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Abstract: New and emerging technologies, especially those based on non-invasive video and thermal
infrared cameras, can be readily tested on robotic milking facilities. In this research, implemented
non-invasive computer vision methods to estimate cow’s heart rate, respiration rate, and abrupt
movements captured using RGB cameras and machine learning modelling to predict eye temperature,
milk production and quality are presented. RGB and infrared thermal videos (IRTV) were acquired
from cows using a robotic milking facility. Results from 102 different cows with replicates (n = 150)
showed that an artificial neural network (ANN) model using only inputs from RGB cameras presented
high accuracy (R = 0.96) in predicting eye temperature (◦C), using IRTV as ground truth, daily milk
productivity (kg-milk-day−1), cow milk productivity (kg-milk-cow−1), milk fat (%) and milk protein
(%) with no signs of overfitting. The ANN model developed was deployed using an independent
132 cow samples obtained on different days, which also rendered high accuracy and was similar to
the model development (R = 0.93). This model can be easily applied using affordable RGB camera
systems to obtain all the proposed targets, including eye temperature, which can also be used to
model animal welfare and biotic/abiotic stress. Furthermore, these models can be readily deployed
in conventional dairy farms.

Keywords: heart rate; respiration rate; abrupt movements; robotic dairy farm; artificial neural networks

1. Introduction

The global dairy industry growth has been steadily increasing in recent years, shown
by the worldwide milk volume, reaching 513.23 million metric tons in 2020. In addition,
global milk production is forecasted to increase by 22% in 2027 [1] and is projected to in-
crease 2.3 fold (1168 million tons) by 2030 [2]. Australia and New Zealand are two counties
currently dominating the international dairy trade with 12% and 32% market representa-
tion, respectively [3]. In Australia, dairy production represents one of the most important
rural industries, with a market value of AUD 3.2 billion in 2018–2019 [4]. Consequently,
the dairy industry has focused on improving milk yield and quality by researching and
implementing technologies that allow the identification and reduction of factors that hinder
the performance of dairy cattle. Several challenges related to climate change and logistics
are expected to impact the dairy industry worldwide, such as (i) consumer concerns about
animal welfare, (ii) warming environment and effect on animal welfare and productivity,
(iii) increased resource costs and (iv) high-cost labor-related issues [5]. Different strate-
gies have been devised to help increase the efficiency of dairy resource management and,
consequently, the efficiency of production and quality traits of milk produced [5].
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Robotic-milking systems (RMS) have been developed to improve the efficiency and
productivity of milk in dairy farms and have become a valued asset in many farms around
the world [6]. The benefits of this system have promoted the implementation of RMS in
close to 35,000 farms worldwide by 2019 [7]. The main advantage of this system is the
possibility that cows have to voluntarily approach the automatic milking machines at any
time of the day using feeding as a reward [8]. It has been observed that this voluntary
approach generates an increase in milking frequency [9,10]. Rodenburg [11] observed that
cattle milking frequency in RMS was on average three or more visits per day compared
to an average of 2.5 visits using the conventional milking systems [12]. Consequently,
milk yield improved compared to farms that use a more traditional milking system [13].
Furthermore, RMS has also shown differences in the feeding behavior of cows when
compared to conventional milking systems. For example, greater cow feeding activity
occurred during the daytime and early evening hours (9 a.m. to 3 p.m. and 5 p.m. to
1 a.m.) compared to late night and early mornings (1 a.m. to 7 a.m.), which is also normally
observed in other milking systems [14].

