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Abstract: Polyextremophilic red algae, which belong to the class Cyanidiophyceae, are adapted to live in

geothermal and volcanic sites. These sites often have very high concentrations of heavy and precious

metals. In this study, we assessed the capacity of three strains of Galdieria (G. maxima, G. sulphuraria,

and G. phlegrea) and one strain of Cyanidium caldarium to tolerate different concentrations of precious

metals, such as palladium (Cl4K2Pd) and gold (AuCl4K) by monitoring algal growths in cultures

exposed to metals, and we investigated the algae potential oxidative stress induced by the metals. This

work provides further understanding of metals responses in the Cyanidiophyceae, as this taxonomic

class is developed as a biological refinement tool.

Keywords: metal tolerance; Galdieria sulphuraria; precious metals; metabolic response

1. Introduction

Recently, there has been a remarkable and growing demand for recovering elements
and energetic resources from waste streams [1]. In particular, high levels of concern have
been directed towards precious metals and rare earth elements (REEs) due to their extensive
use in superconductors, catalysts, and electronics industries. Conversely, their discharge
into the environment and the suitability of recycling from e-waste are relevant topics
because of their environmental and health hazards, in addition to their economic value.
These issues have become evident to governments and to electronics industries that are
increasingly prone to develop new methods to remove REEs from the environment and
to possibly recycle them back into a “closed-loop economy” production cycle [2–6], while
simultaneously achieving energy optimization goals [7,8]. Recently, biological methods
have been developed to ensure the recovery of small quantities of these metals from
wastewater systems [5], using mainly bacteria [9–12] or plants known for their ability to
immobilize heavy metals in the cell wall and to compartmentalize them in vacuoles [13].
Interestingly, polyextremophilic algae have intrinsic properties that make them capable
of selective removal and concentration of metals, thanks to their adaptation to live in
geothermal and volcanic sites [14–17]. Geothermal fluids leach out of hot volcanic rocks
and are enriched by enormous amounts of minerals and metals, including lithium, sulphur,
boric acid, and precious metals such as gold, platinum, palladium, and silver [18].

Cyanidiophyceae, a class of unicellular red algae, thrive in extreme conditions, very
low pH (0.0–3.0), and high temperatures (37–55 ◦C), and colonize acid and hydrothermal
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sites, in addition to rocks and muddy soil around hot ponds [19]. They are divided
into three genera: Cyanidioschyzon, Cyanidium, and Galdieria, which differ in size, cellular
shape, and growth conditions. Cyanidioschyzon merolae, the only species belonging to the
Cyanidioschyzon genus, differs from the other two taxa due to the lack of a cell wall and
division by binary fission [20]. Cyanidioschyzon, Cyanidium, and Galdieria can grow on
ammonia as well as nitrate. The Cyanidioschyzon and Cyanidium species are obligatory
autotrophs, while the Galdieria species can grow auto-, mixo-, and heterotrophically and
tolerate high concentrations of salts [21]. This makes Galdieria particularly suitable for
biotechnological applications [14]. The ability of Galdieria sulphuraria to recover REEs has
already been assessed [5,22] and confirmed by an approved patent [23]. In this study, we
focused an in depth, comparative study on the ability of different Galdieria species (Galdieria
maxima, Galdieria sulphuraria, and Galdieria phlegrea) and Cyanidium caldarium to tolerate
different concentrations of precious metals (palladium Cl4K2Pd and gold AuCl4K). We
also investigated the metabolic response and oxidative stress induced by these metals
by monitoring superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase
(APX) activities.

