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Abstract  

 

Background: Obesity has been linked to DNA damage. The modifiable risk factors may modulate 

the impact of obesity on DNA damage. Objective: This study aimed to assess DNA damage and its 

association with dietary nutrient, serum 25-hydroxyvitamin D (25(OH)D) and concentration of hair 

heavy metals of obese and non-obese women. Method: A case-control study was conducted 

involving 134 women aged between 20 to 50 years. Serum 25(OH)D, fasting glucose, and lipid 

profile were assessed. Indicators of DNA damage such as percentage of tail DNA, tail moment, tail 

olive moment, tail intensity and tail length were measured using an alkaline-Comet assay. 

Concentrations of hair heavy metals were quantified using Inductively Coupled Plasma-Mass 

Spectrometry (ICP-MS). Participants' daily energy, macro, and micronutrient intake were collected 

using the Food Frequency Questionnaire (FFQ). Results: Mean values of 25(OH)D was 31.8 ± 0.9 

nmol/L. Majority of participants (96.3%) were 25(OH)D (<50 nmol/L) deficient. The mean BMI 

was 26.3 ± 0.5 kg/m2. Half of the participants (50.7%) have a high frequency of DNA strand breaks. 

Mean concentration of hair heavy metals (mg/kg) were 0.1 ± 0.03 (arsenic), 1.0 ± 0.4 (mercury), 

2.8 ± 0.8 (lead), 0.2 ± 0.1 (cadmium) and 6.2 ± 0.4 (chromium). There was no significant difference 

for the mean of 25(OH)D, indicators of DNA damage, concentrations of hair heavy metals and 

dietary nutrients between obese and non-obese groups (p >0.05). Obese women with 25(OH)D level 

of ≥ 31nmol/L had a significantly lower tail moment (p=0.029) and tail olive moment (p=0.031); 

thus, indicating less DNA damage. Additionally, obese women with hair chromium concentration 

of ≥5.88 mg/kg had a significantly higher tail moment (p=0.047), indicating more DNA damage. 

Conclusion: DNA damage among obese women correlated with serum 25(OH)D and hair 

chromium.   
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Introduction 

 

 

Age, gender, diet and lifestyle factors significantly influence the extent of DNA damage 

through individual or synergistic effects1. Endogenous factors are non-modifiable, but diet is a 

modifiable factor that resonates with a healthy lifestyle2. Studies in the past decade reported that 

diet of middle-aged and older adults might influence the level of biological aging3.  

 

Common micronutrient deficiencies are likely to damage DNA using similar mechanisms 

as radiation and xenobiotics4.  The human body requires a minuscule amount of these micronutrients 

to produce enzymes, hormones and other substances essential for cellular metabolism, maintain 

optimum tissue function, growth and development5. Vitamin D3 is a potent antioxidant with 

immunosuppression, anti-inflammatory, and anti-proliferation properties6. It induces the expression 

of antioxidant defence system including hepatic glucose 6-phosphate dehydrogenase (G6PD)vity7, 

CuZn-superoxide dismutase (CuZn-SOD)8; and suppresses markers oxidative stress such as 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase9. Suboptimal levels of vitamin D 

levels have been associated with oxidative stress and DNA damage10. Besides, Vitamin D maintains 

DNA integrity and regulates cell growth rate, preventing propagation of damaged DNA in DDR 

pathway regulation11. 

 

DNA single-strand breaks (SSBs) lesions are regarded as an indicator of early damage that 

is repairable and reversible12. However, these lesions may convert to lethal double-strand breaks 

(DSBs) during DNA replication which pose a significant threat to genomic integrity13. 

Accumulation of DNA damage has been linked to the onset of age-related diseases, which involved 



dysregulation of metabolic homeostasis14. A study revealed high DNA SSBs in obese individual15. 

Obese women have approximately double DNA damages than non-obese women16, resulting in 

higher susceptibility to cancer and precocious aging15. 

 

The worldwide increase of overweight and obese populations in this recent decade is 

alarming and results in many adverse health consequences, including infertility, cancer, 

inflammation, and accelerated aging17. Micronutrients have been associated with various underlying 

metabolic processes responsible for the development of obesity18.  Micronutrient deficiencies can 

potentially impair glucose metabolism and cause resistance to insulin19.  High prevalence of 

micronutrient deficiencies among obese women has been reported20 Most micronutrient 

deficiencies cause DNA damage such as breaking of single- or double-strands and oxidative lesions; 

these mechanisms are similar to effects of radiation and xenobiotics4. This suboptimal nutrient 

intake has been linked to genomic instability and is likely to be a significant cause of cancer 3,21. 

