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Abstract 

A fast compressed sensing reconstruction using least squares 

method with the signal correlation is presented in this paper. 

It is well known that the complexity of 𝑙!-minimisation is 

very high and is undesirable for many practical applications. 

The least squares method, on the other hand, has a much 

lower complexity. However, least squares does not promote 

the sparsity of signal and therefore cannot provide acceptable 

reconstructed results. The main contribution of this paper is to 

show that by exploiting signal correlation, the reconstruction 

error of least squares is greatly improved. Moreover, the 

correlated reference used in this method is very flexible, and 

can contain many kinds of correlation, such as spatial or 

temporal correlation. Experimental results show that the 

performance of this method is comparable to the state-of-the-

art algorithms, whilst having a much lower complexity. It also 

shows that this method can be applied to both sparse and 

redundant signal reconstruction. 

1 Introduction 

In recent years, compressed sensing is of interest among 

many signal processing researchers as well as statisticians and 

engineers. In essence, compressed sensing allows a complete 

signal to be obtained from an under-sampled measurement, in 

contrast to the traditional signal acquisition/compression 

currently in use. Since compressed sensing was introduced in 

[1], this approach instantaneously has attracted lots of 

attention because of its potential to reduce the acquisition 

complexity. Low acquisition complexity is crucial in many 

applications, such as remote sensing and medical imaging. 

Therefore, there are many research work on applying 

compressed sensing to such application [2], [3], [4].  

 

Compressed sensing states that for a signal 𝐱 ∈   ℝ!, it is 

possible to measure only a small subset of samples and then 

reconstruct a full signal 𝐱 afterward. In order for this scheme 

to be success, signal 𝐱 is required to be sparse. Signal 𝐱 can 

be sparse in its natural domain or in any of its transform 

domain, in which case the basis of the sparse transformation 

is added into the system. A measurement 𝐲 ∈ ℝ! where 

𝑚 ≪ 𝑛 is obtained by using an incoherent sensing 

mechanism, i.e., 

𝐲 = 𝐀𝐱, 

where 𝐀 ∈ ℝ!  ×  ! is the sensing matrix. It has been shown in 

[5] that by using a sensing matrix that is incoherent to the 

signal 𝐱, the power of under-sampled artefacts is spread out 

and the distortion to the signal is small. It is also shown that 

most random matrices are incoherent with most signals. Once 

the measurement 𝐲 is obtained, the full signal x can be 

obtained by using the optimisation process known as 𝑙!-

minimisation (𝑙!-min), i.e., 

min 𝐱 !     subject  to    𝐀𝐱 = 𝐲 

𝑙!-min promotes the sparsity of the solution by minimising 𝑙!-

norm of the reconstructed signal (or the sparse domain of the 

reconstructed signal). The sparsest solution yielded by this 

process is the best approximation of 𝐱. It has been show in [5] 

that if 𝐱 is sufficiently sparse, the reconstruction can be exact.  

 

The problem with the previously described scheme is that 𝑙!-

min is a non-linear optimisation process. It cannot be solved 

mathematically and the only way to obtain the result is to use 

some optimisation algorithms. To date, many algorithms have 

been proposed to consider both the accuracy of the solution 

and the complexity of the algorithm [6], [7], including many 

greedy algorithms [8], [9], [10]. It is suffice to say that there 

is a trade-off between the accuracy and the complexity. 

Nevertheless, even with the fast greedy algorithms, it is still 

quite a challenge to implement this reconstruction process 

into most real-time applications. In a case of compressed 

video acquisition/ reconstruction, some might be willing to 

wait for a few hours to reconstruct a video sequence from its 

under-sampled data. However, for most people, doing so is 

undesirable. Scarlett et al. [11] states that compressed sensing 

is nothing more than just a shift of complexity load from the 

encoder side to the decoder side.  It is clear that without a 

faster, near real-time reconstruction concept, the application 

of compressed sensing is very limited.  

 

Another issue of 𝑙!-min is that its sparsity-promoting 

objective does not always provide the best solution. The 

reason is that most natural signals are highly complex and not 

as sparse as expected. To overcome this, many works employ 

the use of side-information to improve the reconstruction 

accuracy. The motivation of such approach is the fact that in 

most applications, some characteristics of the signal can be 

predetermined or approximated. This can easily be seen in 

Magnetic Resonance Imaging, sensor networks, and 

multiview imaging. The use of side-information can reduce 

the possible space of solution significantly and thus help 
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improve the reconstruction accuracy. Many kinds of side-

information have been employed into the reconstruction 

process. In [11], use the sparsity pattern of signals as a side-

information. Sparsity pattern can either be known in advance 

or be approximated online. The model-based compressed 

sensing [12] uses the complete sparsity pattern where both 

location and structure of sparse supports are known. The 

Kalman-filtered compressed sensing, on the other hand, 

estimates the sparse supports online using the assumption that 

sparse supports change slowly [13]. Other kinds of side-

information are also available. The work in [14] uses the 

signal’s upper and lower bound as a prior knowledge. The 

work in [15] reconstructs a group of several signals which 

have the same statistical characteristics together to improve 

overall accuracy. In dynamic MRI, the temporal redundancy 

between each scan is used as the side-information [16]. 

