
This is a repository copy of New measurement of the body mass index with bioimpedance 
using a novel interpretable Takagi-Sugeno Fuzzy NARX predictive model.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/179759/

Version: Accepted Version

Proceedings Paper:
He, C., Gu, Y., Wei, H. orcid.org/0000-0002-4704-7346 et al. (1 more author) (2022) New 
measurement of the body mass index with bioimpedance using a novel interpretable 
Takagi-Sugeno Fuzzy NARX predictive model. In: Jiang, R., Zhang, L., Wei, H.L., Crookes,
D. and Chazot, P., (eds.) Recent Advances in AI-enabled Automated Medical Diagnosis. 
AI4MED 2021 : International Symposium on Artificial Intelligence for Medical Applications, 
19-23 Aug 2021, Virtual Conference. Taylor & Francis , pp. 253-267. ISBN 
9781032008431 

This is an Accepted Manuscript of a book chapter published by CRC Press in Recent 
Advances in AI-enabled Automated Medical Diagnosis on 20/10/22, available online: 
https://www.routledge.com/Recent-Advances-in-AI-enabled-Automated-Medical-
Diagnosis/Jiang-Zhang-Wei-Crookes-Chazot/p/book/9781032008431.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



 

3 

Chapter xxx 

New Measurement of the Body 

Mass Index with Bioimpedance 

Using a Novel Interpretable 

Takagi-Sugeno Fuzzy NARX 

Predictive Model 
Changjiang He 1, Yuanlin Gu 2*, Hua-Liang Wei 3, Qinggang Meng 4 

1 Department of Mathematics and Statistics, Lancaster University, UK. 

2* Department of Computer Science, Roehampton University, UK. (Corresponding author: 

guyuanlin@hotmail.com) 

3 Department of Automatic Control and Systems Engineering, University of Sheffield, UK. 

4Department of Computer Science, Loughborough University, UK. 

 

Abstract 

Body Mass Index (BMI) is an important and useful indicator for medical 

diagnoses, accurate monitoring and forecasting of BMI are therefore 

crucial. However, the current measurement of BMI, which is usually 

highly correlated with the environmental and individual conditions, is 

inaccurate. Recent developments of bioelectrical impedance show that 

there is a great potential to improve the measurement of BMI. In this paper, 

we propose a novel interpretable Takagi-Sugeno Fuzzy NARX (TSF-

NARX) model to predict BMI values from bioimpedance signals and 

anthropometric factors. The proposed model integrates the Nonlinear Auto 

Regressive Moving Average with Exogenous Input (NARMAX) method 

and Takagi-Sugeno fuzzy inference. An obvious novelty and advantage of 

the proposed method is that it provides a new framework, combining the 

capabilities of fuzzy inference and NARX representation empowered by 

nonlinear membership functions. The experimental results show that the 

TSF-NARX model outperforms other models in prediction accuracy and 

consistency. More importantly, the model identifies both the key 
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frequency bands and anthropometric factors that highly affect the BMI. 

The proposed model provides a tool for obtaining accurate, interpretable 

and robust measurement against the intra and extra uncertainty within the 

clinical diagnosis. 

 

Keyword 

Body Mass Index, bioimpedance, Takagi-Sugeno fuzzy logic, NARMAX 

method. 

1. Introduction 

Body Mass Index (BMI) describes the relationship between the mass and 

height of human. It is a critical indicator for the medical research and 

diagnosis, especially in the field of obesity, maturity and heritability [1-3]. 

The conventional measurement of human BMI is derived from the weight 

and the square of body height. Such a direct measurement can be severely 

interfered by many factors, such as race, gender and abdominal body 

structure. Those individual discrepancies can increase the uncertainty and 

error in decision making, hence, the conventional BMI measurement is not 

recommended for clinical judgement [4].  

 

Bioelectrical impedance measures the body impedance via a weak electric 

current. According to the design, it fundamentally depends on the body 

water measurement within the tissue. Therefore, conventional body 

composition analysis rarely employs bioelectrical impedance for its high 

variability. However, with current technological developments, 

bioelectrical impedance has showed a great potential in BMI analysis [5].  

 

A recent research has achieved the significant improvement of BMI 

measurement via integrating multi-frequency bioelectrical impedance into 

the conventional method [6]. However, similar to all other biomarkers, 

bioelectrical impedance is under the regulation of multiple bioprocesses 

and its correlation with the BMI is dependent on various conditions [7, 8]. 

