23, 8950–8958. [CrossRef]

171. Correale, P.; Del Vecchio, M.T.; Di Genova, G.; Savellini, G.G.; La Placa, M.; Terrosi, C.; Vestri, M.; Urso, R.; Lemonnier, F.; Aquino,
A.; et al. 5-fluorouracil-based chemotherapy enhances the antitumor activity of a thymidylate synthase-directed polyepitopic
peptide vaccine. J. Natl. Cancer. Inst. 2005, 97, 1437–1445. [CrossRef]

172. Correale, P.; Del Vecchio, M.T.; La Placa, M.; Montagnani, F.; Di Genova, G.; Savellini, G.G.; Terrosi, C.; Mannucci, S.; Giorgi, G.;
Francini, G.; et al. Chemotherapeutic drugs may be used to enhance the killing efficacy of human tumor antigen peptide-specific
CTLs. J. Immunother. 2008, 31, 132–147. [CrossRef]

173. Correale, P.; Sabatino, M.; Cusi, M.G.; Micheli, L.; Nencini, C.; Pozzessere, D.; Petrioli, R.; Aquino, A.; De Vecchis, L.; Turriziani,
M.; et al. In vitro generation of cytotoxic T lymphocytes against HLA-A2.1-restricted peptides derived from human thymidylate
synthase. J. Chemother. 2001, 13, 519–526. [CrossRef]

174. Cusi, M.G.; Botta, C.; Pastina, P.; Rossetti, M.G.; Dreassi, E.; Guidelli, G.M.; Fioravanti, A.; Martino, E.C.; Gandolfo, C.; Pagliuchi,
M.; et al. Phase I trial of thymidylate synthase poly-epitope peptide (TSPP) vaccine in advanced cancer patients. Cancer Immunol.
Immunother. 2015, 64, 1159–1173. [CrossRef]

175. Galaine, J.; Turco, C.; Vauchy, C.; Royer, B.; Mercier-Letondal, P.; Queiroz, L.; Loyon, R.; Mouget, V.; Boidot, R.; Laheurte, C.; et al.
CD4 T cells target colorectal cancer antigens upregulated by oxaliplatin. Int. J. Cancer 2019, 145, 3112–3125. [CrossRef] [PubMed]

176. Gravett, A.M.; Dalgleish, A.G.; Copier, J. In vitro culture with gemcitabine augments death receptor and NKG2D ligand expression
on tumour cells. Sci. Rep. 2019, 9, 1544. [CrossRef] [PubMed]

177. Liu, S.; Galat, V.; Galat, Y.; Lee, Y.K.A.; Wainwright, D.; Wu, J. NK cell-based cancer immunotherapy: From basic biology to
clinical development. J. Hematol. Oncol. 2021, 14, 7. [CrossRef] [PubMed]

178. Bonmassar, E.; Bonmassar, A.; Vadlamudi, S.; Goldin, A. Immunological alteration of leukemic cells in vivo after treatment with
an antitumor drug. Proc. Natl. Acad. Sci. USA 1970, 66, 1089–1095. [CrossRef]

179. Bethesda. Dacarbazine. In Drugs and Lactation Database (LactMed); National Library of Medicine: Bethesda, MD, USA, 2006.
180. Nardelli, B.; Contessa, A.R.; Romani, L.; Sava, G.; Nisi, C.; Fioretti, M.C. Immunogenic changes of murine lymphoma cells

following in vitro treatment with aryl-triazene derivatives. Cancer Immunol. Immunother. 1984, 16, 157–161. [CrossRef] [PubMed]
181. Bonmassar, A.; Frati, L.; Fioretti, M.C.; Romani, L.; Giampietri, A.; Goldin, A. Changes of the immunogenic properties of K36

lymphoma treated in vivo with 5(3,3-dimethyl-1-triazeno) imidazole-4-carboxamide (DTIC). Eur. J. Cancer 1979, 15, 933–939.
[CrossRef]

182. Bonmassar, E.; Bonmassar, A.; Vadlamudi, S.; Goldin, A. Antigenic changes of L1210 leukemia in mice treated with 5-(3,3-
dimethyl-1-triazeno)imidazole-4-carboxamide. Cancer Res. 1972, 32, 1446–1450.

183. Bonmassar, E.; Testorelli, C.; Franco, P.; Goldin, A.; Cudkowicz, G. Changes of the immunogenic properties of a radiation-induced
mouse lymphoma following treatment with antitumor drugs. Cancer Res. 1975, 35, 1957–1962.

184. Fioretti, M.C.; Romani, L.; Taramelli, D.; Goldin, A. Antigenic properties of lymphoma sublines derived from a drug-treated
immunogenic L5178Y leukemia. Transplantation 1978, 26, 449–451. [PubMed]

185. Romani, L.; Grohmann, U.; Puccetti, P.; Rossi, M.A.; Fioretti, M.C. Cell-mediated immunity to chemically xenogenized tumors. V.
Failure of novel antigens to increase the frequency of tumor-specific cytotoxic T cells. Int. J. Immunopharmacol. 1990, 12, 743–749.
[CrossRef]

186. Puccetti, P.; Romani, L.; Fioretti, M.C. Chemical xenogenization of experimental tumors. Cancer Metastasis Rev. 1987, 6, 93–111.
[CrossRef]

187. Boon, T.; Kellermann, O. Rejection by syngeneic mice of cell variants obtained by mutagenesis of a malignant teratocarcinoma
cell line. Proc. Natl. Acad. Sci. USA 1977, 74, 272–275. [CrossRef]

188. Nicolin, A.; Vadlamudi, S.; Goldin, A. Antigenicity of L1210 leukemic sublines induced by drugs. Cancer Res. 1972, 32, 653–657.
189. Giampietri, A.; Fioretti, M.C.; Goldin, A.; Bonmassar, E. Drug-mediated antigenic changes in murine leukemia cells: Antagonistic

effects of quinacrine, an antimutagenic compound. J. Natl. Cancer Inst. 1980, 64, 297–301. [CrossRef]
190. Vecchi, A.; Fioretti, M.C.; Mantovani, A.; Barzi, A.; Spreafico, F. The immunodepressive and hematotoxic activity of imidazole-4-

carboxamide,5-(3,3-dimethyl-1-triazeno) in mice. Transplantation 1976, 22, 619–624. [CrossRef] [PubMed]
191. Puccetti, P.; Fuschiotti, P.; Dominici, P.; Borri-Voltattorni, C.; Romani, L.; Fioretti, M.C. DNA methylating activity in murine

lymphoma cells xenogenized by triazene derivatives. Int. J. Cancer 1987, 39, 769–773. [CrossRef]
192. Kobayashi, H.; Kodama, T.; Shirai, T.; Kaji, H.; Hosokawa, M.; Sendo, F.; Saito, H.; Takeichi, N. Artificial regression of rat tumors

infected with Friend virus (xenogenization): An effect produced by acquired antigen. J. Med. Sci. 1969, 44, 133–134.
193. Johnson, H.G.; Bach, M.K. Apparent antimutagenic activity of quinacrine hydrochloride in Detroit-98 human sternal marrow

cells grown in culture. Cancer Res. 1969, 29, 1367–1370. [PubMed]
194. Fioretti, M.C.; Bianchi, R.; Romani, L.; Bonmassar, E. Drug-induced immunogenic changes of murine leukemia cells: Dissociation

of onset of resistance and emergence of novel immunogenicity. J. Natl. Cancer. Inst. 1983, 71, 1247–1251.
195. Grohmann, U.; Puccetti, P.; Belladonna, M.L.; Fallarino, F.; Bianchi, R.; Binaglia, L.; Sagakuchi, K.; Mage, M.G.; Appella, E.;