 

Let us return to the complexity problem and the practical 

consideration of the optimisation process. The most widely 

used optimisation process is the least squares method, 

typically to solve over-sampled inverse problems. It is well 

known, however, least squares method performs poorly for 

under-sampled problems. However, because least squares is a 

linear operation, its complexity is far lower than that of the 𝑙!-

min.  

 

Here, we proposed to combine the benefits of both the least 

squares and the side-information together. By using least 

squares method, the reconstruction process can be done very 

rapidly, providing the real-time reconstruction capability. The 

accuracy of the reconstruction results is improved by using 

references. References are used as side-information to the 

optimisation process. This paper also shows that such 

references are very flexible and can based on various kinds of 

signal correlation. The exploitation of spatial correlation and 

temporal correlation are demonstrated here. It also shows that 

by using correlated signal as references, the sparsity 

requirement of the signal is no longer necessary. Thus, the 

proposed method not only allows the rapid reconstruction but 

also allows the compressed sensing to be performed in the 

redundant domain. 

2 Compressed sensing reconstruction using the 

least squares and signal correlation 

2.1 Why use the least squares? 

The least squares method is a very popular method to solve 

over-determined problems, such as, data fitting and 

regression, because of its simplicity. However, it is well 

known that the least squares, or more accurately the 𝑙!-norm 

minimisation, does not perform well, when applied to 

underdetermined problems. This is because the least squares 

does not promote the sparsity of the solution. On the contrary, 

the result of the least squares, based on the geometry of 𝑙!-

ball, tends to be less sparse as much as possible.  

 

Nevertheless, the least squares method is much simpler than 

the 𝑙!-min in term of complexity. Whilst 𝑙!-min is a highly 

non-linear algorithm, which usually takes hundreds on 

iterations to solve a problem, least squares is a linear 

operation that can yield a solution instantly. This simplicity is 

the key that many practical applications, despite its tendency 

to be affected by outliers, choose least squares as a method of 

choice.  

 

The motivation of this work is that the least squares should be 

able to perform fairly reasonably well with non-sparse 

signals. As pointed out earlier, the least squares does not 

promote the sparsity of solution. An interesting observation is 

that most natural signals are not quite sparse. Even though 

they can be transformed into some sparser domains, their 

sparsity levels are usually far from being sufficient for a 

perfect compressed sensing reconstruction using sparsity-

promoting function. In these cases, the errors of 𝑙!-min and 

least squares are about the same in magnitude, but they are 

from different sources. The error of 𝑙!-min is due to the fact 

that the solution is too sparse, whilst the error of the least 

squares is due to the solution’s sparsity is too small.  

 

It is, however, possible to drop the notion of sparsity entirely 

and use another objective function instead. Here we are 

proposing the use of signal correlation as the objective 

function. The correlation is maximised using the least squares 

method in order to obtain the best solution, as is shown in 

Proposition 1. 

 

Proposition 1. If the signal 𝐱 ∈ ℝ! has a correlated 

reference  𝐫 ∈ ℝ!, the reconstructed signal 𝐱 ∈ ℝ!
  can be 

obtained from the compressed measurement 𝐲 ∈ ℝ!, 𝐲 = 𝐀𝐱 

by 

𝐱 = 𝐫 + 𝐀
!
𝐀  𝐀

! !! 𝐲 − 𝐀𝐫 .         (1) 

 

Proof. Define an 𝑙!-minimisation problem as 

min 𝐱 − 𝐫 !    subject    to  𝐀  𝐱 = 𝐲.            (2) 

Define a Lagrangian as 

ℒ 𝐱 =    𝐱 − 𝐫 !

!
+   λ

!
𝐀  𝐱 − 𝐲 . 

Set a derivative of ℒ 𝐱  to zero, i.e., 
𝜕

𝜕𝐱
  ℒ 𝐱 = 2𝐱 − 2𝐫 + 𝐀

!
λ = 0, 

to obtain  

          𝐱 = 𝐫 −
!