2. Results

Polyextremophilic microalgae, such as Cyanidiophyceae, have a high intrinsic capacity
to uptake metals, involving active and passive mechanisms [5]. Heavy, rare, or precious
metals can influence algae physiology in various ways, likely inhibiting different physio-
logical processes. To evaluate the suitability of Cyanidiophyceae, other than G. sulphuraria,
for biotechnological application to effectively recover precious metals, we tested their
tolerance to Cl4K2Pd and AuCl4K by monitoring the growth and metabolic response of
four different taxa, which were exposed to each of these metals at a concentration in the
range 1–10 g/L. As discussed in depth in Section 4, the growth was evaluated after 4 days
(96 h) from a single metal exposure. The results were expressed in the form of maximum
growth rate (MGR).

As shown in Figure 1, the presence of AuCl4K significantly reduced cellular duplica-
tion in G. maxima at all the concentrations tested; Cl4K2Pd did not negatively affect cell
growth, and no statistical difference was recorded between MGR in the control and tests
(Figure 1A). Regarding G. phlegrea, both metals induced a trend of reduction in growth
rate at both concentrations (Figure 1B) and vice versa, in G. sulphuraria, AuCl4K reduced
cell growth at the maximum concentration, while MGR appeared to be not affected by
Cl4K2Pd, as shown by the MGR values at 10 g/L, as compared with the control. A decrease
in growth rate was recorded at a lower concentration (1 g/L); presumably, higher levels of
palladium was beneficial for the growth of this strain. Perhaps this improvement of cell
duplication can be interpreted as a defense of the algal strain. Finally, C. caldarium showed
a high tolerance to Cl4K2Pd, whereas AuCl4K significantly inhibited cell duplication as the
metal concentration increased (Figure 1D). The highest concentration of palladium (10 g/L)
improved the growth, and in G. maxima and G. sulphuraria, the MGR values outperformed
the controls.

We next evaluated the ROS scavenging activities of SOD, CAT, and APX in all the
algae tested in the presence of Cl4K2Pd and AuCl4K. This as performed at a concentration
of 1 g/L, after an incubation period of 24 h. The reason for this choice was because the
antioxidant activity was considered to be a measure of cell effectiveness in response to the
impact of metals, increasing their tolerance as a protective mechanism necessary to remove
ROS before they could damage sensitive parts of the cellular machinery. In particular, SOD,
which catalyses the dismutation of O2

− (singlet oxygen) to O2 and H2O2, was defined as
the first cellular defence against ROS production. Meanwhile, CAT catalyses the production
of H2O from the degradation of H2O2 and ROOH. Finally, APX reduces H2O2 to H2O
using the ascorbate as an electron donor. The strain-/metal-specific metabolic responses
were quite diverse, as shown in Figure 2. Indeed, APX activity significantly increased only
in G. maxima in response to Cl4K2Pd, while in the presence of AuCl4K, all the enzymatic
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activities appeared to be reduced (Figure 2A). Concerning the other strains, in G. phlegrea,
all the tested enzymatic activities decreased in the presence of Cl4K2Pd and increased
in the presence of AuCl4K (Figure 2B); in G. sulphuraria, both metals induced a decrease
in enzymatic activity (Figure 2C). Finally, we observed a significant increase in all the
enzymatic activities in C. caldarium in the presence of Cl4K2Pd, but not in the presence of
AuCl4K (Figure 2D).
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Figure 1. Evaluation of metal tolerance through MGR monitoring after 4 days (96 h). Maximum

growth rate in the presence of different concentrations of palladium (Cl4K2Pd, orange, left panel) and

gold (AuCl4K, blue, right panel), for the species: (A) G. maxima; (B) G. phlegrea; (C) G. sulphuraria; (D)

C. caldarium. Error bars represent standard deviation of three replicates. (*) = p-value ≤ 0.000000001

calculated by T-test.
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Figure 2. Evaluation of enzymatic activities after metals exposure. Relative units represent enzy-

matic activity as units/g of dry weight (SOD), enzymatic activity as nmol H2O2/g of fresh weight

(CAT), and enzymatic activity as µmol ascorbate/g of fresh weight (APX). Enzymatic activities were

monitored in: (A) G. maxima; (B) G. phlegrea; (C) G. sulphuraria; (D) C. caldarium, treated with 1 g/L

of palladium (Cl4K2Pd, orange bars) and gold (AuCl4K, blue bars) after 96 h. Mean (± SD) was

calculated from three replicates. (*) = p-value ≤ 0.05 calculated by T-test.