Fioretti, M.C. Multiple point mutations in an endogenous retroviral gene confer high immunogenicity on a drug-treated murine
tumor. J. Immunol. 1995, 154, 4630–4641.

http://doi.org/10.1200/JCO.2005.12.147
http://doi.org/10.1093/jnci/dji188
http://doi.org/10.1097/CJI.0b013e31815b69c8
http://doi.org/10.1179/joc.2001.13.5.519
http://doi.org/10.1007/s00262-015-1711-7
http://doi.org/10.1002/ijc.32620
http://www.ncbi.nlm.nih.gov/pubmed/31396953
http://doi.org/10.1038/s41598-018-38190-2
http://www.ncbi.nlm.nih.gov/pubmed/30733494
http://doi.org/10.1186/s13045-020-01014-w
http://www.ncbi.nlm.nih.gov/pubmed/33407739
http://doi.org/10.1073/pnas.66.4.1089
http://doi.org/10.1007/BF00205422
http://www.ncbi.nlm.nih.gov/pubmed/6561067
http://doi.org/10.1016/0014-2964(79)90276-7
http://www.ncbi.nlm.nih.gov/pubmed/734739
http://doi.org/10.1016/0192-0561(90)90037-N
http://doi.org/10.1007/BF00052845
http://doi.org/10.1073/pnas.74.1.272
http://doi.org/10.1093/jnci/64.2.297
http://doi.org/10.1097/00007890-197612000-00012
http://www.ncbi.nlm.nih.gov/pubmed/795112
http://doi.org/10.1002/ijc.2910390619
http://www.ncbi.nlm.nih.gov/pubmed/5799156


Int. J. Mol. Sci. 2021, 22, 10672 29 of 33

196. Marchesi, F.; Turriziani, M.; Tortorelli, G.; Avvisati, G.; Torino, F.; De Vecchis, L. Triazene compounds: Mechanism of action and
related DNA repair systems. Pharmacol. Res. 2007, 56, 275–287. [CrossRef]

197. Loveless, A. Possible relevance of O-6 alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of nitrosamines and
nitrosamides. Nature 1969, 223, 206–207. [CrossRef] [PubMed]

198. Margison, G.P.; Povey, A.C.; Kaina, B.; Santibanez Koref, M.F. Variability and regulation of O6-alkylguanine-DNA alkyltransferase.
Carcinogenesis 2003, 24, 625–635. [CrossRef] [PubMed]

199. Christmann, M.; Kaina, B. Epigenetic regulation of DNA repair genes and implications for tumor therapy. Mutat. Res. Rev. Mutat.
Res. 2019, 780, 15–28. [CrossRef]

200. Wiewrodt, D.; Nagel, G.; Dreimuller, N.; Hundsberger, T.; Perneczky, A.; Kaina, B. MGMT in primary and recurrent human
glioblastomas after radiation and chemotherapy and comparison with p53 status and clinical outcome. Int. J. Cancer 2008, 122,
1391–1399. [CrossRef]

201. Christmann, M.; Nagel, G.; Horn, S.; Krahn, U.; Wiewrodt, D.; Sommer, C.; Kaina, B. MGMT activity, promoter methylation and
immunohistochemistry of pretreatment and recurrent malignant gliomas: A comparative study on astrocytoma and glioblastoma.
Int. J. Cancer 2010, 127, 2106–2118. [CrossRef]

202. Hegi, M.E.; Diserens, A.C.; Gorlia, T.; Hamou, M.F.; de Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani,
L.; et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [CrossRef]

203. Caporali, S.; Falcinelli, S.; Starace, G.; Russo, M.T.; Bonmassar, E.; Jiricny, J.; D’Atri, S. DNA damage induced by temozolomide
signals to both ATM and ATR: Role of the mismatch repair system. Mol. Pharmacol. 2004, 66, 478–491. [CrossRef] [PubMed]

204. Kaina, B.; Ziouta, A.; Ochs, K.; Coquerelle, T. Chromosomal instability, reproductive cell death and apoptosis induced by
O6-methylguanine in Mex-, Mex+ and methylation-tolerant mismatch repair compromised cells: Facts and models. Mutat. Res.
Fundam. Mol. Mech. Mutagenesis 1997, 381, 227–241. [CrossRef]

205. Knizhnik, A.V.; Roos, W.P.; Nikolova, T.; Quiros, S.; Tomaszowski, K.H.; Christmann, M.; Kaina, B. Survival and death strategies
in glioma cells: Autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage. PLoS
ONE 2013, 8, e55665. [CrossRef]

206. He, Y.; Kaina, B. Are There Thresholds in Glioblastoma Cell Death Responses Triggered by Temozolomide? Int. J. Mol. Sci. 2019,
20, 1562. [CrossRef]

207. Tomicic, M.T.; Christmann, M.; Kaina, B. Topotecan triggers apoptosis in p53-deficient cells by forcing degradation of XIAP and
survivin thereby activating caspase-3-mediated Bid cleavage. J. Pharmacol. Exp. Ther. 2010, 332, 316–325. [CrossRef] [PubMed]

208. Grotzer, M.A.; Eggert, A.; Zuzak, T.J.; Janss, A.J.; Marwaha, S.; Wiewrodt, B.R.; Ikegaki, N.; Brodeur, G.M.; Phillips, P.C. Resistance
to TRAIL-induced apoptosis in primitive neuroectodermal brain tumor cells correlates with a loss of caspase-8 expression.
Oncogene 2000, 19, 4604–4610. [CrossRef] [PubMed]

209. Bonmassar, L.; Marchesi, F.; Pascale, E.; Franzese, O.; Margison, G.P.; Bianchi, A.; D’Atri, S.; Bernardini, S.; Lattuada, D.;
Bonmassar, E.; et al. Triazene compounds in the treatment of acute myeloid leukemia: A short review and a case report. Curr.
Med. Chem. 2013, 20, 2389–2401. [CrossRef]

210. Yu, W.; Zhang, L.; Wei, Q.; Shao, A. O(6)-Methylguanine-DNA Methyltransferase (MGMT): Challenges and New Opportunities
in Glioma Chemotherapy. Front. Oncol. 2019, 9, 1547. [CrossRef]

211. Graziani, G.; Faraoni, I.; Grohmann, U.; Bianchi, R.; Binaglia, L.; Margison, G.P.; Watson, A.J.; Orlando, L.; Bonmassar, E.; D’Atri,
S. O6-alkylguanine-DNA alkyltransferase attenuates triazene-induced cytotoxicity and tumor cell immunogenicity in murine
L1210 leukemia. Cancer Res. 1995, 55, 6231–6236.