 

Heavy metals are a heterogeneous group of highly reactive substances affecting various 

aspects of metabolism, such as the substitution of essential micronutrients and vital metals as well 

as induction of oxidative stress22. Accumulation of heavy metals in the human body due to dietary 

sources is an emerging public health concern23. Additionally, diet is a primary source of heavy metal 

to human24 . Cumulative exposure to heavy metals has been associated with underlying mechanisms 

responsible for obesity-associated pathologies25, particularly among women. It leads to oxidative 

stress, production of cytokines and increases markers of systemic inflammation26. When oxidative 

stress overwhelms cells' intrinsic antioxidant, it causes DNA strand breaks27. 

 



Micronutrients can modify the body's response to heavy metals by altering its metabolism 

and transport28. These nutritional factors are capable of modifying the adverse effects of toxicants 

and their elimination from the body. Insufficient micronutrients increase one's susceptibility to 

heavy metal toxicity and play a vital role in obesity.  Given the context that obese women experience 

more serious DNA damage, the incidence of micronutrient deficiency coupled with dietary intake 

of heavy metals synergistically lead to more significant DNA damage.  Varying mechanisms 

causing genome instability have been reported among those occupationally exposed to heavy 29. 

However, data regarding heavy metal exposure and its health consequences are not well established 

in non-occupational exposed groups. The impact of modifiable and preventable dietary-driven risk 

factors on DNA damage is often overlooked. Thus, this study aimed to assess DNA damage and its 

association with dietary nutrient intakes, serum 25(OH)D and hair heavy metals concentrations in 

obese and non-obese women. 

 

Materials and Methods (Word count:  1003 words) 

 

Participants recruitment 

 

Women aged between 20 and 50 were recruited upon obtaining their informed consent. 

Women who were pregnant, lactating, having chronic or malignant diseases, or were occupationally 

exposed to heavy metals were excluded in this study.  

 

 

 



Blood collection and biochemical tests 

 

Whole blood was collected using the venepuncture method according to standard protocol. 

Blood fasting lipid (LDL-cholesterol, triglycerides, HDL-cholesterol, and total cholesterol), fasting 

glucose, and serum 25(OH)D were measured. According to the NCEP-ATPIII (2001)30 guideline 

for lipid profile, total cholesterol levels were defined as desirable, borderline, and high risk; LDL-

cholesterol levels were defined as normal, near-optimal, borderline, high risk and very high risk for; 

HDL-cholesterol levels were defined as normal or not normal, triglycerides levels were defined as 

normal, borderline, and high risk. Fasting glucose levels were defined as normal, pre-diabetes, and 

diabetes31,32 . Serum 25(OH)D level less than 12.5 nmol/L were defined as severe deficiency,  less 

than 25nmol/L were defined as moderate deficiency, less than 50 nmol/L were defined as mild 

deficiency 33,34, and 50-74 nmol/L as vitamin D insufficiency35. 

 

Power and sample size calculation 

 

The sample size was computed using the formula n =
𝑟+1𝑟  

𝑆𝐷2(𝑍β+𝑍1−α/2)2.𝑑2  36. Z1-α/2 is the value from 

the standard normal distribution holding 1- α/2 below it, which is 1.96, and Zβ is the standard normal 

variate for a power of 80%, which is 0.84. SD is the standard deviation of the percentage of DNA 

comet tail (%) in the elderly population, which was previously reported to be 1.16 37. d is the 

expected mean difference between the low and high nutrient intake groups, which is 0.5%. r is the 

ratio of the two groups, which is 1. Thus, a minimum of n =
1+11  

1.162(0.84+1.96)2.0.52 , =84 participants 

were needed for this study.   

 



Quantification of hair heavy metals  

 

Clean stainless-steel scissors were used to cut 1.5 to 2 cm of hair from the occipital region. 

The 0.5 grams of hair sample was digested with 1 ml of hydrogen peroxide (30%) and 5 ml of nitric 

acid (65%). Then, samples were radiated in a microwave digester for 15 minutes 38. Samples were 

diluted upon cooling with distilled water to a volume of 50 ml.  