3. Discussion

A significant increase of enzymatic activity in response to metals addition, as compared
with the control, suggests a high scavenging activity of the singlet oxygen in hydrogen
peroxide. This provides evident tolerance of these algae to the metal under examination.



Plants 2021, 10, 2367 5 of 8

Increases in the activities of both antioxidant enzymes are necessary to reduce the concen-
trations of both singlet oxygen and hydrogen peroxide, minimizing the risks. In general,
modulation of antioxidant enzymes is an essential adaptive response to counteract adverse
conditions; in fact, maintaining a high antioxidant capacity in the cells is correlated with
increased tolerance against different types of environmental stress [24].

Our results indicate that precious metals can be tolerated by all the strains tested,
although there is, clearly, a higher tolerance to Cl4K2Pd vs. AuCl4K when considering
growth rates. The comparison of growth rates in the presence of different concentrations of
the metals showed that G. phlegrea appears to be more affected by the presence of either
metals, as it showed a decrease in both growth and metabolic responses. The contribution
to the oxidative equilibrium of the examined extremophile microalgae and the induction
of antioxidant enzymes could result from the adaptation of the cell to the development of
intracellular ROS. However, there was no clear correlation between any enzymatic activity
and the better performing growth of the other three strains tested.

Although metals application generally induces inhibition of microalgal growth, sev-
eral reports have also suggested their positive roles. It is known that metals at small
concentrations are useful for microalgal metabolism since they participate in the synthesis
of proteins involved in photosynthesis, nitrogen assimilation, phosphorous acquisition,
CO2 fixation, and DNA transcription [25]. Algae can develop efficient defense mechanisms
to counteract the toxicity and to improve their survival, even at high metal concentra-
tions [26]. One of the defense strategies is the accumulation of the metals, which consists
of metal adsorption on the cell surface (biosorption), followed by their entry into the cell
protoplast (bioaccumulation). When metals accumulate inside the cell, the algae activate
molecular mechanisms as other defense strategies to reduce their toxicity [26]. G. sulphu-
raria can survive in harsh environments rich in heavy, precious and rare-earth metals by
detoxifying and transforming them into less toxic derivatives [27]. The defense strategies
developed by algae to prevent the toxic effect of some metals represent a good opportunity
for biotechnological purposes. A study by Ju et al., (2016) showed that the ability of G.
sulphuraria to recover both Cl4K2Pd and AuCl4K was inefficient [5]. However, the authors
did not test this strain’s tolerance to growth in the presence of these metals. In contrast, we
consider that tolerance and growth capacity is an essential parameter to be considered for
biotechnological applications, such as metals recovery.

4. Materials and Methods

4.1. Strain Cultivations

The algal strains used in this study belong to the algal collection of the University of
Campania “L. Vanvitelli” derived from the University of Naples (www.acuf.net; accession
date 10 August 2021), namely ACUF 3.4.5 (G. maxima), ACUF 7.6.21 (G. phlegrea), ACUF
9.2.11 (G. sulphuraria), and ACUF 626 (C. caldarium). All the strains were inoculated in Allen
medium containing (NH4)2SO4 as the nitrogen source, at a pH of 1.5 by adding H2SO4 [28],
cultivated at 37 ◦C, and kept mixed on an orbital shaker under a photon irradiance of
150 µmol photons m−2 s−1 with a 16/8 h light/dark cycle provided by cool-light fluorescent
lamps (Philips TLD30w/55, Philips Lighting, Eindhoven, the Netherlands). Cell densities
of the algal cultures were assessed, and the optical density (OD) was recorded at 750 nm
with a spectrophotometer (Bausch & Lomb Spectronic 20).