Meanwhile, it is also worth noting that the most frequency bands of 

bioelectrical impedance share a strong collinearity and may not be directly 

associated with the BMI. 

 

In order to establish effective and efficient models with the bioelectrical 

impedance, it is important to explore the frequency bands that are 
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consistently correlated with human BMI. Such filtering process can 

significantly limit the interference of the collinearity within bioelectrical 

impedance and the noise from irrelevant psychophysiological activities. In 

addition, it can also identify the key frequency bands, which can be used 

for further signal analysis to increase the BMI measurement reliability. 

 

Meanwhile, the distribution and quantity of body water in human is subject 

to psychophysiological state and individual conditions, and it is a dynamic 

process under the influence of external factors. As it is shown in the 

previous research, the direct correlations between some frequency bands 

of bioelectrical impedance and human BMI are quite low [6]. Therefore, 

it is necessary to apply feature extraction methods before integrating the 

bioelectrical impedance signals into the model. 

 

Based on the above considerations, this paper proposes a novel Takagi-

Sugeno Fuzzy NARX Model (TSF-NARX) model for prediction of BMI. 

The main contributions of this work are:  

• Establish a hybrid model with interpretable structure for nonlinear 

BMI modelling.  

• Identify the key frequency bands of bioimpedance and 

anthropometric factors that are correlated with BMI.  

• Explore inter- and intra- uncertainty within the BMI measurement 

using fuzzy logic inference. 

 

The remainder of this paper is as follows. Section 2 presents related works. 

The proposed TSF-NARX model is introduced in Section 3. The 

experimental results are presented in Section 4. Finally, the paper is 

concluded in Section 5.  

2. Related Work  

The interpretability of machine learning models has become an important 

topic in recent years [9]. For many real applications, the predictive model 

should not only achieve good prediction accuracy but also be able to reveal 

the insights, e.g., how the predictions are produced and what are the 

effective and most important features. For example, in the BMI prediction, 

it is crucial to identify the frequency bands and anthropometric factors that 

are highly correlated with BMI. The transparency of these features and 

model structures are important for obtaining an insightful understanding 
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of human BMI. Roughly speaking, there are two common types of 

interpretable models, that is, post-explainable models [9] (e.g. most 

advanced machine learning models) and intrinsically-explainable models 

[10] (e.g. nonlinear parametric polynomial regression models). Post-

explainability techniques aim to interpret an established machine learning 

model after the completion of training process. For example, SHapley 

Additive exPlanations (SHAP) [11] is used to measure the influence and 

importance of each feature for the prediction purpose. However, the model 

itself remains to be opaque and it cannot reveal the process of how the 

prediction was generated. On the other hand, a regression-based model 

employs fully interpretable structures and features to generate predictions 

[10]. A limitation of traditional regression-based models may be that they 

lack prediction accuracy when the required information is incomplete. The 

Nonlinear Auto Regressive Moving Average with Exogenous Input 

(NARMAX) model was developed for data modelling and system 

identification in the time, frequency, and spatiotemporal domains [10]. 

The NARMAX model can derive nonlinear terms from data of original 

variables and identify the most effective variables and their interactions 

(i.e. the product-terms) to build the model. These terms can describe the 

nonlinear dynamics of complex systems and can usually be linked to the 

original physical system or process. More importantly, the selected terms 

and model structure are fully interpretable. The Nonlinear Auto 

Regressive with Exogenous Input (NARX) model is a special case of the 

NARMAX model, and it has been successfully applied to solve real data 

modelling problems in many areas [10, 22-24]. In this study, we take 

advantage of the NARX model, especially its TIPS (transparent, 

interpretable, parsimonious and simple/sparse/simulatable) properties [25, 

26] and integrate it into our proposed model framework for BMI 

prediction.  

 

Fuzzy logic combines objective knowledge and subjective knowledge via 

computing on “degree of truth” rather than the traditional Boolean logic 
“true or false”. Fuzzy logic handles uncertainty, small size data and data 
sparsity better than other machine learning paradigms. Compared with the 

conventional modelling approaches such as neural network, models based 

on fuzzy logic share significant advantages such as flexible, simple and 

intuitive [12]. Fuzzy logic-based models have been wildly applied in the 

biological research for the high complexity and uncertainty within these 

systems, especially in the area related to medical diagnosis [13-15]. These 
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fuzzy logic-based systems have been proved to be efficient and effective 

tools to support health condition analyses and clinical decisions. However, 

current existing fuzzy logic models developed for the BMI prediction 

purpose are limited to a few specific groups, such as athlete and obesity. 