212. Hu, Y.H.; Jiao, B.H.; Wang, C.Y.; Wu, J.L. Refulation of temozolomide resistance in glioma cells via the RIP2/NF-kB/MGMT
pathway CNSW. Neurosci. Ther. 2021, 27, 552–563. [CrossRef]

213. Bianchi, R.; Citti, L.; Beghetti, R.; Romani, L.; D’Incalci, M.; Puccetti, P.; Fioretti, M.C. O6-methylguanine-DNA methyltransferase
activity and induction of novel immunogenicity in murine tumor cells treated with methylating agents. Cancer Chemother.
Pharmacol. 1992, 29, 277–282. [CrossRef]

214. Dumenco, L.L.; Allay, E.; Norton, K.; Gerson, S.L. The prevention of thymic lymphomas in transgenic mice by human O6-
alkylguanine-DNA alkyltransferase. Science 1993, 259, 219–222. [CrossRef]

215. Khan, O.; Middleton, M.R. The therapeutic potential of O6-alkylguanine DNA alkyltransferase inhibitors. Expert Opin. Investig.
Drugs 2007, 16, 1573–1584. [CrossRef]

216. Liu, L.; Gerson, S.L. Targeted modulation of MGMT: Clinical implications. Clin. Cancer Res. 2006, 12, 328–331. [CrossRef]
217. Sun, G.; Zhao, L.; Zhong, R.; Peng, Y. The specific role of O(6)-methylguanine-DNA methyltransferase inhibitors in cancer

chemotherapy. Future Med. Chem. 2018, 10, 1971–1996. [CrossRef]
218. D’Atri, S.; Graziani, G.; Lacal, P.M.; Nistico, V.; Gilberti, S.; Faraoni, I.; Watson, A.J.; Bonmassar, E.; Margison, G.P. Attenuation

of O(6)-methylguanine-DNA methyltransferase activity and mRNA levels by cisplatin and temozolomide in jurkat cells. J.
Pharmacol. Exp. Ther. 2000, 294, 664–671.

219. Kong, X.T.; Nguyen, N.T.; Choi, Y.J.; Zhang, G.; Nguyen, H.N.; Filka, E.; Green, S.; Yong, W.H.; Liau, L.M.; Green, R.M.; et al.
Phase 2 Study of Bortezomib Combined With Temozolomide and Regional Radiation Therapy for Upfront Treatment of Patients
With Newly Diagnosed Glioblastoma Multiforme: Safety and Efficacy Assessment. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100,
1195–1203. [CrossRef]

http://doi.org/10.1016/j.phrs.2007.08.003
http://doi.org/10.1038/223206a0
http://www.ncbi.nlm.nih.gov/pubmed/5791738
http://doi.org/10.1093/carcin/bgg005
http://www.ncbi.nlm.nih.gov/pubmed/12727789
http://doi.org/10.1016/j.mrrev.2017.10.001
http://doi.org/10.1002/ijc.23219
http://doi.org/10.1002/ijc.25229
http://doi.org/10.1056/NEJMoa043331
http://doi.org/10.1124/mol.66.3
http://www.ncbi.nlm.nih.gov/pubmed/15322239
http://doi.org/10.1016/S0027-5107(97)00187-5
http://doi.org/10.1371/journal.pone.0055665
http://doi.org/10.3390/ijms20071562
http://doi.org/10.1124/jpet.109.159962
http://www.ncbi.nlm.nih.gov/pubmed/19812371
http://doi.org/10.1038/sj.onc.1203816
http://www.ncbi.nlm.nih.gov/pubmed/11030149
http://doi.org/10.2174/0929867311320190001
http://doi.org/10.3389/fonc.2019.01547
http://doi.org/10.1111/cns.13591
http://doi.org/10.1007/BF00685945
http://doi.org/10.1126/science.8421782
http://doi.org/10.1517/13543784.16.10.1573
http://doi.org/10.1158/1078-0432.CCR-05-2543
http://doi.org/10.4155/fmc-2018-0069
http://doi.org/10.1016/j.ijrobp.2018.01.001


Int. J. Mol. Sci. 2021, 22, 10672 30 of 33

220. Vlachostergios, P.J.; Hatzidaki, E.; Befani, C.D.; Liakos, P.; Papandreou, C.N. Bortezomib overcomes MGMT-related resistance of
glioblastoma cell lines to temozolomide in a schedule-dependent manner. Investig. New Drugs 2013, 31, 1169–1181. [CrossRef]

221. Rahman, M.A.; Gras Navarro, A.; Brekke, J.; Engelsen, A.; Bindesboll, C.; Sarowar, S.; Bahador, M.; Bifulco, E.; Goplen, D.; Waha,
A.; et al. Bortezomib administered prior to temozolomide depletes MGMT, chemosensitizes glioblastoma with unmethylated
MGMT promoter and prolongs animal survival. Br. J. Cancer 2019, 121, 545–555. [CrossRef]

222. Wu, S.; Li, X.; Gao, F.; de Groot, J.F.; Koul, D.; Yung, W.K.A. PARP mediated PARylation of MGMT is critical to promote repair of
temozolomide-induced O6-methylguanine DNA damage in glioblastoma. Neuro-oncol. 2021, 23, 920–931. [CrossRef]

223. Pegg, A.E.; Boosalis, M.; Samson, L.; Moschel, R.C.; Byers, T.L.; Swenn, K.; Dolan, M.E. Mechanism of inactivation of human
O6-alkylguanine-DNA alkyltransferase by O6-benzylguanine. Biochemistry 1993, 32, 11998–12006. [CrossRef]

224. Zhang, J.; Stevens, M.F.; Bradshaw, T.D. Temozolomide: Mechanisms of action, repair and resistance. Curr. Mol. Pharmacol. 2012,
5, 102–114. [CrossRef]

225. Barvaux, V.A.; Lorigan, P.; Ranson, M.; Gillum, A.M.; McElhinney, R.S.; McMurry, T.B.; Margison, G.P. Sensitization of a human
ovarian cancer cell line to temozolomide by simultaneous attenuation of the Bcl-2 antiapoptotic protein and DNA repair by
O6-alkylguanine-DNA alkyltransferase. Mol. Cancer Ther. 2004, 3, 1215–1220.

226. Clemons, M.; Kelly, J.; Watson, A.J.; Howell, A.; McElhinney, R.S.; McMurry, T.B.; Margison, G.P. O6-(4-bromothenyl)guanine
reverses temozolomide resistance in human breast tumour MCF-7 cells and xenografts. Br. J. Cancer 2005, 93, 1152–1156.
[CrossRef]

227. Kaina, B.; Margison, G.P.; Christmann, M. Targeting O-methylguanine-DNA methyltransferase with specific inhibitors as a
strategy in cancer therapy. Cell. Mol. Life Sci. 2010, 67, 3663–3681. [CrossRef]

228. Caporaso, P.; Turriziani, M.; Venditti, A.; Marchesi, F.; Buccisano, F.; Tirindelli, M.C.; Alvino, E.; Garbin, A.; Tortorelli, G.; Toppo,
L.; et al. Novel role of triazenes in haematological malignancies: Pilot study of Temozolomide, Lomeguatrib and IL-2 in the
chemo-immunotherapy of acute leukaemia. DNA Repair 2007, 6, 1179–1186. [CrossRef]

