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Abstract  

 

State transition models (STM) are used to inform health technology reimbursement decisions. Within STMs, the 

movement of patients between the model health states over discrete time intervals is determined by transition 

probabilities (TPs). Estimating TPs presents numerous issues, including missing data for specific transitions, data 

incongruence and uncertainty around extrapolation. Inappropriately estimated TPs could result in biased models. 

There is limited guidance on how to address common issues associated with TP estimation. In order to assess 

current methods for estimating TPs and to identify issues that may introduce bias, we reviewed National Institute 

for Health and Care Excellence (NICE) Technology Appraisals (TAs) published from 1st January 2019 to 27th 

May 2020. Twenty-eight models (from 26 TAs) were included in the review. Several methods for estimating TPs 

were identified: survival analysis (n=11); count method (n=9); multi-state modelling (n=7); logistic regression 

(n=2); negative binomial regression (n=2); Poisson regression (n=1); and calibration (n= 1). Evidence Review 

Groups identified several issues relating to TP estimation within these models, including important transitions 

being excluded (n=5); potential selection bias when estimating TPs for post-randomisation health states (n=2); 

issues concerning the use of multiple data sources (n=4); potential biases resulting from the use of data from 

different populations (n =2), and inappropriate assumptions around extrapolation (n =3). These issues remained 

unresolved in almost every instance. Failing to address these issues may bias model results and lead to sub-optimal 

decision-making. Further research is recommended to address these methodological problems.  
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Key Points for the Decision Makers: 

 

• State transition models (STMs) are the most common type of health economic models used in medical 

decision-making.  

• Patients’ movement between the model health states over discrete time intervals is determined by transition 

probabilities (TP).  

• Our review of NICE Technology Appraisals demonstrates that while some potentially appropriate methods 

have been used for estimating TPs in STMs, there still exist various issues in TP estimation.  
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1. Introduction 

1.1 Background 

Health economic models are commonly required to assess the cost-effectiveness of alternative competing health care 

technologies.1 The need to use models largely stems from the limitations of randomised controlled trials (RCT) in 

providing all necessary information to measure and value all relevant costs and health outcomes for all treatment options. 

Health economic modelling can play a crucial role in structuring the decision problem, extrapolating short-terms 

outcomes beyond the observed period of a clinical trial, synthesising evidence of relative treatment effects for all 

comparators across multiple studies and allowing for the full characterisation of decision uncertainty.1,2 

 

The state transition model (STM) is the most common type of model used in medical decision-making because of its 

simplicity in describing complex real-life phenomena.3,4,5 STMs define an underlying disease process in terms of a series 

of mutually exclusive and jointly exhaustive disease – and/or treatment-related states (e.g., well, unwell, dead) and 

provide a basis for estimating different trajectories through these states for patients receiving different health care 

interventions. The movement of patients between the model health states over discrete time intervals is determined by 

transition probabilities (TPs). TPs may be constant with respect to time, or may be assumed to be conditional on time – 

either on time since entry into the model (e.g., varying with the age of the patient cohort) or on time since entry into a 

particular health state (e.g., event risks vary according to time elapsed since a prior clinical event occurred). STMs can 

be evaluated using cohort simulation in discrete time (reflecting mean event risks across a population) or using a patient-

level simulation approach. The simplest form of STM is one in which the matrix of transition rates, and hence TPs, is 

fixed in every time interval, giving rise to a Markov chain which is time-homogeneous (time invariant). This approach 

may be extended to reflect time-varying TPs through Markov processes and semi-Markov approaches in which event 

risks are conditional on time since model entry or on time since entry into an intermediate health state.1,6 

 

TPs included in STMs are often derived from analyses of individual patient data (IPD), which can come from RCTs or 

non-randomised studies such as observational studies or registries. Summary data from these sources are also regularly 

used to estimate TPs and, in some instances, published literature and expert opinion may also be used. Given that TPs 

represent the means of estimating patient trajectories through the model health states, they represent a crucial component 

of the model itself. If TPs are estimated inappropriately, this may introduce bias into the model, which may, in turn, lead 

to erroneous cost-effectiveness results and sub-optimal adoption decisions.  