!
𝐀
!
λ.            (3) 

To solve for the Lagrange Multiplier λ, substitute Equation 

(3) into 𝐲 = 𝐀𝐱 to obtain 

𝐲 = 𝐀𝐱 = 𝐀(𝐫 −
!

!
𝐀
!
λ)  

           = 𝐀𝐫 −
!

!
𝐀  𝐀

!
λ  .                                 (4) 

From Equation (4), we can get 

𝐀𝐀
!
λ =   −2  (𝐲 − 𝐀𝐫) 

and, finally,  

  λ =   −2   𝐀  𝐀! !! 𝐲 − 𝐀𝐫 .                   (5) 

 

Substitute Equation (5) back into Equation (3) to obtain 

𝐱 = 𝐫 + 𝐀
!
𝐀𝐀

! !! 𝐲 − 𝐀𝐫 .          (6) 

∎ 

The importance of the reference signal and its correlation will 

be discussed further.  
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2.2 Why use signal correlation? 

As discussed in Section 1, many recent works employ the use 

of side-information to improve the accuracy of reconstruction. 

Whilst many kinds of side-information, such as sparse 

support [13] and statistical model [12], are regularised into 

the problem, a simple signal correlation is also widely used in 

many works [17], [18]. The main benefit of the signal 

correlation is its simplicity. Many practical applications 

naturally acquire signals that are rich with such correlation, 

for example, temporal redundancy within a video sequence or 

spatial redundancy in a multi-view image. Some applications, 

such as, Magnetic Resonance Imaging (MRI) has both spatial 

and temporal correlation within its data. These correlations 

can easily be exploited in the reconstruction method. 

 

It is possible to maximise the correlation between a 

reconstructed signal and its correlated signal, which we call a 

reference, during the reconstruction from the compressed 

measurement. Moreover, this correlation maximisation can 

replace the minimisation of the sparsity as the objective 

function. It is shown in Proposition 2 that the error from this 

reconstruction scheme is limited to no more than twice the 

distance between the signal and the reference.  

 

Proposition 2. Given a known reference  𝒓 ∈   ℝ!, a solution 

𝒙! of the problem 

          min 𝐱 − 𝐫 !  subject  to  𝐀𝐱 = 𝐲,          (7) 

where 𝑝 > 0 and 𝐲 = 𝐀𝐱 is a measurement of 𝐱 ∈ 𝐗! 𝑅 , 

where  

      𝐗! 𝑅 = 𝐱   𝐱 − 𝐫 ! ≤ 𝑅, 𝐱 ∈ ℝ!},          (8) 

must satisfy 

sup 𝐱 −   𝐱!
!
≤ 2   𝐱 − 𝐫 !.          (9) 

 

Proof.  Consider a set of possible solution from = 𝐀𝐱 : 

𝐗! 𝐲 =   𝐱   𝐲 = 𝐀𝐱, 𝐱 ∈ 𝐗! 𝑅   }. 

According to the theory of Optimal Recovery/ Information-

based Complexity [19], the central algorithm 𝐴! yields the 

central solution 𝐱∗ of the set. This make 

                𝑟𝑎𝑑𝑖𝑢𝑠 𝐗! 𝐲 = sup 𝐱 −   𝐱
∗
   ! 𝐱 ∈ 𝐗!(𝐲)}. (10)  

 

Because the least-norm solution  𝐱! ∈ 𝐗! 𝐲 , therefore  

𝐱! −   𝐱
∗

!
≤ 𝑟𝑎𝑑𝑖𝑢𝑠 𝐗! 𝐲 .        (11) 

 

Since the triangle inequality gives  

         𝐱 − 𝐱!
!
≤ 𝐱 − 𝐱

∗
! + 𝐱

∗
− 𝐱! ,        (12) 

put Equation (10) and (11) into Equation (12) gives 

𝐱 − 𝐱!
!
= 2  𝑟𝑎𝑑𝑖𝑢𝑠 𝐗! 𝐲   

    ≤ 2 sup 𝐱 −   𝐱
∗
! 𝐱 ∈ 𝐗!(𝐲)}.       (13) 

 

Finally, because the central solution 𝐱∗ is at the centre of 

𝐗!(𝑅), from Equation (8), therefore 𝐱∗ = 𝐫. This makes 

Equation (13) to become 

sup 𝐱 −   𝐱!
!
≤ 2   𝐱 − 𝐫 !. 

∎ 

 

Proposition 2 shows that the error limit is based purely on the 

distance from the signal to its reference, and therefore the 

notion of signal sparsity is no longer important. This enables 

this reconstruction method to work very well with non-sparse 

signals, particularly when the correlation of the reference is 

high.  