229. Turriziani, M.; Caporaso, P.; Bonmassar, L.; Buccisano, F.; Amadori, S.; Venditti, A.; Cantonetti, M.; D’Atri, S.; Bonmassar, E.
O6-(4-bromothenyl)guanine (PaTrin-2), a novel inhibitor of O6-alkylguanine DNA alkyl-transferase, increases the inhibitory
activity of temozolomide against human acute leukaemia cells in vitro. Pharmacol. Res. 2006, 53, 317–323. [CrossRef]

230. Ranson, M.; Hersey, P.; Thompson, D.; Beith, J.; McArthur, G.A.; Haydon, A.; Davis, I.D.; Kefford, R.F.; Mortimer, P.; Harris,
P.A.; et al. Randomized trial of the combination of lomeguatrib and temozolomide compared with temozolomide alone in
chemotherapy naive patients with metastatic cutaneous melanoma. J. Clin. Oncol. 2007, 25, 2540–2545. [CrossRef]

231. Tawbi, H.A.; Villaruz, L.; Tarhini, A.; Moschos, S.; Sulecki, M.; Viverette, F.; Shipe-Spotloe, J.; Radkowski, R.; Kirkwood, J.M.
Inhibition of DNA repair with MGMT pseudosubstrates: Phase I study of lomeguatrib in combination with dacarbazine in
patients with advanced melanoma and other solid tumours. Br. J. Cancer 2011, 105, 773–777. [CrossRef]

232. Watson, A.J.; Middleton, M.R.; McGown, G.; Thorncroft, M.; Ranson, M.; Hersey, P.; McArthur, G.; Davis, I.D.; Thomson, D.;
Beith, J.; et al. O(6)-methylguanine-DNA methyltransferase depletion and DNA damage in patients with melanoma treated with
temozolomide alone or with lomeguatrib. Br. J. Cancer 2009, 100, 1250–1256. [CrossRef]

233. Khan, O.A.; Ranson, M.; Michael, M.; Olver, I.; Levitt, N.C.; Mortimer, P.; Watson, A.J.; Margison, G.P.; Midgley, R.; Middleton,
M.R. A phase II trial of lomeguatrib and temozolomide in metastatic colorectal cancer. Br. J. Cancer 2008, 98, 1614–1618. [CrossRef]

234. Sabharwal, A.; Waters, R.; Danson, S.; Clamp, A.; Lorigan, P.; Thatcher, N.; Margison, G.P.; Middleton, M.R. Predicting the
myelotoxicity of chemotherapy: The use of pretreatment O6-methylguanine-DNA methyltransferase determination in peripheral
blood mononuclear cells. Melanoma Res. 2011, 21, 502–508. [CrossRef]

235. Koch, D.; Hundsberger, T.; Boor, S.; Kaina, B. Local intracerebral administration of O(6)-benzylguanine combined with systemic
chemotherapy with temozolomide of a patient suffering from a recurrent glioblastoma. J. Neuro-oncol. 2007, 82, 85–89. [CrossRef]

236. Maier, P.; Spier, I.; Laufs, S.; Veldwijk, M.R.; Fruehauf, S.; Wenz, F.; Zeller, W.J. Chemoprotection of human hematopoietic stem cells
by simultaneous lentiviral overexpression of multidrug resistance 1 and O(6)-methylguanine-DNA methyltransferase(P140K).
Gene Ther. 2010, 17, 389–399. [CrossRef]

237. Tolcher, A.W.; Gerson, S.L.; Denis, L.; Geyer, C.; Hammond, L.A.; Patnaik, A.; Goetz, A.D.; Schwartz, G.; Edwards, T.; Reyderman,
L.; et al. Marked inactivation of O6-alkylguanine-DNA alkyltransferase activity with protracted temozolomide schedules. Br. J.
Cancer 2003, 88, 1004–1011. [CrossRef]

238. Omuro, A.; Chan, T.A.; Abrey, L.E.; Khasraw, M.; Reiner, A.S.; Kaley, T.J.; Deangelis, L.M.; Lassman, A.B.; Nolan, C.P.; Gavrilovic,
I.T.; et al. Phase II trial of continuous low-dose temozolomide for patients with recurrent malignant glioma. Neuro-oncol. 2013, 15,
242–250. [CrossRef]

239. Kaina, B.; Fritz, G.; Coquerelle, T. Contribution of O6-alkylguanine and N-alkylpurines to the formation of sister chromatid ex-
changes, chromosomal aberrations, and gene mutations: New insights gained from studies of genetically engineered mammalian
cell lines. Environ. Mol. Mutagen. 1993, 22, 283–292. [CrossRef]

240. Kaina, B.; Christmann, M. DNA repair in personalized brain cancer therapy with temozolomide and nitrosoureas. DNA Repair
2019, 78, 128–141. [CrossRef]

241. Jin, L.; Guo, S.; Zhang, X.; Mo, Y.; Ke, S.; Duan, C. Optimal treatment strategy for adult patients with newly diagnosed
glioblastoma: A systematic review and network meta-analysis. Neurosurg. Rev. 2020, 44, 1943–1955. [CrossRef]

242. Guadagni, F.; Roselli, M.; Fuggetta, M.P.; Perno, C.F.; Goldin, A.; Giuliani, A. Increased immunogenicity of murine lymphoma
cells following exposure to gamma rays in vivo. Chemioterapia 1984, 3, 358–364.

http://doi.org/10.1007/s10637-013-9968-1
http://doi.org/10.1038/s41416-019-0551-1
http://doi.org/10.1093/neuonc/noab003
http://doi.org/10.1021/bi00096a009
http://doi.org/10.2174/1874467211205010102
http://doi.org/10.1038/sj.bjc.6602833
http://doi.org/10.1007/s00018-010-0491-7
http://doi.org/10.1016/j.dnarep.2007.03.016
http://doi.org/10.1016/j.phrs.2005.12.001
http://doi.org/10.1200/JCO.2007.10.8217
http://doi.org/10.1038/bjc.2011.285
http://doi.org/10.1038/sj.bjc.6605015
http://doi.org/10.1038/sj.bjc.6604366
http://doi.org/10.1097/CMR.0b013e32832ccd58
http://doi.org/10.1007/s11060-006-9244-8
http://doi.org/10.1038/gt.2009.133
http://doi.org/10.1038/sj.bjc.6600827
http://doi.org/10.1093/neuonc/nos295
http://doi.org/10.1002/em.2850220418
http://doi.org/10.1016/j.dnarep.2019.04.007
http://doi.org/10.1007/s10143-020-01403-2


Int. J. Mol. Sci. 2021, 22, 10672 31 of 33

243. Bonmassar, E.; Cudkowicz, G.; Vadlamudi, S.; Goldin, A. Influence of tumor-host differences at a single histocompatibility locus
(H-1) on the antileukemic effect of 1,3-bis(2-chloroethyl)-1-nitrosourea (NSC 409962). Cancer Res. 1970, 30, 2538–2542.