The findings from the bioimpedance may allow for new and ground-

breaking path-opening to the prediction of general human BMI with fuzzy 

logic-based model. 

3. The proposed TSF-NARX model 

The TSF-NARX model combines the type-1 Sugeno fuzzy inference 

system with the NARX representation. The NARX models are built based 

on multiple subsets resampled from the original dataset. the means and 

standard deviations of each identified terms are utilised to create the 

Gaussian distribution membership functions of each fuzzy rule 

correspondingly. Given an output variable 𝑦(t) and a number of 𝑅 input 

variables 𝑢1(𝑡), 𝑢2(𝑡) , … , 𝑢𝑅(𝑡) , the general NARX model can be 

represented as [10]: 

 𝑦(𝑡) = 𝐹[𝑢1(𝑡 − 1), 𝑢1(𝑡 − 2), … , 𝑢1(𝑡 − 𝑛𝑥), 𝑢2(𝑡 − 1), 𝑢2(𝑡 −2), … , 𝑢2(𝑡 − 𝑛𝑢), … 𝑢𝑅(𝑡 − 1), 𝑢𝑅(𝑡 − 2), … , 𝑢𝑅(𝑡 − 𝑛𝑢), 𝑦(𝑡 −1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 − 𝑛𝑦)] + 𝑒(𝑡)    (1) 

 

where 𝑡  indicates the index of the data samples, 𝐹[∙] is some nonlinear 

function, 𝑛𝑢 and 𝑛𝑦 are the maximum time lags of the input and output 

variables, 𝑒(𝑡) is the noise sequence. Note that equation (1) is the general 

NARX model for time series prediction with a delay of 1. In some 

situations, the system is static and there is no delay or time dependencies 

between the input and output variables. In these cases, the NARX model 

can be simplified as follows:  

 𝑦(𝑡) = 𝐹[𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑅(𝑡)] + 𝑒(𝑡)                     (2) 

 

where 𝑡  indicates the index of the data samples. Usually, the 𝑅  input 

variables 𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑅(𝑡), and their interactions such as 𝑢1(𝑡)𝑢2(𝑡) 

(the nonlinear degree of the term is 2) and [𝑢2(𝑡)]2𝑢3(𝑡) (the nonlinear 

degree of the term is 3) are used to build a NARX model. The initial 
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NARX model that contains all the specified model terms can be written in 

a vector form: 

 𝒚 = 𝜃1𝝋1 + 𝜃2𝝋2 + ⋯ + 𝜃𝑀𝝋𝑀 + 𝒆                       (3) 

 

where 𝝋1, 𝝋2, … , 𝝋𝑀 are a number of 𝑀 terms derived from the original 

inputs 𝒖1, 𝒖2 , … , 𝒖𝑅 , and 𝜃1, 𝜃2, … , 𝜃𝑀  are the estimated parameters of 

these terms. The nonlinear terms are derived using the original inputs 

through some nonlinear conversions. These derived terms together can 

approximate the nonlinear relationship between the input and output. The 

details of the term generation procedures can be found in [10, 16, 17]. Note 

that usually the initial full model contains a huge number of candidate 

model terms to guarantee that the true or exact nonlinearities of the system 

to be studied can be sufficiently approximated using the specified model 

terms. However, more than often not all of the candidate model terms are 

equally important and useful. In practical, the final identified model only 

contains a relatively small number of the most significant model terms, 

meaning that the final model is sparse. This is important to avoid 

overfitting; otherwise, the model may show poor generalization ability and 

more importantly fail to reveal the key drivers.   For example, for the case 

of the BMI prediction, it is crucial to identify the key bioimpedance 

frequencies that are consistently correlated with BMI. The NARX model 

employs an orthogonal forward regression (OFR) algorithm to select the 

most important model terms from all the candidate model terms. The OFR 

algorithm chooses the model terms in a stepwise manner, by ranking the 

contributions of the candidate model terms to explaining the output 

variable. The Error Reduction Ratio (ERR) is employed to measure the 

contribution of each term, which is defined as follows [10, 16, 27]: 

 𝐸𝑅𝑅𝑖 = [𝒚𝑇𝒒𝑖(𝑠)] 2(𝒚𝑇𝒚 )(𝒒𝑖(𝑠)𝑇𝒒𝑖(𝑠))                                 (4) 

 

where 𝒒𝑖(𝑠)
 is the basis of the i-th model term at s-th selection iteration. 