 

Concentration of mercury, arsenic, lead, chromium, and cadmium was quantified using 

inductively coupled plasma mass spectrometry (ICP-MS) in duplicates. Method validation for 

accuracy was carried out using certified reference material (GBW 07601a, GSH-1a human hair). 

Serial dilutions of stock solutions were performed to generate seven points calibration curve at 1, 

2.5, 5, 10, 25, 50, and 100. Rhodium was added into every sample as an internal standard. Any 

carry-overs or cross-contamination of heavy metals were determined by quantifying blank samples 

for every ten samples. Method sensitivity was determined as method limits of detection (MLOD), 

which was calculated as three times the standard deviation for digestion blanks (n = 5). The MLODs 

for arsenic, cadmium, lead, mercury, and chromium were all 0.001 mg/kg.  

 

Food frequency data collection and analysis – leave for normina 

 

All participants completed the food frequency questionnaire (FFQ), which was adapted from 

previous publication39. Analysis of food data was performed using the computerized dietary 

analysis software program (Nutritics, 2019). The intakes of macronutrients were expressed as a 

percentage of total energy (TE) consumed, whereas micronutrients were expressed as energy 



adjusted to unit/TE (kcal)x1000kcal. To estimate under-reporting in the study population, a cut-off 

of total energy intake/basal metabolic rate (TE: BMR) <1.2 was used to indicate under-reporting  

40-42. TE: BMR ≥2.4 was used to identify over-reporting42. In the current study, none of the 

participants was found to be under or over-reporting. Therefore, all the participants were included 

in the analysis. 

 

Alkaline Comet Assay – leave for farah 

 

Two hundred microliters of whole blood were used to measure DNA SSBs by alkaline comet 

assay ( also known as single-cell gel electrophoresis)43. At a pH 12.1–12.4, this assay facilitates the 

detection of single and double-strand breaks, incomplete excision repair sites and cross-links; 

whereas at a pH greater than 12.6, alkali labile sites 44 (e.g., apurinic sites) is transformed to strand 

breaks that expressed as SSB45,46. The assay was performed under alkaline (pH> 13) as described43. 

Cells were microscopically observed at 20x magnification using a fluorescence microscope (Carl 

Zeiss Axiovert.A1, Germany) with an emission wavelength of 522 nm and an excitation wavelength 

of 498 nm. Nuclei, with/without DNA damage, were captured with Axiocam MR using Zen2012 

imaging software.  At least 70 cells were randomly selected and scored with online software (TriTek 

CometScore 2.0). The damaged DNA migrated out of the cell under electrophoresis, creating a 

"comet tail", while the undamaged DNA remained within the cell membrane, creating the "comet 

head47. The DNA damage level was expressed in % tail DNA, tail moment, tail olive moment, tail 

intensity and tail length. Based on the tail moment and % tail DNA, the cells were classified to 

without DNA damage (tail moment < 5, % tail DNA < 10) and cells with DNA damage (tail 

moment > 5, %  tail DNA > 10)48. The intensity of the tail increases as the damage is greater. Tail 



length only can be used at low levels of DNA damage. The tail moment combines tail length and 

tail intensity in one single value, that make the most useful and frequently used parameter49. 

 

Statistical analysis 

 

SPSS version 22 was used for statistical analysis. Data were presented as number 

(percentage) or mean ± standard error (SE). Log transformation was carried out to transform non-

normally distributed data into normally distributed ones. BMI was categorized into two groups, 

non-obese (BMI < 27.5kg/m2  n= 87) and obese (BMI≥27.5kg/m2 n= 47), for analysis 50. One way 

ANCOVA with Bonferroni post hoc test was carried out to ascertain the differences in the mean 

values of general characteristics, serum 25(OH)D, DNA damage parameters, hair heavy metals 

levels, and dietary parameters between the non-obese and obese groups. The multivariate general 

linear model (GLM) was performed to assess interactions between BMI groups and dietary nutrients, 

serum 25(OH)D and hair heavy metals on DNA damage parameters. A statistical probability level 

of p<0.05 (two-sided) was considered significant. 