244. Riccardi, C.; Bartocci, A.; Puccetti, P.; Spreafico, F.; Bonmassar, E.; Goldin, A. Combined effects of antineoplastic agents and
anti-lymphoma allograft reaction. Eur. J. Cancer 1980, 16, 23–33. [CrossRef]

245. Wang, W.; Thomas, R.; Sizova, O.; Su, D.M. Thymic Function Associated With Cancer Development, Relapse, and Antitumor
Immunity—A Mini-Review. Front. Immunol. 2020, 11, 773. [CrossRef]

246. Haynes, L.; Maue, A.C. Effects of aging on T cell function. Curr. Opin. Immunol. 2009, 21, 414–417. [CrossRef]
247. Ahmed, A.; Tait, S.W.G. Targeting immunogenic cell death in cancer. Mol. Oncol. 2020, 14, 2994–3006. [CrossRef]
248. Sato, H.; Demaria, S.; Ohno, T. The role of radiotherapy in the age of immunotherapy. Jpn. J. Clin. Oncol. 2021, 51, 513–522.

[CrossRef]
249. Galluzzi, L.; Vitale, I.; Warren, S.; Adjemian, S.; Agostinis, P.; Martinez, A.B.; Chan, T.A.; Coukos, G.; Demaria, S.; Deutsch, E.;

et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J. Immunother. Cancer 2020,
8, e000337. [CrossRef]

250. Van Schaik, T.A.; Chen, K.S.; Shah, K. Therapy-Induced Tumor Cell Death: Friend or Foe of Immunotherapy? Front. Oncol. 2021,
11, 678562. [CrossRef]

251. Feola, S.; Chiaro, J.; Martins, B.; Cerullo, V. Uncovering the Tumor Antigen Landscape: What to Know about the Discovery
Process. Cancers 2020, 12, 1660. [CrossRef]

252. Fucikova, J.; Kepp, O.; Kasikova, L.; Petroni, G.; Yamazaki, T.; Liu, P.; Zhao, L.; Spisek, R.; Kroemer, G.; Galluzzi, L. Detection of
immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 2020, 11, 1013. [CrossRef]

253. Solari, J.I.G.; Filippi-Chiela, E.; Pilar, E.S.; Nunes, V.; Gonzalez, E.A.; Figueiro, F.; Andrade, C.F.; Klamt, F. Damage-associated
molecular patterns (DAMPs) related to immunogenic cell death are differentially triggered by clinically relevant chemotherapeu-
tics in lung adenocarcinoma cells. BMC Cancer 2020, 20, 474. [CrossRef]

254. Obeid, M.; Tesniere, A.; Ghiringhelli, F.; Fimia, G.M.; Apetoh, L.; Perfettini, J.L.; Castedo, M.; Mignot, G.; Panaretakis, T.; Casares,
N.; et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 2007, 13, 54–61. [CrossRef]

255. Fucikova, J.; Spisek, R.; Kroemer, G.; Galluzzi, L. Calreticulin and cancer. Cell Res. 2021, 31, 5–16. [CrossRef]
256. Catalan, R.; Orozco-Morales, M.; Hernandez-Pedro, N.Y.; Guijosa, A.; Colin-Gonzalez, A.L.; Avila-Moreno, F.; Arrieta, O.

CD47-SIRPalpha Axis as a Biomarker and Therapeutic Target in Cancer: Current Perspectives and Future Challenges in Nonsmall
Cell Lung Cancer. J. Immunol. Res. 2020, 2020, 9435030. [CrossRef]

257. Lamberti, M.J.; Nigro, A.; Mentucci, F.M.; Rumie Vittar, N.B.; Casolaro, V.; Dal Col, J. Dendritic Cells and Immunogenic Cancer
Cell Death: A Combination for Improving Antitumor Immunity. Pharmaceutics 2020, 12, 256. [CrossRef]

258. Cerwenka, A.; Kopitz, J.; Schirmacher, P.; Roth, W.; Gdynia, G. HMGB1: The metabolic weapon in the arsenal of NK cells. Mol.
Cell. Oncol. 2016, 3, e1175538. [CrossRef]

259. Minute, L.; Teijeira, A.; Sanchez-Paulete, A.R.; Ochoa, M.C.; Alvarez, M.; Otano, I.; Etxeberrria, I.; Bolaños, E.; Azpilikueta, A.;
Garasa, S.; et al. Cellular cytotoxicity is a form of immunogenic cell death. J. Immunother. Cancer 2020, 8, e000325. [CrossRef]

260. Wu, L.; Yang, L. The function and mechanism of HMGB1 in lung cancer and its potential therapeutic implications. Oncol. Lett.
2018, 15, 6799–6805. [CrossRef]

261. Ho, W.S.; Wang, H.; Maggio, D.; Kovach, J.S.; Zhang, Q.; Song, Q.; Marincola, F.M.; Heiss, J.D.; Gilbert, M.R.; Lu, R.; et al.
Pharmacologic inhibition of protein phosphatase-2A achieves durable immune-mediated antitumor activity when combined
with PD-1 blockade. Nat. Commun. 2018, 9, 2126. [CrossRef]

262. Opzoomer, J.W.; Sosnowska, D.; Anstee, J.E.; Spicer, J.F.; Arnold, J.N. Cytotoxic Chemotherapy as an Immune Stimulus: A
Molecular Perspective on Turning Up the Immunological Heat on Cancer. Front. Immunol. 2019, 10, 1654. [CrossRef]

263. Pfirschke, C.; Engblom, C.; Rickelt, S.; Cortez-Retamozo, V.; Garris, C.; Pucci, F.; Yamazaki, T.; Poirier-Colame, V.; Newton, A.;
Redouane, Y.; et al. Immunogenic Chemotherapy Sensitizes Tumors to Checkpoint Blockade Therapy. Immunity 2016, 44, 343–354.
[CrossRef]

264. Borrie, A.E.; Vareki, S.M. T Lymphocyte-Based Cancer Immunotherapeutics. Int. Rev. Cell Mol. Biol. 2018, 341, 201–276. [CrossRef]
265. D’Amico, L.; Menzel, U.; Prummer, M.; Muller, P.; Buchi, M.; Kashyap, A.; Haessler, U.; Yermanos, A.; Gebleux, R.; Briendl, M.;

et al. A novel anti-HER2 anthracycline-based antibody-drug conjugate induces adaptive anti-tumor immunity and potentiates
PD-1 blockade in breast cancer. J. Immunother. Cancer 2019, 7, 16. [CrossRef]

266. Wakita, D.; Iwai, T.; Harada, S.; Suzuki, M.; Yamamoto, K.; Sugimoto, M. Cisplatin Augments Antitumor T-Cell Responses
Leading to a Potent Therapeutic Effect in Combination With PD-L1 Blockade. Anticancer Res. 2019, 39, 1749–1760. [CrossRef]

267. Zhou, Y.; Bastian, I.N.; Long, M.D.; Dow, M.; Li, W.; Liu, T.; Ngu, R.K.; Antonucci, L.; Huang, J.Y.; Phung, Q.T.; et al. Activation of
NF-kappaB and p300/CBP potentiates cancer chemoimmunotherapy through induction of MHC-I antigen presentation. Proc.
Natl. Acad. Sci. USA 2021, 118, e2025840118. [CrossRef]

268. Gasser, S.; Orsulic, S.; Brown, E.J.; Raulet, D.H. The DNA damage pathway regulates innate immune system ligands of the
NKG2D receptor. Nature 2005, 436, 1186–1190. [CrossRef]