In addition to the improvements in milking systems, great effort has also been devoted
to improving cow monitoring on dairy farms, predominantly non-invasive or less intrusive,
as health and wellbeing significantly impact cows and their productivity performance [15].
Stress has been recognized as one of the factors affecting the animal production of meat
and milk. In this matter, dairy cows are constantly exposed to several stressors, such
as social interactions (animal–animal and human–animal interactions), environmental
stressors (heat stress) and novelty and physical restraint, among others [16]. Several
responses to these stressors have been researched and used as indicators of stress levels
in cattle [15,16]. Although behavioral, adrenocortical and physiological responses have
been defined as stress indicators in farm animals, behavioral and adrenocortical responses
have been suggested to be limited by their high degree of stressor specificity and their
assessment methods [17,18]. In the case of physiological responses, these are mainly driven
by two axes: the hypothalamic–pituitary–adrenal (HPA) and the sympathetic–adrenal–
medullary (SAM) [19]. The SAM axis generates a more rapid response to the stress stimuli,
involving metabolic, physiologic and immunologic changes in the animal [20]. For instance,
heart rate, breathing rate and skin temperature increase due to stressful situations [20,21].
Although physiological responses to stress have become common in animal monitoring,
their assessment still includes some invasive methods that can produce animal stress and
pain, affecting final animal wellbeing results through biases [21,22].

As previously mentioned, physiological parameters have been commonly measured
through contact techniques (highly and moderately invasive). For instance, heart rate (HR)
in cattle has been widely measured by using stethoscopes [23], electrocardiograms (ECG)
and some commercial monitors such as Polar® Heart Rate Monitors (Polar Electro Oy,
Kempele, Finland) [24–26]. Moreover, the body temperature of cattle has been assessed
by techniques that can measure rectal, vaginal, ruminal and skin temperature, among
others. Rectal temperature has been the most common technique to measure body core
temperature, performed using a thermometer [27–29] or thermometric probe [30]. Although
these techniques have been validated and greatly implemented in the investigation of
the physiological changes generated by a stressful situation or environment in cattle,
the requirement for human–animal contact for insertion and data handling make these
techniques less accurate and impractical for large scale assessment due to biases associated
to the actual stress given to animals by the method and potentially poor capacity for
repeatability. Hence, the development of new technologies has taken place in animal
welfare research to produce reliable, affordable and accurate non-invasive methods to
assess these physiological parameters in animals [31,32].

Researchers are currently implementing remote sensing and computer vision to moni-
tor and detect behavioral and physiological changes that could reflect health and wellbeing
issues in animals in a less invasive way. This has been done by implementing algorithms
that can analyze imagery (visible and thermal) and identify animal behavior, posture and
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corporal condition, among others [33–35]. Furthermore, infrared thermal imagery (IRTI)
and visible or red, blue and green (RGB) images have been used to assist the assessment of
emotion changes in humans [36–39] and animals with great success, as presented in this
study. In cattle, the measurement of eye temperature from IRTIs has been used to relate
to stress levels in several situations [40]. For instance, Gómez, Bieler, Hankele, Zähner,
Savary and Hillmann [18] used eye temperature extracted from IRTIs as non-invasive phys-
iological indicators of acute stress in cows when they are exposed to stressful situations.
Other methods, such as biometric techniques, have been used to identify physiological
changes and emotion detection in humans. For instance, Eulerian Video Magnification has
been tested in humans to measure heart rate (HR) and heart rate variability (HRV) [41].
Other algorithms with increased accuracy have also been developed and used to detect
changes in physiological parameters and emotions in human consumers when exposed
to several products [38]. The implementation of these techniques have been published by
Torrico, et al. [42] and Gonzalez Viejo et al. [36,37], using customized algorithms to measure
skin temperature and HR as responses to several food stimuli in human consumers through
non-invasive video analysis and IRTI.

All techniques mentioned above for humans are based on computer vision algorithms
to automatically track specific features from RGB videos and extract information from
regions of interest (ROI). Since RGB videos and IRTIs can be obtained in parallel using
either two cameras or an integrated camera, as done in this research, these images can be
reregistered to extract data from RGBs and IRTIs from animals at the same time. Therefore,
this study aimed to implement computer vision algorithms developed to extract informa-
tion from videos and IRTIs on dairy cows and to construct a machine learning model based
on regression fitting to predict eye temperature (◦C), using IRTV as ground truth, daily
milk productivity (kg-milk-day−1), cow milk productivity (kg-milk-cow−1), milk fat (%)
and milk protein (%) with no signs of overfitting.

The developed models based on data from conventional RGB cameras could be used in
conventional and robotic dairy farms. The latter will allow the implementation of artificial
intelligence techniques to target specific volume/quality of milk and automatically identify
and manipulate stressors or stressful environments within the farm, such as heat stress
using misters or shelters [43].