 

Results 

 

Demographics of the study participants were reported in Table 1. Most participants (96.3%) 

population had a vitamin D deficiency (<50 nmol/L). Of all 134 participants, none of them had a 

sufficient level of 25(OH)D. The mean values (±SE) for fasting blood sugar was 4.78 ± 0.07 mmol/L, 

and for total cholesterol, LDL-cholesterol, HDL-cholesterol, and triglyceride were 5.20 ± 0.68, 3.20 

± 0.06, 1.55 ± 0.25 and 1.12 ± 0.34 mmol/L, respectively. Some participants had a high risk for 



lipid profile, including total cholesterol (11.2%), LDL-cholesterol (8.9%), HDL-cholesterol 

(14.9%), and triglyceride (2.2%).  

 

Table 1 Demographics of participants 

Demographics  Frequency (%) 

Age 

   20-29 
   30-39 
   40-50 

 
81 (60.4%) 
41 (30.6%) 
12 (8.9%) 

Smoking History 

Yes 
No 

 
4     (3%) 
130 (97%) 

Second-hand smoking 

no exposure 
everyday 
weekday 
weekend 

 
51  (38.1%) 
27  (20.1%) 
16  (11.9%) 
40  (29.9%) 

 

Serum Vitamin D 

 

Insufficiency             50-74     nmol/L 
Mild deficiency        25-50     nmol/L 
Moderate deficiency 24- 12.4 nmol/L 
Severe deficiency     <12.5      nmol/L 

5    (3.7%) 
92  (68.7%) 
35  (26.1%) 
2    (1.5%) 

 

Lipid profile  

 

Total cholesterol  

Desirable   < 5.2    mmol/L 
Borderline 5.2-6.2 mmol/L 
High risk    >6.2    mmol/L 
 

 
63  (47%) 
56  (41.8%) 
15  (11.2%) 

LDL-Cholesterol 

Normal          <2.58       mmol/L 
Near-optimal 2.58-3.34 mmol/L 
Borderline     3.35-4.11 mmol/L 
High              4.12-4.89 mmol/L 
Very high      >4.9         mmol/L 
 

 
26  (19.4%) 
51  (38.1%) 
45  (33.6%) 
9    (6.7%) 
3    (2.2%) 

HDL-cholesterol  

Low    <1.3  mmol/L 
Normal ≥1.3 mmol/L 
 

 
20   (14.9%) 
114 (85.1%) 

Triglyceride 

Normal    < 1.7          mmol/L 
 
121 (90.3%) 



Borderline 1.7  -2.25 mmol/L 
High          2.26-5.64 mmol/L 
 

10   (7.5%) 
3     (2.2%) 

Fasting blood glucose  
Normal                      < 6.1  
High fasting glucose ≥ 6.1 

130 (97 %) 
4     (3 %) 

 

 

Table 2 showed differences in mean values of age, anthropometric parameters, serum 

25(OH)D,  DNA damage parameters, hair heavy metals levels and dietary parameters between the 

non-obese and obese groups. Results revealed significant differences for height, weight, body mass 

index (BMI), waist circumference (WC), hip circumference (HC), and waist-to-hip ratio (WHR) 

between the non-obese and obese groups (p>0.05).  

 

Percentage of tail DNA values were distributed between 5 and 35, of which 50.7% of 

participants had a high level of DNA damage. Tail moment values ranged from 0 to 9, only 11.2% 

marked with DNA damage. The range of the tail olive moment, tail intensity and tail length were 

between 0 to 8, 10377 to 167469 % and 7.081 ± 4.63 µm, respectively. The mean for percent energy 

from carbohydrate, protein, and fat were 49.6 ± 0.9 %, 19.4 ± 0.4 %, and 31.0 ± 0.6 %, respectively.  