269. Ghiringhelli, F.; Menard, C.; Puig, P.E.; Ladoire, S.; Roux, S.; Martin, F.; Solary, E.; Le Cesne, A.; Zitvogel, L.; Chauffert, B.
Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector
functions in end stage cancer patients. Cancer Immunol. Immunother. 2007, 56, 641–648. [CrossRef]

http://doi.org/10.1016/0014-2964(80)90104-8
http://doi.org/10.3389/fimmu.2020.00773
http://doi.org/10.1016/j.coi.2009.05.009
http://doi.org/10.1002/1878-0261.12851
http://doi.org/10.1093/jjco/hyaa268
http://doi.org/10.1136/jitc-2019-000337
http://doi.org/10.3389/fonc.2021.678562
http://doi.org/10.3390/cancers12061660
http://doi.org/10.1038/s41419-020-03221-2
http://doi.org/10.1186/s12885-020-06964-5
http://doi.org/10.1038/nm1523
http://doi.org/10.1038/s41422-020-0383-9
http://doi.org/10.1155/2020/9435030
http://doi.org/10.3390/pharmaceutics12030256
http://doi.org/10.1080/23723556.2016.1175538
http://doi.org/10.1136/jitc-2019-000325
http://doi.org/10.3892/ol.2018.8215
http://doi.org/10.1038/s41467-018-04425-z
http://doi.org/10.3389/fimmu.2019.01654
http://doi.org/10.1016/j.immuni.2015.11.024
http://doi.org/10.1016/bs.ircmb.2018.05.010
http://doi.org/10.1186/s40425-018-0464-1
http://doi.org/10.21873/anticanres.13281
http://doi.org/10.1073/pnas.2025840118
http://doi.org/10.1038/nature03884
http://doi.org/10.1007/s00262-006-0225-8


Int. J. Mol. Sci. 2021, 22, 10672 32 of 33

270. Khallouf, H.; Marten, A.; Serba, S.; Teichgraber, V.; Buchler, M.W.; Jager, D.; Schmidt, J. 5-Fluorouracil and interferon-alpha
immunochemotherapy enhances immunogenicity of murine pancreatic cancer through upregulation of NKG2D ligands and
MHC class I. J. Immunother. 2012, 35, 245–253. [CrossRef]

271. Moschella, F.; Torelli, G.F.; Valentini, M.; Urbani, F.; Buccione, C.; Petrucci, M.T.; Natalino, F.; Belardelli, F.; Foa, R.; Proietti, E.
Cyclophosphamide induces a type I interferon-associated sterile inflammatory response signature in cancer patients’ blood cells:
Implications for cancer chemoimmunotherapy. Clin. Cancer Res. 2013, 19, 4249–4261. [CrossRef]

272. Moschella, F.; Valentini, M.; Arico, E.; Macchia, I.; Sestili, P.; D’Urso, M.T.; Alessandri, C.; Belardelli, F.; Proietti, E. Unraveling
cancer chemoimmunotherapy mechanisms by gene and protein expression profiling of responses to cyclophosphamide. Cancer
Res. 2011, 71, 3528–3539. [CrossRef]

273. Senovilla, L.; Aranda, F.; Galluzzi, L.; Kroemer, G. Impact of myeloid cells on the efficacy of anticancer chemotherapy. Curr. Opin.
Immunol. 2014, 30, 24–31. [CrossRef]

274. Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 2008, 8,
59–73. [CrossRef] [PubMed]

275. Briegert, M.; Kaina, B. Human monocytes, but not dendritic cells derived from them, are defective in base excision repair and
hypersensitive to methylating agents. Cancer Res. 2007, 67, 26–31. [CrossRef] [PubMed]

276. Bauer, M.; Goldstein, M.; Heylmann, D.; Kaina, B. Human monocytes undergo excessive apoptosis following temozolomide
activating the ATM/ATR pathway while dendritic cells and macrophages are resistant. PLoS ONE 2012, 7, e39956. [CrossRef]
[PubMed]

277. Bauer, M.; Goldstein, M.; Christmann, M.; Becker, H.; Heylmann, D.; Kaina, B. Human monocytes are severely impaired in base
and DNA double-strand break repair that renders them vulnerable to oxidative stress. Proc. Natl. Acad. Sci. USA 2011, 108,
21105–21110. [CrossRef]

278. Bailly, C.; Thuru, X.; Quesnel, B. Combined cytotoxic chemotherapy and immunotherapy of cancer: Modern times. NAR Cancer
2020, 2, zcaa002. [CrossRef]

279. Derakhshani, A.; Hashemzadeh, S.; Asadzadeh, Z.; Shadbad, M.A.; Rasibonab, F.; Safarpour, H.; Jafarlou, V.; Solimando, A.G.;
Racanelli, V.; Singh, P.K.; et al. Cytotoxic T-Lymphocyte Antigen-4 in Colorectal Cancer: Another Therapeutic Side of Capecitabine.
Cancers 2021, 13, 2414. [CrossRef]

280. Cioccoloni, G.; Aquino, A.; Notarnicola, M.; Caruso, M.G.; Bonmassar, E.; Zonfrillo, M.; Caporali, S.; Faraoni, I.; Villiva, C.;
Fuggetta, M.P.; et al. Fatty acid synthase inhibitor orlistat impairs cell growth and down-regulates PD-L1 expression of a human
T-cell leukemia line. J. Chemother. 2020, 32, 30–40. [CrossRef]

281. Vacchelli, E.; Eggermont, A.; Fridman, W.H.; Galon, J.; Tartour, E.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial Watch: Adoptive
cell transfer for anticancer immunotherapy. Oncoimmunology 2013, 2, e24238. [CrossRef]

282. Du, B.; Waxman, D.J. Medium dose intermittent cyclophosphamide induces immunogenic cell death and cancer cell autonomous
type I interferon production in glioma models. Cancer Lett. 2020, 470, 170–180. [CrossRef] [PubMed]

283. Hotchkiss, K.M.; Sampson, J.H. Temozolomide treatment outcomes and immunotherapy efficacy in brain tumor. J. Neuro-oncol.
2021, 151, 55–62. [CrossRef]

284. Zitvogel, L.; Tesniere, A.; Kroemer, G. Cancer despite immunosurveillance: Immunoselection and immunosubversion. Nat. Rev.
Immunol. 2006, 6, 715–727. [CrossRef]

285. Shalapour, S.; Font-Burgada, J.; Di Caro, G.; Zhong, Z.; Sanchez-Lopez, E.; Dhar, D.; Willimsky, G.; Ammirante, M.; Strasner, A.;
Hansel, D.E.; et al. Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature 2015, 521,
94–98. [CrossRef]

286. Xiang, Y.; Chen, L.; Li, L.; Huang, Y. Restoration and Enhancement of Immunogenic Cell Death of Cisplatin by Coadministration
with Digoxin and Conjugation to HPMA Copolymer. ACS Appl. Mater. Interfaces 2020, 12, 1606–1616. [CrossRef] [PubMed]

287. Vincent, J.; Mignot, G.; Chalmin, F.; Ladoire, S.; Bruchard, M.; Chevriaux, A.; Martin, F.; Apetoh, L.; Rebe, C.; Ghiringhelli,
F. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent
antitumor immunity. Cancer Res. 2010, 70, 3052–3061. [CrossRef] [PubMed]