2. Materials and Methods
2.1. Study Site and Animals Description

This study was approved by the Animal Ethics Committee of The University of
Melbourne (Ethics ID: 2021-21466-18833-5). The experiment was conducted on four dates
in a southern hemisphere winter (14–15 July and 4–5 August 2021) from 9 am to 4 pm in
the robotic dairy facilities located at The University of Melbourne Dookie College, Victoria,
Australia (36◦38′ S, 145◦71′ E). These facilities consist of three Lely Astronaut robotic
milking units (Lely Holding S.à.r.l., Maassluis, The Netherlands) with laser-guided teat
detection, which can milk up to 180 cows a day. The system works on semi-voluntary
milking where cows are motivated by individually formulated supplementary feed and
an automatic Lely Luna brush for cows’ comfort. A total of 102 different and non-stressed
Holstein-Friesian cows with one to five replicates for the analyses were used for this study
(n = 282). The replication per cow varies because the cows assessed per day were based
on semi-voluntary milking, as previously explained, and were not forced to participate in
the study. When cows approached the facilities for milking, some of these were directed
to the crush before and others after milking (Figure 1a) to be recorded, as explained in
Section 2.2. If the cows showed signs of high stress, they were released and excluded
from that measurement to comply with ethics regulations. Once the recording was over,
they were redirected to the milking area either for milking or to obtain some individually
formulated supplementary feed (Figure 1b). This approach of having some cows milked
before or after the recording was made to avoid bias due to the milking factor.
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2.2. Video Recording and Physiological Measurements—Biometrics 
A visible red, green and blue (RGB) and infrared thermal camera FLIR DUO PRO 

(Teledyne FLIR LLC, Wilsonville, OR, USA) was mounted on a Benro Tortoise 34C carbon 
fiber tripod (Guangdong Benro Image Technology Industrial Co., Ltd., Zhongshan City, 
Guangdong Province, China) loaded with a PAN PRO and a HeadPLUS motorized pan 
and tilt device (Edelkrone USA, Inc., Winter Park, FL, USA) 2.5 m away from the crush 
and facing the cows (Figure 2). The Pan PRO was used to adjust and lock the camera’s 
position, while the HeadPLUS was used to tilt the camera 10° to completely record the 
crush and center the cow’s head. 4K Videos were recorded for 1 min per cow. Single RGB 
and infrared thermal frames had a resolution of 2160 × 3840 and 514 × 652 pixels, respec-
tively. 
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Figure 2. Visible and infrared thermal (IRTV) recording showing (a) the position of the camera 
mounted on a tripod facing the cows in the crush and (b) frontal view of a cow being recorded. 

The regions of interest (ROI) from the RGB videos were selected and tracked using 
the point tracker based on the Kanade–Lucas–Tomasi (KLT) algorithm in the video label-
ler application in Matlab® Computer Vision Toolbox 10.0 (Mathworks Inc., Natick, MA, 
USA). The selected ROIs were the eye section to assess heart rate (HR) and the nose to 

Figure 1. Robotic dairy facility used for this study showing (a) the crush where the cows were
restrained for visible and infrared thermal video (IRTV) recording and (b) robotic milking area to the
left of crush where the cows were redirected after data collection.

2.2. Video Recording and Physiological Measurements—Biometrics

A visible red, green and blue (RGB) and infrared thermal camera FLIR DUO PRO
(Teledyne FLIR LLC, Wilsonville, OR, USA) was mounted on a Benro Tortoise 34C carbon
fiber tripod (Guangdong Benro Image Technology Industrial Co., Ltd., Zhongshan City,
Guangdong Province, China) loaded with a PAN PRO and a HeadPLUS motorized pan
and tilt device (Edelkrone USA, Inc., Winter Park, FL, USA) 2.5 m away from the crush and
facing the cows (Figure 2). The Pan PRO was used to adjust and lock the camera’s position,
while the HeadPLUS was used to tilt the camera 10◦ to completely record the crush and
center the cow’s head. 4K Videos were recorded for 1 min per cow. Single RGB and infrared
thermal frames had a resolution of 2160 × 3840 and 514 × 652 pixels, respectively.
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Figure 2. Visible and infrared thermal (IRTV) recording showing (a) the position of the camera
mounted on a tripod facing the cows in the crush and (b) frontal view of a cow being recorded.