 

Table 2: Differences in the mean values (±SE) of anthropometric, blood biochemical, DNA 

damage, heavy metals and dietary parameters between the non-obese and obese groups  

Variables Mean ± SE (n=134) Non-obese (n=87) Obese (n=47) p-value 

Age        (y) 29.96 ± 0.63 28.66   ±  0.7 30.81   ± 0.9 0.064 
Anthropometric parameters     
1Height  (cm) 157.39 ± 0.58 156.1 ±  0.8 159.30 ± 0.74 0.013* 
1Weight (kg) 67.2 7  ± 1.75 56.50   ±  1.1 83.84   ± 2.26 <0.001* 
1BMI     (kg/m2) 26.3   ± 0.5 23.10   ±  0.36 32.79   ± 0.73 <0.001* 
1WC      (cm) 84.57   ± 1.31 77.53   ±  1.12 95.41   ± 1.78 <0.001* 
1HC       (cm) 104.7 ± 1.18 98.28   ±  0.98 114.57 ± 1.63 <0.001* 
1WHR 0.81     ± 0.0 1.16     ±  0.0 1.36     ± 0.0 0.001* 

Blood biochemical parameter     



2Serum 25(OH)D (nmol/L) 31.8    ± 0.9 31.91   ± 1.2 31.51   ± 1.4 0.767 

DNA damage parameters     
2Tail moment 1.7      ± 0.2 1.64    ± 0.2 1.67     ± 0.3 0.813 

2 % DNA in comet tail (%) 11.5    ± 0.5 11.20  ± 0.6 11.98   ± 0.9 0.731 

2Tail olive moment 2.8      ± 0.2 2.77    ± 0.2 2.85     ± 0.3 0.988 
2Tail intensity              (%) 53438 ± 2582.4 53229 ±  3268.1 53825  ± 4243.2 0.654 
2Tail length                 (µm) 7.09    ± 4.6 7.09    ±  0.5 7.07     ± 0.7 0.696 

Scalp hair heavy metals levels     
2Arsenic       (mg/kg) 0.1      ± 0.03 0.12   ± 0.03 0.15    ± 0.05 0.959 
2Lead           (mg/kg) 2.8      ± 0.8 2.36   ± 0.4 3.72    ± 2.1 0.229 
2Cadmium   (mg/kg) 0.2      ± 0.1 0.16   ± 0.05 0.27    ± 1.3 0.176 
2Chromium  (mg/kg) 6.2      ± 0.4 6.85   ± 0.5 4.85    ± 0.5 0.973 
2Mercury     (mg/kg) 1.0      ± 0.4 1.37   ± 0.5 0.27    ± 0.1 0.611 

Dietary parameters     
2Total energy intake (kcal) 2402.4 ± 84.3 2239.9 ± 116 2652.5 ±108.2 0.377 
3Carbohydrate intake (g) 297.7  ± 11.6 282.2 ±16.3 321.6  ± 26.3 0.354 
3Protein intake           (g) 114.8  ± 4.5 106.3 ± 5.4 127.9   ± 7.4 0.150 
3Fat intake                 (g) 83.5  ± 3.6 76.2   ± 4.7 94.9     ± 5.2 0.759 
3Percent energy from 
carbohydrate (% of TE) 

49.9   ± 2.7 50.0   ± 1.1 48.8    ± 1.2 0.825 

3Percent energy from protein          
(% of TE) 

19.4   ± 0.4 19.4   ± 0.5 19.3   ± 0.7 0.523 

3Percent energy from fat                 
(% of TE) 

31.0   ± 0.6 30.6   ± 0.8 31.9   ± 0.8 0.880 

 

There was no significant difference in serum 25(OH)D, DNA damage parameters, hair 

heavy metal levels and dietary parameters between the non-obese and obese groups (p >0.05). 

However, some associations were observed among the obese group as listed in the following 

subheadings.  

 

Serum 25(OH)D level and DNA damage in the obese group 

 

Serum 25(OH)D and chromium levels were dichotomized into two groups based on their 

respective median value of 31 nmol/L and 5.88 mg/kg, respectively (for all participants) (Figures 



1-3). Multivariate general linear model analysis revealed that individuals with serum 25(OH)D level 

of  ≥ 31nmol/L had a significantly lower tail moment (1.06 ± 0.22 nmol/L versus 2.37 ± 0.60 nmol/L; 

p=0.029; Figure 1), and tail olive moment (2.36 ± 0.24 nmol/L versus 3.41 ± 0.46 nmol/L; p=0.031; 

Figure 2), compared to those with lower serum 25(OH)D level, in the obese group, after adjustment 

for covariates age, height, weight, smoking status, exposure to second-hand smoking, physical 

activity level, total energy intake, and concentration of hair heavy metal including lead, mercury, 

cadmium, chromium and arsenic (p interaction=0.045 and 0.050, respectively). However, such 

associations were not found in the non-obese group (p>0.05).  