 

Since this method does not use the signal sparsity, it is 

capable of reconstructing the signal both in the sparse domain 

as well as the redundant domain. Moreover, there is no 

special characteristic of reference required. The detail about 

the reference signal will be discussed in the next section. 

3 Experimental results 

There are two experiments in this paper, which are devised to 

demonstrate the performance of the proposed method both in 

term of quality and complexity. The first experiment 

demonstrates the exploitation of spatial correlation in images 

whilst the second experiment demonstrates the exploitation of 

temporal correlation in video sequences. In every experiment, 

the sampling and reconstruction is done in both sparse and 

redundant representation of the signals. The quality and 

complexity of the proposed method are discussed and 

compared with state-of-the-art reconstruction algorithms; 

these algorithms include both l1-min methods, namely ISAL1 

[6] and l1-Homotopy [7], and greedy methods, namely 

Subspace Pursuit [8], CoSaMP [9], and Regularised 

Orthogonal Matching Pursuit [10].  

3.1 References with spatial correlation 

The first experiment demonstrates the use of references that 

contain the spatial correlation to the signals. In this 

experiment, an image is sampled and reconstructed in row-

by-row basis. Each row in an image usually correlated to 

nearby rows spatially; hence some rows are selected as 

references to reconstruct the other rows.  

 

This paragraph explains the setting of this experiment in 

precise details. Under-sampled measurements 𝐲! correspond 

to each row 𝐱! from an image 𝐱 are acquired as random linear 

combinations of 𝐱! using random Gaussian matrices. Each 𝐲! 

is then reconstructed into 𝐱! individually using reconstruction 

algorithms. A set of 8 random images is used as a test set in 

this experiment. Each image is under-sampled at the factors 

of 0.25, 0.5, and 0.75. For the proposed method, rows 𝐱! at 

every 𝐿 interval are used as references, and are 

conventionally, uncompressed sampled. The value of 𝐿 = 4, 8 

and 12, chosen arbitrarily, are shown here.  

 

Firstly, let us look at the reconstruction quality in sparse 

domain. The sparse representation used in this experiment is 

the wavelet domain. Figure 1 shows the peak signal-to-noise 

ratio (PSNR) of the reconstruction results using each 

algorithm. It can clearly be seen that the proposed algorithm 

outperformed every algorithm presented. It can also be seen  
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Figure 1: PSNR of reconstructed results from various 

algorithms exploiting spatial correlation. Sampling and 

reconstruction is done in wavelet domain.  

 
Figure 2: PSNR of reconstructed results from various 

algorithms exploiting spatial correlation. Sampling and 

reconstruction is done in spatial domain. 

 

that the performance of the proposed method decreases as the 

reference interval 𝐿 increases. This is because once the 

interval between the signal and the reference is higher, the 

distance between them also increases and so the error. 

Nevertheless, the proposed method clearly performs better 

under this setting. 

 

Secondly, the same test is now sampled and reconstructed in 

the redundant domain; which is the spatial domain in this 

case. Figure 2 shows the PSNR of the results of this setting. 

In this setting, whilst the performance of every other 

algorithm decreases since the signal is no longer sparse, the 

performance of the proposed method is surprisingly 

unaffected. This demonstrates the fact that the proposed 

method can work as good in redundant domain as in sparse 

domain.  

 

Lastly, Table 1 shows the complexity, measured as 

computation time in seconds per frame, of each algorithm. It 

can be noticed that in this small problem setting, the 

complexity of the proposed method is comparable to the 

greedy algorithms. This is many folds faster than 𝑙!-min 

algorithms despite the better reconstruction quality.  

 
Algorithms Computation time per image 

R = 0.25 R = 0.50 R = 0.75 

ISAL1 8.96 11.13 13.19 

l1-Homotopy 4.70 18.39 32.39 

ROMP 0.98 0.69 1.24 

CoSaMP 70.68 193.43 320.95 

Subspace Pursuit 0.27 0.33 0.27 

Proposed L=4 0.025 0.042 0.12 

Proposed L=8 0.050 0.024 0.296 

Proposed L=12 0.066 0.028 0.377 

Table 1: Average computation time per image in seconds of 

each algorithm when using spatial correlation, computed at 

sampling rate 𝑅= 0.25, 0.5 and 0.75.  

3.2 References with temporal correlation 

The second experiment demonstrates the use of temporal 

correlated references. In this experiment, a video sequence is 

sampled and reconstructed frame-by-frame. Assuming that 

each frame is fairly similar to its neighbour, it is possible to 

select some frames as references to reconstruct the other 

frames.  