The regions of interest (ROI) from the RGB videos were selected and tracked using
the point tracker based on the Kanade–Lucas–Tomasi (KLT) algorithm in the video labeller
application in Matlab® Computer Vision Toolbox 10.0 (Mathworks Inc., Natick, MA, USA).
The selected ROIs were the eye section to assess heart rate (HR) and the nose to determine
respiration rate (RR). The labels generated from the video labeller were used to crop the
videos using a customized code written in Matlab® R2021a (Mathworks, Inc., Natick,
MA, USA) developed by the Digital Agriculture Food and Wine (DAFW) group from The
University of Melbourne (UoM), Australia.

The HR in beats per minute (BPM) was estimated from the eye section of the cropped
videos. The HR algorithm developed in Matlab® R2018a and updated/adapted in version



Sensors 2021, 21, 6844 5 of 16

R2021a by the DAFW-UoM group is based on luminosity changes in the green color
channel from ROIs obtained, which uses the photoplethysmography (PPG) principle based
on the peak analysis of the signal obtained from luminosity over time, which computes
the amplitude and frequency of this signal [38,44] (Figure 3a). Furthermore, the RR in
breaths per minute (BrPM) was computed using the copped videos from the nose section.
The DAFW-UoM group developed the algorithm in Matlab® R2020a for RR analysis in
sheep [44] and was adapted for dairy cows in Matlab® R2021a. This algorithm works
similar to the HR PPG principle but uses a channel (green to red) from the CIELab color
scale (Figure 3a).
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Figure 3. Example of a frame obtained and analysis from (a) a visible RGB video showing the regions of interest used to
obtain heart rate (eye section, yellow rectangle) and respiration rate (nose, blue rectangle) showing the mean values after
analysis displayed for a specific cow and (b) an infrared thermal video (IRTV) showing the region of interest used to analyze
eye temperature and the mean value displayed for a specific cow.

The FLIR DUO PRO camera records the infrared thermal videos (IRTV) as sequence
(.seq) files, which were analyzed using the SENSE Batch software (SENSE Software, Warsaw,
Mazowsze, Poland) to extract the radiometric data per frame in batch and saved as comma-
separated values (csv) files. These data were used to create the thermal videos as Motion
Picture Experts Group Layer 4 (.MP4) using a customized Matlab® 2021a code developed
by the DAFW-UoM group. These videos were further used to detect and track the cows
face using the point tracker based on the KLT algorithm in the video labeler application
in Matlab® Computer Vision Toolbox 10.0. The labelled IRTV and radiometric data were
used to extract the maximum face temperature (eyes) using a computer vision algorithm
developed in Matlab® R2020a by the DAFW-UoM group (Figure 3b).

The abrupt movement analysis was based on the whole head tracking (Figure 3b, ROI
rectangle) to automatically obtain its centroid as x-y coordinates to track head movements.
From the entire video (1 min cow−1), four quartiles were analyzed to record patterns of
movements within the length of the video. The cow did not move much from its original
position if the x-y centroid coordinates were similar through the four quartiles. If x or y
varied significantly, the cow’s head moved up and down (y-axis) or sideways (x-axis). The
labels obtained from the ROI used in the IRTV analysis were analyzed using an algorithm
developed by the DAFW-UoM group in Matlab® 2021a; this algorithm works as previously
described and extracts metrics and statistics automatically.

2.3. Weather Information

The weather information was obtained from the Dookie College Weather Station (Ad-
con Telemetry GmbH, Klosterneuburg, Austria) recorded every 15 min. The extracted data
consisted of (i) temperature (◦C; T), (ii) relative humidity (%; RH), (iii) wind speed (km h−1)
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and (iv) wind direction (◦). The dew point temperature (Tdp) was calculated using Equation
(S1) in the Supplementary Material. This, along with T and surface pressure, was used to
calculate the wet-bulb temperature (Twet) using a Matlab® R2021a algorithm based on the
bisection search method. The calculated Tdp and Twet, RH and T were used to calculate
the temperature–humidity index (THI) using nine different equations (Supplementary
Material Equations (S2)–(S10)) as previously described by Fuentes et al. [43].