The 𝒒𝑖(𝑠)
 is re-calculated and updated during each selection iteration by an 

orthogonalization procedure. The details of the OFR algorithm and term 

selection procedure can be found in [10,16,17]. Assume that a number of 𝑛 model terms are selected, the final NARX model can be represented as: 
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 𝒚 = 𝜃𝑙1𝝋𝑙1 + 𝜃𝑙2𝝋𝑙2 + ⋯ + 𝜃𝑙𝑛𝝋𝑙𝑛 + 𝒆                     (5) 

 

where 𝝋𝑙1 , 𝝋𝑙2 , … , 𝝋𝑙𝑛  are the selected terms and 𝜃𝑙1 , 𝜃𝑙2 , … , 𝜃𝑙𝑛  are the 

estimated parameters.  

 

In this study, the size of original datasets is limited (there are only a total 

of 135 samples), and the target system is highly nonlinear. Thus, a single 

NARX model may not sufficiently summary the underlying uncertainty, 

e.g., the different scales of bioimpedance will determine different 

correlation degree with BMI. Therefore, following the method in [28, 29] 

the original dataset is resampled for several times, in this way, more 

possible patterns within the system can be explored. The inputs and output 

of the 𝑘 -th resampled sub-dataset can be represented as 𝑦(𝑘)  and 𝑢1(𝑘), 𝑢2(𝑘), … 𝑢𝑅(𝑘)
. Following the procedures of OFR algorithm, the NARX 

model for the 𝑘-th sub-dataset can be built as:  

 𝒚(𝑘) = 𝜃𝑙1 (𝑘)𝝋𝑙1(𝑘) + 𝜃𝑙2 (𝑘)𝝋𝑙2 (𝑘) + ⋯ + 𝜃𝑙𝑛 (𝑘)𝝋𝑙𝑛 (𝑘) + 𝒆        (6) 

 

where 𝜃𝑙1(𝑘) … 𝜃𝑙𝑛 (𝑘)
 are the estimated weights of the selected terms 𝝋𝑙1 (𝑘), … , 𝝋𝑙𝑛 (𝑘) for the k-th sub-dataset.  

 

These multiple NARX models are combined as a whole by designing and 

implementing the Takagi-Sugeno fuzzy inference. Compared to the other 

fuzzy inferences, Takagi-Sugeno fuzzy logic systems, due to their good 

inference properties, are able to integrate the polynomial NARX models 

well. Specifically, the linguistic form of a typical Takagi-Sugeno fuzzy 

rule reads as follows: 

 

IF x1 is A1, x2 is A2, … and xn is An, THEN y = f (x1, x2, …, xn), 

 

Where xm represents the m-th (m=1,2, …, n) input variable for the 

antecedence, and in the consequent the output variable y is obtained from 

a linear function based on the n variables. A1, A2, …, An are the fuzzy labels 

with membership functions for calculating the intensity of the rule for final 

output. Meanwhile, the fuzzification of the inputs also expend the feasible 

range of each NARX models. For example, a Gaussian membership 

function can provide a membership degree over all feasible range rather 
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than a few limited points. This results in a soft partition between NARX 

models and a finer tuned surface for prediction.  

In this study, the fuzzy rules are generated from the pattern extraction 

based on the NARX regression. For each fuzzy rule, a NARX model 

defines the output function in the consequent, and the corresponding 

training data ranges of each input features define the fuzzy labels and the 

correlated membership functions in the antecedence. 

 

 

Table 1. Linguistic labels of selected features for TSF-NARX model 
Linguistic 

Labels 
𝝋𝑙1 𝝋𝑙2 𝝋𝑙3 𝝋𝑙4 𝝋𝑙5 𝝋𝑙6 

Small <145 <850 <900 <40.0 <200 <2500 

Medium 145~165 850~1050 900~1100 40.0~60.0 200~300 2500~3500 

Large >165 >1050 >1100 >60.0 >300 >3500 

 

Table 1 summaries the linguistic labels used for the model. The proposed 

fuzzy model uses the Gaussian basis function for representing the 

membership functions within the fuzzy rules.  