 

Figure 1 

  

 

 



Figure 2 

 

 

Chromium level and DNA damage in the obese group 

 

The multivariate general linear model analysis also revealed that individuals with chromium 

level of  ≥5.88 had a significantly higher tail moment (2.33 ± 0.75 versus 1.29 ± 0.24; p=0.047) 

(Figure 3), compared to those with lower chromium level, in the obese group, after adjusting for 

covariates age, height, weight, smoking status, exposure to second-hand smoking, physical activity 

level, total energy intake, serum 25(OH)D and concentration of lead, mercury, cadmium and arsenic 

in hair (p interaction= 0.011). However, such association was not found in the non-obese group 

(p>0.05).  

 



Figure 3 

 

Figure 4 

 

 



Discussion  

 

Dietary habits and environmental exposure to toxicants significantly affect human's health 

51. It is known that the mutation rate may increase if one is deficient in nutrient involved in DNA 

metabolism 52.  

 

This study revealed that obese participants with serum 25(OH)D of ≥ 31nmol/L had 

significantly lower DNA damage. In concordance with this result, several studies had reported 

lower DNA damage given an adequate level of vitamin D 53-56. Vitamin D supplementation showed 

a positive influence on glucose metabolic enzymes and reduced DNA damage where comet tail 

length showed an average of ~20 μm compared to ~30 μm in non-supplemented diabetic mice 56. 

In a human study, vitamin D supplementation increased genomic and chromosomal stability in 

overweight and obese population 57. On the contrary, deficiency of vitamin D had been reported to 

cause greater DNA damage with elevated total damage score was reported in vitamin D deficient 

subjects  (vitamin D < 30 ng/ml) 58. These data supported the observation in this study which 

reported lower DNA damage in participants with higher serum 25(OH)D. The amount and choice 

of food and supplements have a robust impact on micronutrients' cellular concentration through 

mechanisms that reflect their role in DNA synthesis and repair 1. Hence, having adequate levels of 

micronutrients are vital for the optimal function of DNA, particularly in women.  

  

Diet is a primary source of heavy metal to humans contributing to more than 90% of 

exposure24,59. Considering that ubiquitous exposure to heavy metal exposure is a significant threat 

to women health,60,61 bio-monitoring of hair heavy metal analysis have been proposed for routine 



clinical screening and diagnosis62. Hair heavy metals is an indicator reflecting elements from diet 

than environmental exposure. This study found that a higher hair chromium concentration of ≥5.88 

mg/kg resulted in significantly greater DNA damage among obese women. Food is a principal 

source of exposure to chromium63 which trivalent chromium Cr(III) has been considered an 

essential trace element. However, research has shown controversial results for Cr(III) as an essential 

or toxic micronutrient64. Compared to Cr(III), hexavalent chromium Cr(VI) has long been known 

as a human respiratory carcinogen64. Overdosing of chromium may lead to various cytotoxic and 

genotoxic reactions63. Both Cr(III) and Cr(VI) have shown to damage DNA and break chromosomes, 

impacting genomic integrity leading to cancer64 . Thus, hair heavy metals reflected heavy metals 

contamination in diet of which concentration of hair chromium was associated with DNA damage; 

all these are further complicated by obesity  

 

There was no significant difference for serum 25(OH)D, DNA damage parameters, hair 

heavy metal levels, and dietary parameters between the non-obese and obese groups. This is likely 

due to the homogeneity of lifestyle among the study participants. The impact of homogeneous 

lifestyle on DNA oxidation and DNA damage had also been reported in other studies  65,66.  Besides, 

the integrative review suggested that psychological distress, educational attainment, physical 

activity, and sleep duration play a significant part in affecting DNA integrity67. Other than dietary 

intake, other lifestyle factors (e.g. exercise, alcohol, smoking and recreational drugs) profoundly 

affect DNA damage1. DNA SSBs damage lesions can be easily and rapidly repaired12 if there is a 

proper diet with modification of lifestyle. A randomized double-blind placebo-controlled 

intervention study among non-smoking postmenopausal women reported that dietary 

supplementation protects against DNA damage68. In all, the contribution of modifiable and 



preventable dietary-driven risk factors like nutrient deficiency and dietary heavy metal exposure in 

causing  DNA damage should not be overlooked. A sufficient level of micronutrient intake plays a 

paramount role in modifying the pre-existing DNA damage in the state of obesity as well as the 

heavy metal related DNA damage (figure 5). In this study, DNA damage of non-obese participants 

was not associated with any studied factors, which is likely because of their healthier lifestyle 

choices. Reports have supported the impact of a healthy lifestyle on reducing DNA damage 66,69. 