2.4. Milk Production and Composition Data

The cows wear an identification transponder neck collar (Lely Holding S.à.r.l., Maass-
luis, The Netherlands) to record their activity and associated milk productivity and compo-
sition. Therefore, for this study, the data extracted consisted of (i) milk production per day
(kg), (ii) milk production per milking (kg), (iii) milk fat (%) and (iv) milk protein (%).

2.5. Statistical Analysis and Machine Learning Modelling

Means and standard error (SE) from all parameters obtained from the physiological
measurements, weather and milk data were computed, grouping the cows by age (2–7 years
old). Furthermore, a multivariate data analysis based on principal component analysis
(PCA) was developed using Matlab® 2021a to assess relationships between the different
physiological responses, milk data and wind speed.

An artificial neural network (ANN) model was developed using a code written
by the DAFW-UoM group (Matlab® R2021a), which can automatically test 17 different
training algorithms to find the best model based on accuracy (correlation coefficient: R)
and performance (means squared error: MSE) with no signs of under/overfitting. The
Bayesian regularization was selected as the best training algorithm using the data from
the physiological parameters obtained from the RGB videos (HR and RR), the weather
information and abrupt movements in x and y axes (Figure 4). The targets for the model
consisted of milk production (per day and per milking), milk composition (fat and protein)
and eye temperature based on the IRTV. Apart from the performance, a condition to avoid
under or overfitting of a model is to keep the number of inputs at <70% of the number
of samples, which this model meet with 37 inputs <70% of samples (105). From n = 282
cow recordings, 150 were randomly selected to develop the model, while the remaining
132 were used for deployment. To develop the model, samples were divided randomly as
70% (n = 105) for training and 30% (n = 45) for testing. A neuron trimming test (3, 5, 7 and
10 neurons) was conducted to find the best model with no signs of under/overfitting.
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The deployment was conducted by evaluating the model with data from the remaining
132 cow samples and conducting linear regression to assess the accuracy of the model’s
outputs with respect to the observed data.

3. Results
3.1. Physiological, Weather and Milk Parameters

Figure 5a shows that cows within 6 and 8 years old had slightly higher HR (83–85 BPM)
than younger or older cows (73–82 BPM), a similar trend was shown for RR of cows 7 years
old, which had the highest mean value (40 BrPM) compared to other cows (29–37 BrPM).
The abrupt movements in this figure were reported as a variance of x and y axes; therefore,
this figure shows that the 5- and 6-year-old cows had fewer movements in both directions
(x and y axes) compared to younger and older cows. Furthermore, the most aged cows
(11 years old) had low movement in y-, but high on the x-axis. On the other hand, all cow
age groups had similar mean eye temperature; however, cows 8 years old had slightly
lower values.

Figure 5b shows that cows 5 and 9 years old had higher milk production per day (26
and 27 kg, respectively), with cows 3 years old having the lowest (21 kg). While cows
within 7 and 9 years old presented the highest milk production per milking (16–17 kg),
being the youngest cows (2–3 years old) the lowest in production per milking (12–13 kg).
Regarding milk composition, 8-year-old cows produced milk with the highest fat content
(4.66%), while 2-year-old cows had the lowest (3.73%). On the other hand, 7-year-old cows
had milk with the highest protein content (4.04%) and 4-year-old cows the lowest (3.42%).

Table 1 shows the mean values of the weather data during data collection of cows
grouped by age. It can be observed that the mean temperatures at which the cows were
tested were within 11 and 13 ◦C, while the RH was 74–82%. The wind oscillated within
8 and 13 km h−1 at 188–243◦ direction. Comparing the THI calculated with different
equations, it can be observed that values were similar, but Equation (S2) (THI1) and
Equation (S6) (THI6; Supplementary Material) presented higher values, while calculations
with Equation (S10) (THI9) were lower.