288. Emile, J.F.; Julie, C.; Le Malicot, K.; Lepage, C.; Tabernero, J.; Mini, E.; Folprecht, G.; Van Laethem, J.L.; Dimet, S.; Boulagnon-
Rombi, C.; et al. Prospective validation of a lymphocyte infiltration prognostic test in stage III colon cancer patients treated with
adjuvant FOLFOX. Eur. J. Cancer 2017, 82, 16–24. [CrossRef] [PubMed]

289. Denkert, C.; von Minckwitz, G.; Brase, J.C.; Sinn, B.V.; Gade, S.; Kronenwett, R.; Pfitzner, B.M.; Salat, C.; Loi, S.; Schmitt, W.D.; et al.
Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal
growth factor receptor 2-positive and triple-negative primary breast cancers. J. Clin. Oncol. 2015, 33, 983–991. [CrossRef]
[PubMed]

290. Bugaut, H.; Bruchard, M.; Berger, H.; Derangere, V.; Odoul, L.; Euvrard, R.; Ladoire, S.; Chalmin, F.; Vegran, F.; Rebe, C.; et al.
Bleomycin exerts ambivalent antitumor immune effect by triggering both immunogenic cell death and proliferation of regulatory
T cells. PLoS ONE 2013, 8, e65181. [CrossRef]

291. Galluzzi, L.; Kepp, O.; Kroemer, G. Immunogenic cell death in radiation therapy. Oncoimmunology 2013, 2, e26536. [CrossRef]
292. Mothersill, C.; Seymour, C.B. Radiation-induced bystander effects–implications for cancer. Nat. Rev. Cancer 2004, 4, 158–164.

[CrossRef]

http://doi.org/10.1097/CJI.0b013e31824b3a76
http://doi.org/10.1158/1078-0432.CCR-12-3666
http://doi.org/10.1158/0008-5472.CAN-10-4523
http://doi.org/10.1016/j.coi.2014.05.009
http://doi.org/10.1038/nri2216
http://www.ncbi.nlm.nih.gov/pubmed/18097448
http://doi.org/10.1158/0008-5472.CAN-06-3712
http://www.ncbi.nlm.nih.gov/pubmed/17210680
http://doi.org/10.1371/journal.pone.0039956
http://www.ncbi.nlm.nih.gov/pubmed/22768182
http://doi.org/10.1073/pnas.1111919109
http://doi.org/10.1093/narcan/zcaa002
http://doi.org/10.3390/cancers13102414
http://doi.org/10.1080/1120009X.2019.1694761
http://doi.org/10.4161/onci.24238
http://doi.org/10.1016/j.canlet.2019.11.025
http://www.ncbi.nlm.nih.gov/pubmed/31765733
http://doi.org/10.1007/s11060-020-03598-2
http://doi.org/10.1038/nri1936
http://doi.org/10.1038/nature14395
http://doi.org/10.1021/acsami.9b19323
http://www.ncbi.nlm.nih.gov/pubmed/31804065
http://doi.org/10.1158/0008-5472.CAN-09-3690
http://www.ncbi.nlm.nih.gov/pubmed/20388795
http://doi.org/10.1016/j.ejca.2017.04.025
http://www.ncbi.nlm.nih.gov/pubmed/28651158
http://doi.org/10.1200/JCO.2014.58.1967
http://www.ncbi.nlm.nih.gov/pubmed/25534375
http://doi.org/10.1371/journal.pone.0065181
http://doi.org/10.4161/onci.26536
http://doi.org/10.1038/nrc1277


Int. J. Mol. Sci. 2021, 22, 10672 33 of 33

293. Daguenet, E.; Louati, S.; Wozny, A.S.; Vial, N.; Gras, M.; Guy, J.B.; Vallard, A.; Rodriguez-Lafrasse, C.; Magne, N. Radiation-
induced bystander and abscopal effects: Important lessons from preclinical models. Br. J. Cancer 2020, 123, 339–348. [CrossRef]

294. Okwan-Duodu, D.; Pollack, B.P.; Lawson, D.; Khan, M.K. Role of radiation therapy as immune activator in the era of modern
immunotherapy for metastatic malignant melanoma. Am. J. Clin. Oncol. 2015, 38, 119–125. [CrossRef]

295. Golden, E.B.; Apetoh, L. Radiotherapy and immunogenic cell death. Semin. Radiat. Oncol. 2015, 25, 11–17. [CrossRef]
296. Ma, Y.; Kepp, O.; Ghiringhelli, F.; Apetoh, L.; Aymeric, L.; Locher, C.; Tesniere, A.; Martins, I.; Ly, A.; Haynes, N.M.; et al.

Chemotherapy and radiotherapy: Cryptic anticancer vaccines. Semin. Immunol. 2010, 22, 113–124. [CrossRef]
297. Gupta, G.; Borglum, K.; Chen, H. Immunogenic Cell Death: A Step Ahead of Autophagy in Cancer Therapy. J. Cancer Immunol.

2021, 3, 47–59. [CrossRef]
298. Falasca, L.; Torino, F.; Marconi, M.; Costantini, M.; Pompeo, V.; Sentinelli, S.; De Salvo, L.; Patrizio, M.; Padula, C.; Gallucci, M.;

et al. AMBRA1 and SQSTM1 expression pattern in prostate cancer. Apoptosis 2015, 20, 1577–1586. [CrossRef]
299. White, E.; Lattime, E.C.; Guo, J.Y. Autophagy regulates stress responses, metabolism, and anticancer immunity. Trends Cancer

2021, 8, 778–789. [CrossRef] [PubMed]
300. Deutsch, E.; Chargari, C.; Galluzzi, L.; Kroemer, G. Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy.

Lancet Oncol. 2019, 20, e452–e463. [CrossRef]
301. Galluzzi, L.; Humeau, J.; Buque, A.; Zitvogel, L.; Kroemer, G. Immunostimulation with chemotherapy in the era of immune

checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2020, 17, 725–741. [CrossRef] [PubMed]
302. Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev.

Drug Discov. 2019, 18, 197–218. [CrossRef]
303. Hwang, W.L.; Pike, L.R.G.; Royce, T.J.; Mahal, B.A.; Loeffler, J.S. Safety of combining radiotherapy with immune-checkpoint

inhibition. Nat. Rev. Clin. Oncol. 2018, 15, 477–494. [CrossRef]
304. Tang, J.; Yu, J.X.; Hubbard-Lucey, V.M.; Neftelinov, S.T.; Hodge, J.P.; Lin, Y. Trial watch: The clinical trial landscape for PD1/PDL1

immune checkpoint inhibitors. Nat. Rev. Drug Discov. 2018, 17, 854–855. [CrossRef]
305. Vacchelli, E.; Aranda, F.; Eggermont, A.; Galon, J.; Sautes-Fridman, C.; Cremer, I.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial

Watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2014, 3, e27878. [CrossRef]
306. Baracco, E.E.; Stoll, G.; Van Endert, P.; Zitvogel, L.; Vacchelli, E.; Kroemer, G. Contribution of annexin A1 to anticancer

immunosurveillance. Oncoimmunology 2019, 8, e1647760. [CrossRef] [PubMed]
307. Schcolnik-Cabrera, A.; Oldak, B.; Juarez, M.; Cruz-Rivera, M.; Flisser, A.; Mendlovic, F. Calreticulin in phagocytosis and cancer:

Opposite roles in immune response outcomes. Apoptosis 2019, 24, 245–255. [CrossRef] [PubMed]
308. Zhou, J.; Wang, G.; Chen, Y.; Wang, H.; Hua, Y.; Cai, Z. Immunogenic cell death in cancer therapy: Present and emerging inducers.