Figure 5 

 

Conclusion 

 

There was no significant difference in serum 25(OH)D, DNA damage parameters, 

concentrations of hair heavy metals, and dietary parameters between the non-obese and obese 

groups in this study. However, some associations were observed among the obese group. Higher 

serum 25(OH)D ( > 31nmol/L) was associated with lower DNA damage in obese women. A higher 

concentration of hair chromium increased DNA damage in obese women. As both obesity and DNA 

damage had been linked to a higher risk of non-communicable diseases, especially cancer, distinct 



attention should be given to control the heavy metals in food. Supplementation of vitamin D may 

modulate the impact of obesity on DNA damage. 

 

There are some limitations in this study. The causal inference of association between DNA 

damage and diet, vitamin D and heavy metal could not be established in this study. It will be 

essential to measure the level of micronutrients in the blood as they have been identified as 

facilitators of the absorption or accumulation of heavy metals in human organs.  This study serves 

as a preliminary study and calls for large-scale studies to confirm its findings.  
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Table Footnote 

 

 

Table 2:  

One-way ANCOVA was carried out to ascertain differences in the mean values of arthropometrics, 

serum 25(OH)D, concentration of hair heavy metals, DNA damage parameters, and dietary 

parameters between the non-obese and obese groups, after adjusting for covariates in different 

model 1age, physical activity status, smoking status and exposure to second-hand smoking; 2 model1 

+ BMI; 3 model2 +total energy intake.  

Obesity is defined as BMI≥27.5kg/m2. 

*p<0.05 was considered significant.  

Body mass index (BMI), waist circumference (WC), hip circumference (HC), waist-to-hip ratio 

(WHR), total energy intake (TE) 

 

 

 

 

 

Figure Legends (Word count:  243 words) 
 
Figure 1: Association of serum 25(OH)D level and the tail moment in obese and non-obese 

groups 

The effect was evaluated by using a multivariate general linear model after adjusting for covariates 

age, height, weight, smoking status, exposure to second-hand smoking, physical activity level, total 

energy intake, and hair heavy metals (lead, mercury, cadmium, chromium and arsenic) . Serum 

25(OH)D was dichotomized into two groups based on the median value of 31nmol/L (for all 

participants) for analysis.  

*p<0.05 was considered significant. 

 

Figure 2: Association of serum 25(OH)D and DNA damage (tail olive moment) in the obese 

and non-obese groups 

The effect was evaluated using a multivariate general linear model after adjusting for covariates 

age, height, weight, smoking status, exposure to second-hand smoking, physical activity level, total 

energy intake, and hair heavy metal (lead, mercury, cadmium, chromium and arsenic). Serum 

25(OH)D was dichotomized into two groups based on the median value of 31nmol/L (for all 

participants) for analysis. Obesity is defined as BMI≥27.5kg/m2. 

*p<0.05 was considered significant. 

 

 

 

 

 



Figure 3: Association of chromium level and tail moment  

The effect was evaluated by using a multivariate general linear model after adjusting for covariates 

age, height, weight, smoking status, exposure to second-hand smoking, physical activity level, total 

energy intake, serum 25(OH)D and concentration of lead, mercury, cadmium and arsenic. 

Chromium concentration was dichotomized into two groups based on the median value of 5.88  

mg/kg (for all participants) for analysis. 

*p<0.05 was considered significant. 

 
 
 
Figure 4: An example of comet assay results 

The comet assay illustrates the comet cells of a participant (27 years old) with low serum 25(OH)D 

(30 nnmol/L), % tail DNA, and tail moment indicated DNA damage in this participant. The software 

estimates the DNA damage parameters including the length of the comet tail, the percentage of the 

tailed DNA, the tail moment (TM) and the Olive tail moment (OTM). The tail moments are 

calculated by the formulas as follow:  

 

 

Figure 5: The potential correlation of micronutrient intake, dietary heavy metals exposure, obesity 
and DNA damage 