 

 

 
Figure 1. Membership functions for Rule no.5 

 

A typical rule (rule no.5) implemented in the TSF-NARX reads as 

following: 
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IF 𝝋𝑙1 is medium and 𝝋𝑙2 is medium and 𝝋𝑙3is medium and 𝝋𝑙4is medium 

and 𝝋𝑙5 is medium and 𝝋𝑙6  is medium, THEN BMI 𝒚(5) = 𝜃𝑙1(5)𝝋𝑙1 (5) +𝜃𝑙2 (5)𝝋𝑙2 (5) + ⋯ + 𝜃𝑙𝑛 (5)𝝋𝑙𝑛 (5), 
 

and its corresponding membership functions are shown in the Figure 1. 

 

Table 2. Data description 

 variable description mean min max 

y BMI Body Mass Index [kg] 55.1473 36.5900 74.9500 

u1 height height [m] 1.6216 1.4500 1.8000 

u2 weight weight [kg] 97.7400 56.2000 136.8000 

u3 age age [year] 44.8593 18.0000 69.0000 

u4 R5 logarithm of resistance at 5 kHz 6.3090 5.9440 6.6840 

u5 R10 logarithm of resistance at 10 kHz  6.2842 5.9220 6.6540 

u6 R50 logarithm of resistance at 50 kHz  6.1761 5.8310 6.5390 

u7 R100 logarithm of resistance at 100 kHz  6.1253 5.7900 6.4910 

u8 R250 logarithm of resistance at 250 kHz  6.0516 5.7250 6.4170 

u9 X5 reactance at 5 kHz 25.7164 9.9300 41.9200 

u10 X10 reactance at 10 kHz  35.7914 18.8400 59.6900 

u11 X50 reactance at 50 kHz  49.3887 29.8100 74.4100 

u12 X100 reactance at 100 kHz  44.0784 26.1400 62.0200 

u13 X250 reactance at 250 kHz  30.6726 17.1000 44.9700 

 

4. Experimental Results 

The data used in this study is described in Section 4.1. Section 4.2 presents 

the term generation and selection results. Section 4.3 shows the TSF-
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NARX model and performance comparison. Discussions are in Section 

4.4.  

 

 
Figure 1. BMI and external variables 

 

4.1 Data Description 

 

We applied the proposed model on a BMI dataset with bioimpedance. The 

dataset was collected at the Food Science and Human Nutrition Research 

Unit of the Department of Experimental Medicine of Sapienza Rome 

University. A number of 135 data samples were obtained from overweight 
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and obese women via dual-energy X-ray absorptiometry (DXA) 

examination (Hologic 4500 RDR) [18,19]. The BMI index was considered 

as model output, and the bioimpedance signals, along with some other 

external variables, were used as model inputs. Detailed descriptions of the 

data and variables are presented in Table 2. Bioimpedance data contains 

resistance and reactance signals, which were measured at frequencies 5, 

10, 50, 100, 250 kHz, respectively. Height, weight and ages were used as 

external anthropometric variables for model construction [6].  

 

 
Figure 3. Linear models vs nonlinear NARX models 

 

As can be seen from Table 2, the variation ranges of these variables are as 

follows. The age of participants ranges from 18 to 69 with an average of 

45. The mean, minimum and maximum height is 1.62m, 1.45m and 1.80m, 

respectively. The cases within the dataset are comprehensive, covering a 

wide range of anthropometric conditions. A graphical illustration of seven 

variables is given in Figure 2, which presents large variation in each 

variable. No missing value or outlier was detected in the dataset. Around 

80% of the samples were used for model training and the remaining 20% 

samples were used for testing the model performance. 
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4.2 The Identified NARX model 

 

Previous studies have investigated the effectiveness of linear models [6]. 

However, the nonlinear effect among the input variables has not been 

analysed. To explore the impact of nonlinear interactions, we performed a 

number of trial experiments and compared the performances of linear 

models and nonlinear NARX models. First, we applied the OFR 

(orthogonal forward regression) algorithm to generate a number of 

nonlinear NARX models with different number of model terms. Second, 

we built the associated linear models using exactly the same input 

variables. The only difference is that the nonlinear NARX models contain 

nonlinear model terms, but the linear models only use original linear 

inputs. The performances of the models were evaluated with the 

correlation coefficient (CC) and the prediction efficiency (PE) as 

presented in Figure 3. For the definition of PE, interested readers are 

referred to [21]. From the results, the linear models have better 

performances when the model contains up to 4 model terms. However, as 

the number of terms increases, the nonlinear NARX models achieve 

significantly better performances than linear models. This may be 

understood that there are indeed some nonlinear model terms (interaction 

product model terms) that cab better explain the variation of BMI. In other 

words, the value of BMI nonlinearly depends on these specified variables. 