Figure 6 shows that the PCA accounted for 55.54% of total data variability based on
principal components one and two (PC1: 31.06%; PC2: 24.48%). Based on factor loadings
(FL), PC1 was mainly represented on the positive side of the axis by THI9 (FL = 0.46) and
milk production per milking (FL = 0.43) and by abrupt movements in the y-axis (FL = −0.35)
on the negative side. On the other hand, PC2 was characterized by wind speed (FL = 0.55)
on the positive side of the axis and HR and RR (FL = −0.45) on the negative side. It can be
observed that the wind speed was negatively related to eye temperature, RR and HR, while
the last three were positively related among them. Furthermore, all milk parameters were
positively related to THI9 and negatively related to abrupt movements in the y-axis. Older
cows (8–11 years old) were grouped and associated with the milk parameters, THI9 and
abrupt movements in the x-axis, while younger cows 2–4 and 6 years old were grouped on
the opposite side from older cows. Middle-aged cows (5 and 7 years old) formed another
group and were more associated with the physiological parameters (RR and HR).
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Table 1. Mean values ± standard error of weather parameters at the time/date that each cow age group were recorded.

Cows Age Number of
Cows *

Temperature
(◦C)

Relative Humidity
(%)

Wind Speed
(km h−1)

Wind Direction
(◦) THI1 THI2 THI3 THI4 THI5 THI6 THI7 THI8 THI9

2 y/o 42
11.30 81.02 11.84 234.31 62.70 51.13 51.41 56.30 52.51 63.51 55.32 52.51 41.67
±0.45 ±2.33 ±0.78 ±8.66 ±0.58 ±0.66 ±0.70 ±0.58 ±0.78 ±0.46 ±0.46 ±0.78 ±1.29

3 y/o 46
11.54 79.58 10.89 229.78 63.02 51.50 51.80 56.62 53.02 63.77 55.58 53.01 42.52
±0.41 ±1.96 ±0.78 ±9.12 ±0.53 ±0.61 ±0.64 ±0.53 ±0.72 ±0.43 ±0.43 ±0.72 ±1.18

4 y/o 63
11.13 81.80 10.51 210.03 62.51 50.94 51.19 56.11 52.37 63.38 55.20 52.37 41.44
±0.30 ±1.49 ±0.70 ±9.46 ±0.39 ±0.45 ±0.48 ±0.39 ±0.54 ±0.32 ±0.32 ±0.54 ±0.88

5 y/o 19
11.55 80.00 8.34 208.51 63.05 51.55 51.84 56.65 53.03 63.81 55.62 53.03 42.52
±0.60 ±3.29 ±1.45 ±17.29 ±0.77 ±0.87 ±0.92 ±0.77 ±1.05 ±0.60 ±0.61 ±1.05 ±1.75

6 y/o 38
11.01 81.47 11.26 227.73 62.32 50.69 50.96 55.92 52.13 63.20 55.01 52.13 41.09
±0.46 ±2.01 ±0.91 ±10.18 ±0.60 ±0.71 ±0.73 ±0.60 ±0.82 ±0.50 ±0.50 ±0.82 ±1.34

7 y/o 10
12.58 75.19 8.56 188.28 64.39 53.09 53.46 57.99 54.92 64.89 56.71 54.91 45.61
±0.62 ±3.63 ±1.63 ±31.37 ±0.78 ±0.88 ±0.93 ±0.78 ±1.07 ±0.60 ±0.61 ±1.07 ±1.79

8 y/o 14
12.01 77.26 11.66 223.71 63.62 52.19 52.53 57.22 53.86 64.25 56.07 53.85 43.91
±0.74 ±3.23 ±1.48 ±13.81 ±0.97 ±1.12 ±1.17 ±0.97 ±1.28 ±0.78 ±0.79 ±1.28 ±2.08

9 y/o 24
12.88 74.51 10.13 221.26 64.79 53.58 53.96 58.39 55.42 65.25 57.07 55.41 46.39
±0.35 ±2.08 ±1.06 ±10.05 ±0.44 ±0.49 ±0.52 ±0.44 ±0.59 ±0.33 ±0.34 ±0.59 ±1.00