 

TPs can be estimated using a variety of parametric and non-parametric methods.1,7,8 For example, survival modelling 

may be used as a parametric approach, while the count method may be used as a non-parametric approach.1 However, 

there are several limitations in applying these methods that arise either from restrictive assumptions underpinning the 

method or limitations regarding the data used to estimate the TPs themselves. As such, model developers may turn to 

methodological guidelines to understand best practice in TP estimation. However, current guidance is focused on health 

economic model development, and rigorous methodological guidelines on how to estimate TPs are lacking.9 A recent 

review by Olariu et al. (2017) indicated no consensus statement or guideline on how to estimate TPs.10 

 

Alternative techniques for estimating TPs may have an important impact on cost-effectiveness estimates. For example, 

in National Institute for Health and Care Excellence (NICE) Technology Appraisal (TA) Number 443 (obeticholic acid 
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for primary biliary cholangitis), there was disagreement between the Evidence Review Group (ERG) and the company 

concerning the most appropriate method for TP estimation.11 The ERG preferred to estimate TPs directly from data in 

the pivotal RCT, whereas the company’s submitted model used calibration methods to estimate TPs indirectly. In an 

exploratory analysis undertaken by the company and the ERG, the incremental cost-effectiveness ratio (ICER) was 

subject to considerable variation, ranging from 8% to 141% compared to the base case in different scenarios, when TPs 

were estimated using data directly from pivotal RCT approach. There are numerous other examples where there is 

uncertainty around TP estimation.  

 

The purpose of this paper is to identify current approaches for estimating TPs in STMs and to identify related problems 

and challenges. To achieve this aim, we undertook a review of recent NICE TAs that were completed during the period 

2019 to 2020. We specifically examined which data sources were used to inform TPs, the types of analytical methods 

used to estimate TPs and issues identified by independent ERGs and NICE Appraisal Committees (ACs) relating to 

these methods. Error and uncertainty may be introduced at various points in the model development process, including 

during model structuring, implementation and parameterisation. In this paper, we focus on errors introduced when 

estimating TPs. This is not because other sources of error and uncertainty are less important, but rather because 

sensitivity analysis is commonly used to assess the importance of structural and parameter uncertainty, whereas errors 

or uncertainty associated with the methods used to estimate TPs are not routinely taken into account. This review is 

intended to provide a basis for directing future research on TPs’ estimation in STMs. 

 

1.2. Potential issues with estimating TPs from data 

To describe the potential problems associated with TP estimation, we use a hypothetical example of an STM (Figure 

1). In this example model, four health states are included: ‘No Symptoms’, ‘Mild/Moderate Disease’, ‘Severe Disease’ 

and ‘Dead’, and only forward transitions are possible (i.e., patients cannot revert to better health states). Despite this 

simplicity, there can be multiple issues in estimating TPs in this scenario. 

 

Issue 1 - Missing transitions. Suppose we have observed data on some of the transitions; however, some transitions 

are missing either because patients at certain severity levels were not included (or followed up) in the trial or because 

certain transitions are rare. For example, there may be available data on P1,n and P2,n but trial patients were no longer 

followed up (or censored) when they developed severe disease, hence P3,n is missing. Alternatively,  the study may have 

recruited patients with mild/moderate disease only; hence, information to inform all TPs from the ‘No Symptoms’ 

health state is missing. In such instances, we may need to synthesise evidence from multiple sources to estimate the 

trace across all states included in the STM. This overlaps with another issue concerning the use of multiple data sources 

for TP estimation. 

 

Issue 2 – Sources of data. Information on the inputs for TP estimation for all transitions (Pm,n) is frequently obtained 

from various data sources with varying follow-up durations, baseline characteristics, and study types (e.g. RCTs, non-

randomized observational studies, registries etc.). However, it is challenging to combine these data statistically or use 

them directly for populating transitions. For example, data from a non-randomised observational study may be available 

for informing transition P2,3. However, the patients’ baseline characteristics in this study (e.g. median age 30 years) may 

differ from those in the pivotal RCT used to inform other transitions (e.g. median age 65 years), making its adjustment 



 

 7 

difficult for TP estimation. Another problem arises when several estimates are available for a certain transition, for 

example, P1,2, as this may lead to challenges in selecting or synthesising a preferred estimate to include in the model. 

 

Issue 3 - Data missingness. Suppose that data are available for all TPs (P1,n to P3,n), but some individuals’ observations 

are missing. For example, some patients with severe disease may be too sick to attend assessments; hence P3,3 and P3,4 

(observed TPs) are subject to informative censoring, and available estimates may not be generalisable across the whole 

target population. In such cases, assumptions are required regarding data missingness to avoid TP estimation bias, and 

using alternative assumptions leads to different TP estimates. 

 

Issue 4 - Data on subgroups unavailable. Suppose we have access to data to inform all TPs (P1,n to P3,n) for the overall 

target population, but not for all individual subgroups. If we assume that TPs are equivalent between the subgroups and 

the overall population, this may lead to bias. Conversely, using data from some (available) subgroups may lead to other 

issues such as missing transitions and small sample sizes. 