 

Table 3. The identified terms, the associated ERR values, estimated 

weights and t values. 

Terms Description Weights ERR T value 

'u1×u2' height × weight 0.4143 99.3188 15.0239 

'u2×u2' weight × weight -0.0015 0.2939 4.6767 

'u13×u13' reactance 250kHz × reactance 250kHz 0.0023 0.0199 0.9794 

'u11' reactance 50 kHz 2.8189 0.0275 7.7502 

'u6×u11' resistance 50kHz × reactance 50 kHz -0.4219 0.1080 7.3365 

'u2×u13' weight × reactance 250 kHz -0.0029 0.0102 2.1716 
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It can be observed that the performances vary with the number of terms. 

A too simple model (e.g., with a too small number of terms) cannot 

sufficiently represent the relation between the inputs and output, whereas 

the inclusion of excessive terms increases the model complexity, leading 

to overfitting and deteriorating the model’s generalization ability. To 

identify the optimal number of terms, we applied the term length selection 

criteria called adjustable prediction error sum of squares (APRESS) [20]. 

According to the APRESS, the optimal number of the model terms is 6. 

We applied the OFR algorithm and identified 6 most effective model 

terms, see Table 3 for details. 

 

The associate NARX model in Table 3 reads as:  𝑦 = 0.4143 × 𝑢1 × 𝑢2 − 0.0015 × 𝑢2 × 𝑢2 + 0.0023 × 𝑢13 × 𝑢13 +2.8189 × 𝑢11 − 0.4219 × 𝑢6 × 𝑢11 − 0.0029 × 𝑢2 × 𝑢13      (7) 

 

The ERR values indicate the importance of the selected terms. Note that 

the ERR value of the first term is much higher than those of the following 

terms. This indicates that the combined effect of the two factors, height 

and weight, plays a dominant role in determining a person’s BMI value. 
The finding here accords closely with that currently used in hospitals, i.e., 

BMI = weight/(height square), where the units of weight and height are kg 

and m, respectively.  

 

The significance of the selected terms was validated with the student t-test, 

which is used to determine if there is a significant difference between two 

groups [16]. The confidence interval is chosen to be 95%. If the t value is 

larger than 1, it means that this term contributes significantly to the 

regression model. From the results, all but one term are significant, and 

the t value of the term 𝑢13 × 𝑢13 is slightly smaller than (but very close 

to) 1; it is reasonable to keep the term in the model.  

 

From the results, some insights can be revealed from the identified model. 

First, the selected terms indicate the most impactful factors on BMI. For 

example, 𝑢1 × 𝑢2  and 𝑢2 × 𝑢2  indicates that the interactions between 

height and weight and square of weight significantly affect BMI. This 

finding is in line with previous study which explored the effectiveness of 

anthropometric variables [6]. In addition, the model reveals the key 

bioimpedance frequency bands that impact BMI. For example, the 

selected terms  𝑢11 , 𝑢6 × 𝑢11  and 𝑢2 × 𝑢13  are derived from the 
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variable reactance at 50 kHz, resistance at 50kHz, and reactance at 250 

kHz, indicating that these are the most important frequency bands.  

 

4.3 TSF-NARX Results 

 

Figure 4 shows the surface plots for TSF-NARX model membership 

functions. The BMI roughly increases with the values of height, weight 

and the reactance at 50 kHz and decreases with the reactance at 250 kHz. 

It can be observed that the surface is not flat. Therefore, these selected 

features are correlated with each other to a certain degree, and the 

relationships between them and BMI are nonlinear. 

 

 
Figure 4. Membership function for height & weight, reactance at 50kHz 

& reactance at 250 kHz of fuzzy-NARX model 

 

Table 4 summarises the prediction performances of all models measured 

using the following three metrics: correlation coefficient (CC), coefficient 

of determination (R2) and root mean square error (RMSE).  CC measures 

the correlation between the target observations and the model predictions, 

R2 describes the match between the predictions and the observations, 

whereas RMSE measures the overall residuals between the estimations 

and the observations. 