4.2. Experimental Procedure

Microalgal cultures at an exponential phase were inoculated into fresh Allen medium
enriched with Cl4K2Pd and AuCl4K at concentrations ranging from 1 to 10 g/L. The growth
rates were calculated within 96 h, using the spectrophotometric measurements of optical
density (OD 550 nm, Bausch & Lomb Spectronic 20, Bausch & Lomb, Milan, Italy), and
then were used in the following equation for the maximum growth rate (MGR):

MGR (1/d) = (Ln(Nt) − Ln(N0))/(t − t0)
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where Nt is the optical density at the final time, N0 is the optical density at the initial time,
t is the final time (days), and t0 is the initial time (days).

All analyses were performed in triplicate.

4.3. Enzyme Extraction and Assays

Algal cultures grown in the presence of the minimal dose of palladium and gold
(1 g/L) were harvested by centrifugation at 14,000 rpm for 10 min after 96 h of exposure.
The algal pellets were washed using KH2PO4 (0.1 M pH 7.8) followed by centrifugation
at 12,000 rpm for 4 min at 4 ◦C, twice. Proteins were extracted and the sample was
homogenized with liquid nitrogen using a mortar and a pestle. The obtained powder was
resuspended in 3 mL of Lysis Buffer (0.5 M KH2PO4, pH 7.8, 2 mM DTT, 1 mM EDTA,
1 mM PMSF, and 1.25 mM PEG) and centrifuged at 14,000 rpm for 20 min at 4 ◦C. The
supernatant was used for measurement after Bradford quantification.

The SOD (EC 1.15.1.1) activity was assayed by the photochemical inhibition nitro blue
tetrazolium (NBT) method [6]. The reaction mixture contained 50 mM sodium phosphate
buffer (pH 7.8), 13 mM methionine, 75 mM NBT, 0.1 mM EDTA, 30 µL of enzyme extract,
and 2 mM riboflavin. The reaction was started by switching on the light (two 15 W
fluorescent lamps) for 15 min, and the absorbance was measured at 560 nm. Two samples
without the enzymatic extract and illumination were used as the controls. One SOD unit
was defined as the amount of enzyme corresponding to 50% inhibition of the NBT reduction.
The enzyme activity was expressed as units per 1 mg of protein (U mg−1 protein).

The CAT (EC 1.11.1.6) activity was assayed according to Aebi (1984) [29], with minor
modifications. The H2O2 decrease was determined after the reaction of the extract in the
presence of 50 mM potassium phosphate buffer (pH 7.0) containing 20 mM H2O2. The
reaction was monitored, measuring the decrease in the absorbance at 240 nm for 100 s.
The CAT activity was calculated according to the molar extinction coefficient of H2O2

(39.4 mM−1 cm−1) and expressed as nmol H2O2 min−1 mg−1 protein.
The APX (EC 1.11.1.1) activity was assayed according to Nakano and Asada (1981) [30].

The ascorbate oxidation was determined using the reaction mixture containing 50 mM
potassium phosphate buffer (pH 7.0), 0.1 mM EDTA-Na2, 0.5 mM ascorbic acid, and 100 µL
of crude enzyme extract. The reaction started by adding 0.1 mM H2O2, monitoring the
decreasing absorbance at 290 nm for 100 s. The APX activity was calculated according to
the molar extinction coefficient of ascorbate (2.8 mM−1 cm−1), expressed as nmol from
H2O2 min−1 mg−1 protein.

Each condition for each experimental approach was tested 3 times independently.

5. Conclusions

Our observations strongly suggest that strains other than G. sulphuraria can be used
to recover metals due to their high tolerance to precious and heavy metals. Nevertheless,
further studies will be necessary to clarify the biological mechanisms underlying the
tolerance capacity of Cyanidiophyceae and their strategies to respond to metal toxicity for
future biotechnological applications.
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