10 y/o 23
12.04 77.82 11.28 232.96 63.70 52.32 52.64 57.30 53.99 64.35 56.17 53.99 44.09
±0.46 ±2.26 ±0.89 ±11.32 ±0.59 ±0.68 ±0.71 ±0.59 ±0.81 ±0.48 ±0.48 ±0.81 ±1.33

11 y/o 3
12.57 75.10 13.06 243.30 64.39 53.11 53.47 57.99 55.04 64.90 56.73 55.03 45.83
±0.52 ±4.30 ±3.50 ±7.56 ±0.61 ±0.64 ±0.71 ±0.61 ±0.88 ±0.40 ±0.40 ±0.88 ±1.55

Abbreviations: y/o: years old; THI: temperature–humidity index. The number next to the THI corresponds to the calculations from different equations in the Supplementary Material. * Including replicates.
Multivariate Data Analysis.
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humidity index calculated with Equation (S10) (Supplementary Material); y/o: years old; AbMov:
abrupt movements; p/day and p/milking: per day and per milking.

3.2. Machine Learning Modelling

Table 2 shows that the machine learning model had high overall accuracy (R = 0.96)
with high slope values (>0.92) to predict the milk production and quality based on com-
position (fat and protein) and cows’ eye temperature using the physiological, weather
and abrupt movement parameters as inputs. There were no signs of under or overfit-
ting based on the performance values with lower training MSE (9.65) than the testing
(MSE = 23.72) stage.

Table 2. Statistical data from the machine learning model showing the correlation coefficients (R)
and performance based on means squared error (MSE).

Stage Samples Observations R Slope
(b)

Performance
(MSE)

Training 105 525 0.97 0.94 9.65
Testing 45 225 0.93 0.92 23.72
Overall 150 750 0.96 0.93 -

Figure 7a shows the overall regression model with outliers based on the 95% confi-
dence bounds with 5.5% outliers (41 out of 750 data points). On the other hand, Figure 7b
shows the regression model from the deployment using 132 different cow samples. It can
be observed that it had high accuracy (R = 0.93) with 8% outliers (53 out of 660 data points).
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4. Discussion
4.1. Cow Physiology, Age and the Environment Related to Milk Productivity and, Quality

The non-invasive HR values reported in this study (Figure 5a) are consistent with
averaged HR reported elsewhere using polar sensors during quiet standing of cows
(70–90 BPM) [45] and HR variability (5–7 BPM) [46]. In the case of RR, all values recorded
were below 60 BrPM, which is related to minimal stress (e.g., thermal stress) [47], which
is consistent with THI values for this study (Table 1). Considering averaged THI5 (53,
Table 1), the RR presented here (27–43 BrPM) are consistent with those shown elsewhere
(20–50 BrPM) for similar environmental conditions [48]. These results are consistent with
the machine learning models that estimate human HR and RR [38] and other animals,
such as sheep [44]. Eye temperatures for dairy cows are in accordance to those reported
as maximum eye temperature in the range of 33–37 ◦C with the corresponding HR being
60–70 BMP [18] and 36.7–38.3 ◦C using infrared thermography, which corresponded to
around 2 ◦C less compared to rectal temperatures [49].

Concerning sudden movements, younger cows (2–3 y/o) presented similar and higher
sudden movements in x and y based on the error bars compared to older ones (>7 y/o).
Previous behavioral research has shown that younger animals head movements may be
affected by sudden and novel experiences since they have fewer life experiences than older
animals [50].

The milk production trend per day and milking is increasing for 2–5 y/o cows and
higher but stabilizing for cows older than 6 y/o; these results are consistent with previous
studies [51] (Figure 5b). Milk fat percentages found in this study were also consistent with
those reported in the literature, with values of 3.67% for 3 y/o cows compared to 3.80%
in this study and 3.48% versus 4.10% for 4 y/o cows, respectively [52]. General protein
content in milk has been reported within the ranges of 2.88–4.19% [53], consistent with
values reported in this study (Figure 5b).

All the different trends explored before can be seen in the PCA (Figure 6). The THI9
was chosen for multivariate data analysis as it is the most correlated with physiological
data and sensitive to describe heat stress in dairy cows [43,54]. In the case of wind, the
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speed vector is inversely related to physiological parameters, such as HR, RR and eye
temperature. Other studies have found that reductions in eye temperature in relation to
wind speed are in the order of 0.12 ± 0.02 ◦C per km h−1 (R2 = 0.94) [55]. Lower HR and
RR related to wind speed are also explained by reduces ambient temperatures [47].