 

For each frame 𝐱! at time  𝑡, an under-sampled measurement 

𝐲!  is reconstructed into a full frame  𝐱!. The measurement 𝐲! is 

obtained from a linear random combination using Gaussian 

random matrices. Each 𝐱! is reconstructed individually from 

each other using the same reconstruction algorithms used in 

previous experiment. The proposed method uses frames 𝐱! at 

every 𝑅 frame interval as references. These frames are 

assumed to be uncompressed sampled. In this experiment, the 

arbitrary 𝑅 = 5, 10 and 15 are chosen. The dataset used in this 

experiment is a set of 14 video sequences chosen randomly, 

which all have different scenes, motions, and other 

characteristics. The dataset includes situations where there are 

only small amount of motions, such as surveillance 

sequences, and high amount motions such as sport sequences. 

 

Figure 3 shows the PSNR of each reconstruction algorithms 

when the sampling and reconstruction of video sequences is 

done in a sparse domain. The sparse domain used in this 

experiment is the discrete cosine transform (DCT) domain 

widely used in many video encoders. In this setting, it can be 

seen that the performance of the proposed method is not a 

candidate to the l1-min algorithms. Whilst the reconstructions 

using R=10, and R=15 are generally bad, the performance of 

R=5 is comparable to that of the greedy algorithms. The main 

reason for this level of performance is the effect of motion in 

video sequences. This is particularly clear in sequences that 

contain lots of motions, making the distance between the 

references and frames higher, therefore increases the 

reconstruction error. The larger the interval 𝑅  is, the more 

severe the effect of motions will be.   

 

However, let us consider the other setting where the sampling 

and reconstruction of video sequences is done in spatial 

(redundant) domain. Figure 4 shows that whilst the 

performance of every other algorithm decreases significantly 

in spatial domain, the performance of the proposed method is 

roughly maintained at the same level. This demonstrates 
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Figure 3: PSNR of reconstructed results from various 

algorithms exploiting temporal correlation. Sampling and 

reconstruction is done in DCT domain.  

 

 
Figure 4: PSNR of reconstructed results from various 

algorithms exploiting temporal correlation. Sampling and 

reconstruction is done in spatial domain. 

 

the potential of sampling and reconstructing video sequences 

directly in spatial domain.  

 

It should be noted that the references used in both 

experiments are chosen arbitrarily. If the references selecting 

process is more sophisticate, such as including inter-frame 

motion prediction or intra-frame prediction, the performance 

of the proposed method is expected to be improved. However, 

since this paper aims to emphasise the use of least squares 

with a support from signal correlation rather than to introduce 

the advance side-information, the references are chosen 

naïvely at a constant interval under the assumption of 

uncompressed sampling.  

 

Nevertheless, Table 2 shows that a computation time per 

frame of the proposed method is much lower than the other 

algorithms. This allows a near real-time reconstruction of a 

compressed video sequence. For a sequence of 1000 frames, 

the proposed method can reconstruct the whole sequence in 

around 6 minutes, whereas some algorithms require up to few 

hours.  

 

 

 

 
Algorithms Computation time per image 

R = 0.25 R = 0.50 R = 0.75 

ISAL1 21.08 31.79 32.78 

l1-Homotopy 5.09 12.76 23.11 

ROMP 0.87 3.08 4.12 

CoSaMP 60.24 134.46 203.50 

Subspace Pursuit 8.03 8.18 8.22 

Proposed L=4 0.12 0.39 0.70 

Proposed L=8 0.14 0.45 0.79 

Proposed L=12 0.14 0.47 0.81 

Table 2: Average computation time per image in seconds 

of each algorithm when using temporal correlation, 

computed at sampling rate 𝑅= 0.25, 0.5 and 0.75. 

4 Conclusions 

This paper has introduced a fast compressed sensing 

reconstruction method using the least squares. The proposed 

method enables compressed sensing in real-time applications. 

The reconstruction quality of the least squares is improved to 

the level comparable to 𝑙!-min algorithms and greedy 

algorithms by exploiting signal correlation. By using a 

correlated signal as references, the reconstruction is done by 

promoting the correlation between the signal and its reference 

instead of promoting the sparsity of signal. This enables the 

proposed method to work equally good in both sparse and 

redundant domains. This paper also showed that the 

references can be chosen very flexibly. The results of two 

naïve reference choices, the spatial correlation between image 

rows and the temporal correlation between video frames, 

were demonstrated. It is evident from results, that the closer 

the reference to the signal, the better the reconstruction result.  
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