 

For comparison purpose, we tested the linear model, the NARX model, a 

neural network model and adaptive neuro fuzzy inference system (ANFIS) 

model on the same test dataset. The linear model was constructed by using 

all the original input variables listed in Table 2. The NARX model was 

constructed by the 6 selected important terms. The ANFIS model was 

generated from Matlab built-in function with default settings. As this is a 

static system which does not contain time series data, the tested neural 
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network was constructed by one input layer, one output layer and several 

fully connected layers. ANFIS combines the fuzzy logic interference with 

neural network, and the fuzzy rules of the system are extracted from the 

data using the conventional neural network structure. The fuzzy rule-base 

of the ANIFS in this study was generated with subtractive clustering 

(range of influence 0.5, squash factor 1.25, accept ratio 0.5 and reject ratio 

0.15), and then the fuzzy inference system was trained with hybrid 

optimisation (error tolerance 0 and epochs 3). 

 

Table 4. The summary of model performances 

Model CC R2 RMSE 

linear model 0.9417 0.8624 2.8013 

NARX model 0.9503 0.8981 2.4653 

TSF-NARX model 0.9484 0.8937 2.4620 

neural network 0.9417 0.0000 57.4197 

ANFIS 0.9153 0.7191 4.0012 

 

As shown in Table 4, the nonlinear NARX and the TSF-NARX 

outperform the other models in terms of all the three metrics. It suggests 

that data relationship of such a biological dataset is severely nonlinear, 

thus, its modelling requires nonlinear elements. Meanwhile, compared to 

the NN and ANFIS, the NARX and the TSF-NARX models can deal with 

the small sample size problem very well. NARX model has achieved the 

highest CC and R2 while TSF-NARX has achieved the lowest root mean 

square error. This indicates that NARX is more specialised in the pattern 

extraction with existing data, whereas the TSF-NARX focuses on 

exploring the boundary of feasible data range. 

 

Figure 5 summaries the residuals between the predictions and observations 

for the ANFIS and the TSF-NARX model. Compared to the ANFIS, the 

residuals of the TSF-NARX model are closer to the desired value 0 and 

are evenly distributed on both negative and positive side. It suggests that 

the TSF-NARX model has relatively high accuracy and high precision. 

Figure 6 shows the relations between the predictions and observations for 

the ANFIS and TSF-NARX model. It can be observed that compared to 

the ANFIS. the TSF-NARX model can provide more accurate prediction 



18 Book Title 

 

with less bias in general. This indicates that the pattern extraction based 

on the NARX model is more efficient and robust than the subtractive 

clustering method in this small sample data case. 

 

 
Figure 5. Residual histogram of ANFIS and TSF-NARX 

 

 

 
Figure 6. Scatter plot of ANFIS and TSF-NARX 

 

The experimental results show that the TSF-NARX provides excellent 

generalization properties. The use of the Takagi-Sugeno fuzzy rule-base 

interference created a simple and intuitive linguistic-based model that can 

be easily interpreted by end-users of the model. The relationships within 

the features can be directly displayed in the surface plots as shown earlier 

and be implemented into quick estimation. Meanwhile, the fuzzy inference 

expands the prediction range with nonlinear membership functions of the 

rules. In addition, it ensures that the model is robust to the intra and extra 

uncertainty within the system. Therefore, fuzzy logic modelling 

approaches can normally achieve excellent performance even with small 

sample size. However, such models are heavily dependent on the quality 

of rule-base. Thus, the pattern extraction or the clustering method is 
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important for fuzzy logic-based models and is of great importance to the 

current research especially for developing the associated fuzzy logic. 

Compared to the ANFIS, the pattern extraction of NARX has achieved 

better results than the neural network model and explored the full potential 

of fuzzy inference. Therefore, the combination of NARX and fuzzy logic 

has proved to be the most efficient and effective approach to model the 

clinical data. 

 

5 Conclusion 

 

This work proposed a novel hybrid TSF-NARX model for BMI prediction. 

It identified the key factors for the BMI measurement, i.e., reactance at 50 

kHz, resistance at 50kHz, reactance at 250 kHz, weight and height. The 

prediction accuracy of the proposed model outperformed other existing 

state of the art models. The integration of fuzzy logic inference provides a 

model structure that can be fully interpreted by human, and this is 

important for further applications. Furthermore, such a paradigm creates 

the foundation for more advanced predictive approach for medical 

research and clinical diagnosis. The proposed method can be applied to 

the exploration of the underlying mechanism of complicated data 

modelling problems in other areas such as environment and space weather.  
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