4.2. Machine Learning Model Developed and Deployment

Eye temperature was included as a target for machine learning (ML) modeling, along
with milk productivity and quality traits (protein and fat content) because it has been
frequently reported as the most efficient and accurate parameter acquired using non-
contact infrared thermal imagery. The latter required a different camera and computer
vision algorithms, which can increase the cost of the technological system proposed. The
use of integrated visible and infrared thermal video cameras (IRTV), such as the one
used in this study, may help in the development of integrative algorithms [29,56,57] and
machine learning modelling [44]. However, FLIR has discontinued the FLIR Duo PRO
camera, which complicates the implementation of these models. Inferring eye temperature
from RGB video cameras and ML helps avoid incorporating a second camera (IRTV),
which can be cost-prohibitive. The cow physiological parameters studied respond to
environmental factors and other stressors, such as novel objects/people. It has been shown
that eye temperature (related to core body temperature) is regulated mainly through RR
and HR [58].

It has been shown that THI is positively related to skin, body surface [59], rectal
temperature and RR [60] as a response of cow’s physiology to environmental changing
conditions. For milk productivity, cows with higher milk production are positively related
to rectal temperature and respiration rate [60]. The latter are consistent with the results
presented in this study (Figure 6). Furthermore, HR variability measured using remote
sensing techniques accurately measures the autonomic nervous system (ANS) responses to
the environment, supporting the idea that HR variability can be used in cattle to measure
stress levels and welfare [61]. Hence, RR and HR, which have been remotely measured,
are related to the cow’s eye temperature and milk productivity factors, supporting the
parameter engineering process used in this research.

Many ML models reported for farm livestock mainly focus on developing and docu-
menting new and emerging technologies and ML algorithms. Furthermore, there has been
minimal attention in published work on testing developed ML models and technologies
in real-world situations. However, this is consistent with AI implementation in other
industries. Only 20% of AI pilots that have been developed for the real world make it to
production. However, the latter figures have increased slightly due to COVID-19, and for
2021 are projected to be 20% for machine learning and 25% for AI solutions, according
to the Hanover Enterprise Financial Decision Making 2020 report [62]. Incorporating the
ML model deployment analysis in this study helps to verify the accuracy of the model
developed, considering completely new datasets and measurement days, which rendered
similar accuracies (R = 0.93) compared to model development (R = 0.96).

The ML model developed was based only on RGB video data, making it more versatile
and applicable to RMS and conventional and small dairy farms. Newly developed AI
cameras may facilitate the deployment of these types of models, such as the FLIR (Firefly
DL) for deep learning or Firefly S for machine vision with affordable costs. The potential
applications of the ML model developed include assessment of animal welfare due to
heat stress [43], general health monitoring and disease identification [63–65], detection of
respiratory diseases [57], biomedical monitoring to optimize cattle treatment [66], drinking
behavior [67] and transport conditions [44], among others.

5. Conclusions

The industry has a critical requirement to develop and deploy parsimony-based
machine learning approaches to assess the welfare and productivity of farm livestock.
This research has presented a novel approach to estimate important physiological and
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productivity information based on visible video cameras that can be affordable, accurate
and allow automation. Further studies are scheduled to include data from stressed cows
due to heat stress in this model to complement the machine learning model developed. In
addition, the models will be tested using different camera brands, specifications, and prices
to verify and/or improve accuracy. These models’ applicability is not restricted to robotic
dairy farms and can be applied to the conventional dairy farming industry. Furthermore,
these methods may benefit not only the dairy farms but also the dairy processing industry
as they could guarantee the quality of their milk.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21206844/s1. Table S1. Summary of methods to measure physiological responses of animals
including advantages and disadvantages; Equations (S1)–(S10); Figure S1. Diagram depicting the
process to be followed for deployment of the proposed integrated system. Boxes in the cow represent
the area of interest for each assessment, x and y represent the abrupt movement assessment in x and
y axes.
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