J. Cell. Mol. Med. 2019, 23, 4854–4865. [CrossRef]
309. Lu, Q.; Chen, X.; Wang, S.; Lu, Y.; Yang, C.; Jiang, G. Potential New Cancer Immunotherapy: Anti-CD47-SIRPalpha Antibodies.

OncoTargets Ther. 2020, 13, 9323–9331. [CrossRef] [PubMed]
310. Li, Z.; Li, Y.; Gao, J.; Fu, Y.; Hua, P.; Jing, Y.; Cai, M.; Wang, H.; Tong, T. The role of CD47-SIRPalpha immune checkpoint in tumor

immune evasion and innate immunotherapy. Life Sci. 2021, 273, 119150. [CrossRef] [PubMed]
311. Zingoni, A.; Vulpis, E.; Loconte, L.; Santoni, A. NKG2D Ligand Shedding in Response to Stress: Role of ADAM10. Front. Immunol.

2020, 11, 447. [CrossRef]
312. Liu, H.; Wang, S.; Xin, J.; Wang, J.; Yao, C.; Zhang, Z. Role of NKG2D and its ligands in cancer immunotherapy. Am. J. Cancer Res.

2019, 9, 2064–2078.
313. Martins, I.; Kepp, O.; Galluzzi, L.; Senovilla, L.; Schlemmer, F.; Adjemian, S.; Menger, L.; Michaud, M.; Zitvogel, L.; Kroemer,

G. Surface-exposed calreticulin in the interaction between dying cells and phagocytes. Ann. N. Y. Acad. Sci. 2010, 1209, 77–82.
[CrossRef]

314. Grombacher, T.; Mitra, S.; Kaina, B. Induction of the alkyltransferase (MGMT) gene by DNA damaging agents and the gluco-
corticoid dexamethasone and comparison with the response of base excision repair genes. Carcinogenesis 1996, 17, 2329–2336.
[CrossRef]

315. Aasland, D.; Reich, T.R.; Tomicic, M.T.; Switzeny, O.J.; Kaina, B.; Christmann, M. Repair gene O6 -methylguanine-DNA
methyltransferase is controlled by SP1 and up-regulated by glucocorticoids, but not by temozolomide and radiation. J. Neurochem.
2018, 144, 139–151. [CrossRef] [PubMed]

316. Wang, Z.; Wu, X. Study and analysis of antitumor resistance mechanism of PD1/PD-L1 immune checkpoint blocker. Cancer Med.
2020, 9, 8086–8121. [CrossRef] [PubMed]

317. Wolf, Y.; Bartok, O.; Patkar, S.; Eli, G.B.; Cohen, S.; Litchfield, K.; Levy, R.; Jimenez-Sanchez, A.; Trabish, S.; Lee, J.S.; et al.
UVB-Induced Tumor Heterogeneity Diminishes Immune Response in Melanoma. Cell 2019, 179, 219–235. [CrossRef] [PubMed]

318. McAbee, J.H.; Rath, B.H.; Valdez, K.; Young, D.L.; Wu, X.; Shankavaram, U.T.; Camphausen, K.; Tofilon, P.J. Radiation Drives the
Evolution of Orthotopic Xenografts Initiated from Glioblastoma Stem-like Cells. Cancer Res. 2019, 79, 6032–6043. [CrossRef]

319. Cudkowicz, G.; Bennett, M. Peculiar immunobiology of bone marrow allografts. I. Graft rejection by irradiated responder mice. J.
Exp. Med. 1971, 134, 83–102. [CrossRef]

320. Riccardi, C.; Fioretti, M.C.; Giampietri, A.; Puccetti, P.; Goldin, A.; Bonmassar, E. Growth inhibition of normal or drug-treated
lymphoma cells in lethally irradiated mice. J. Natl. Cancer Inst. 1978, 60, 1083–1090. [CrossRef]

http://doi.org/10.1038/s41416-020-0942-3
http://doi.org/10.1097/COC.0b013e3182940dc3
http://doi.org/10.1016/j.semradonc.2014.07.005
http://doi.org/10.1016/j.smim.2010.03.001
http://doi.org/10.33696/cancerimmunol.3.041
http://doi.org/10.1007/s10495-015-1176-3
http://doi.org/10.1016/j.trecan.2021.05.003
http://www.ncbi.nlm.nih.gov/pubmed/34112622
http://doi.org/10.1016/S1470-2045(19)30171-8
http://doi.org/10.1038/s41571-020-0413-z
http://www.ncbi.nlm.nih.gov/pubmed/32760014
http://doi.org/10.1038/s41573-018-0007-y
http://doi.org/10.1038/s41571-018-0046-7
http://doi.org/10.1038/nrd.2018.210
http://doi.org/10.4161/onci.27878
http://doi.org/10.1080/2162402X.2019.1647760
http://www.ncbi.nlm.nih.gov/pubmed/32923172
http://doi.org/10.1007/s10495-019-01532-0
http://www.ncbi.nlm.nih.gov/pubmed/30929105
http://doi.org/10.1111/jcmm.14356
http://doi.org/10.2147/OTT.S249822
http://www.ncbi.nlm.nih.gov/pubmed/33061420
http://doi.org/10.1016/j.lfs.2021.119150
http://www.ncbi.nlm.nih.gov/pubmed/33662426
http://doi.org/10.3389/fimmu.2020.00447
http://doi.org/10.1111/j.1749-6632.2010.05740.x
http://doi.org/10.1093/carcin/17.11.2329
http://doi.org/10.1111/jnc.14262
http://www.ncbi.nlm.nih.gov/pubmed/29164620
http://doi.org/10.1002/cam4.3410
http://www.ncbi.nlm.nih.gov/pubmed/32875727
http://doi.org/10.1016/j.cell.2019.08.032
http://www.ncbi.nlm.nih.gov/pubmed/31522890
http://doi.org/10.1158/0008-5472.CAN-19-2452
http://doi.org/10.1084/jem.134.1.83
http://doi.org/10.1093/jnci/60.5.1083

	Introduction 
	Abscopal Effect 
	Preclinical and Clinical Investigations 
	Mechanism of RT-Induced Abscopal Effect and Immunogenic Consequences of Radiation 
	RT-Induced Immunosuppression 

	Drug-Induced Upregulation of Tumor Immunogenicity 
	Drug-Induced TAA Upregulation 
	Interferons 
	Epigenetic Drugs 
	Antitumor Agents 

	Drug-Induced Xenogenization (DIX) 
	Mechanism of Action of Triazenes 
	DIX and Ionizing Radiation 


	Immunogenic Cell Death 
	Conclusions 
	References