 

Issue 5 - Need for extrapolation. Suppose that we have access to TPs (P1,n to P3,n) over the duration of the pivotal trial, 

but the trial stopped before all patients experienced the events of interest. In this case, we need to extrapolate TPs 

beyond the observed period of the trial, including making assumptions about the relative treatment effects between 

competing decision options. The choices regarding the relationship between event risk and time will impact on modelled 

health state occupancy at later timepoints.  

 

Issue 6 - Long intervals between assessments. To inform TPs in STMs, mismatches between the data collection 

interval and the model interval are common. For example, in our observed data, patients may be followed up every six 

months. However, if we use a six-monthly model cycle, this may lead to a lack of precision in the model estimates; 

hence, we may need to adopt a shorter model cycle length.  

 

Issue 7 - Data incongruence. Suppose we have published data reporting on time to a particular event (e.g., time to 

death P1,4, P2,4 and P3,4), but the model needs to capture the underlying disease process (i.e., all TPs P1,n to P4,n). To 

estimate the underlying transition rates, we would need to use the information we have available (or observed) to 

estimate the information we do not have available (or cannot observe), given the model structure e.g., through model 

calibration. 

 

<FIGURE 1> 

 

2. Methods 

This review focussed on STMs submitted as part of the NICE TA programme. We considered NICE for its rigour in 

producing guidance on new and existing health technologies (such as drugs and medical devices) and its focus on 

economic value assessments of health technologies. NICE guidance reflects the outcome of important decisions about 

the use of health technologies in real-world scenarios. Also, submissions to NICE are freely accessible online. Most 

submissions to NICE use cutting-edge methods and NICE regularly updates its methods guidelines which are followed 

widely across the world. 
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2.1 Study eligibility criteria 

We undertook a review of TAs for which guidance documents were published from 1st January 2019 to 27th May 2020. 

This review period was selected pragmatically to identify a sufficient number of appraisals that would provide a 

representative sample of the TP estimation methods currently used in health economic models. Company submissions, 

ERG reports and Final Appraisal Determination (FAD) documents from the NICE website were reviewed. We extracted 

information on issues raised by the ERGs or ACs from these documents. Appraisal documents were included in the 

review if they presented cost-effectiveness analyses using STMs. The full inclusion and exclusion criteria for the review 

are presented in Table 1. 

 

2.2 Data extraction and presentation of results 

A data extraction form was designed in Microsoft Excel (Microsoft Corporation, Redmond, WA, USA). Information 

was extracted on parameters such as: data sources used to inform TPs for models; methods used for TP estimation; issues 

with TP estimation raised by the ERG and/or the ACs, and general details (e.g., disease area, model type, number of 

model health states). The extraction form was piloted in two TAs; this was subsequently reviewed and further refined 

by the study authors. 

 

We provided a brief overview of each identified method used for TP estimation in a summary table to clarify on 

terminology. We extracted data on TP estimation issues, as described by the ERG and/or ACs as free text. We 

categorised the data sources and methods used for TP estimation in included models and presented these using doughnut 

charts. 

 

2.3 Quality assessment  

We did not formally assess the quality of the included models. This is because the purpose of the review was to identify 

TP estimation issues, rather than to scrutinise the quality of ERG reports or NICE FADs. 

 

<TABLE 1> 

 

3. Results 

3.1. Summary of included studies 

We screened a total of 78 TAs published within the considered timeframe (January 2019 to May 2020). Of these, 28 

models (within 26 TAs) met the inclusion criteria (Figure 2). Terminated TAs (n=14) were excluded from the review. 

The majority of the remaining excluded models were partitioned survival models (26 out of 38 TAs), which do not use 

TPs to estimate health state occupancy. Eleven included models were in cancer; the remaining 17 models were in other 

disease areas, including multiple sclerosis and Crohn’s disease. There were no dynamic models among the models 

included - all were static. In terms of the nature of TPs considered, almost all included models involved time-varying 

TPs either according to model time or time since entry into an intermediate health state (using a semi-Markov approach).   

 

A full list of the reviewed models and a summary of each model is presented in supplementary materials (Suppl. Table 

1, Suppl. Table 2). 
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<FIGURE 2> 

 

3.2. Data and methods used to estimate transition probabilities 

3.2.1 Data sources 

Across most of the models (n=28), multiple sources were required to populate the full set of TPs included in the models 

(Figure 3). In four models (TA605, TA593, TA587, TA578), TPs were estimated solely from the pivotal RCT. Most 

models used IPD from the pivotal RCT supplemented with data from non-randomised observational studies (either IPD 

or aggregate data) to estimate TPs. All-cause mortality data from national life tables were commonly used as a constraint 

for modelling mortality or to model mortality risk in people with non-terminal diseases (e.g., TA613, TA614) in the 

identified models. 

 

<FIGURE 3> 

 

3.2.2 Methods used to estimate TPs 

Several methods were used to estimate TPs in the included models (Figure 4). The most common approaches were the 

non-parametric count method (in non-cancer models) (n=9) and parametric survival modelling methods (in cancer 

models) (n=11). Other approaches used were: multi-state modelling (MSM) (n=7); multinomial logistic regression 

(n=2); negative binomial regression (n=2); Poisson regression (n=1) and calibration (n=1). In one model (TA607), the 

specific method applied was unclear from the ERG report and the FAD. A summary of each method is provided in Table 

2. 

 

<FIGURE 4> 

<TABLE 2> 

 

3.3 Issues identified with transition probability estimation 

Across the 28 included models, ERGs identified several problems related to the estimation of TPs. In all cases, the 

NICE AC agreed with the ERG’s concerns on TP-related issues. Overall, these issues can be divided into three of the 

categories previously identified: (i) sources of data, (ii) missing transitions, and (iii) extrapolation. 

 

3.3.1 Sources of data:  

The most common issues were related to the use of inappropriate data sources to inform TPs. The first issue is the risk 

of mismatching populations, due to the use of multiple or different sources of data to inform the TPs. For example, in 

TA623 (patiromer for hyperkalaemia), real-world data (RWD) were considered for informing some transitions. The 

ERG noted that patients’ baseline characteristics in the pivotal RCT were different from those in the RWD.  However, 

due to the lack of IPD available from the RWD, the ERG could not assess the impact of this issue on the ICER. In 

another example, TA580 (enzalutamide for prostate cancer), the company used data from another published trial of 

enzalutamide instead of the pivotal enzalutamide RCT to estimate some TPs. In the ERG’s exploratory analysis, the 

ICER increased from £28,853 to £31,671 per QALY gained (above NICE’s usual cost-effectiveness threshold) when 

the pivotal enzalutamide RCT was used as the source for TP estimation. TA569 (pertuzumab for HER2-positive early-
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stage breast cancer) and TA624 (peginterferon beta-1a for multiple sclerosis) are further examples where ERGs noted 

mismatching populations between TP data sources. 

 

The second data source related issue concerns bias that arises in TP estimates from RCT data. In typical three-state 

cancer models, defined in terms of progression-free (PF), progressed disease (PD) and dead, TP estimates for the 

transition from PD to dead may subject to post-randomisation bias.12 Post-randomisation bias can occur when data from 

an RCT are analysed using a starting point that is after the randomisation time-point. For example, if cancer RCT 

randomised patients when they are progression-free, estimates of TPs from the PF health state benefit from 

randomisation and therefore represent the full trial population and provide unbiased relative TPs between treatment 

groups. In contrast, if not all patients have experienced disease progression at the time of analysis, TPs estimated for 

the PD health state will not be representative of the overall trial population, and may result in biased relative treatment 

effects if different proportions of patients have experienced disease progression in each treatment group. Specifically, 

if not all patients experience disease progression during the RCT, and if rapid progressors have a different survival 

prognosis to those who progress later, fitting parametric survival models to post-progression survival (PPS) data may 

introduce selection bias and informative censoring, potentially leading to erroneous clinical benefits and cost-

effectiveness estimates. 13, 14 The ERGs explicitly raised this issue in TA578 (durvalumab for non-small cell lung cancer 

[NSCLC]) and TA593 (ribociclib, for breast cancer); however, this issue has broader relevance to most cancer STMs 

when estimates are based on censored RCT data. ERGs cited NICE Technical Support Document (TSD) 19 for details 

on this issue.13 However, as no method has yet been developed to adjust for PPS bias, ERGs did not attempt to perform 

any exploratory analysis to understand its impact on the ICERs. 

 

The third issue concerns bias that arises in TP estimates from non-randomised observational study data. To estimate 

TPs using non-randomised observational data, ERGs noted that adjustments such as matching patient baseline 

characteristics between the observational data and other sources of data used to estimate TPs in the model (e.g., the 

pivotal RCT) were usually not made, and therefore were not completely consistent with the statistical adjustment 

methods recommended for this purpose in NICE TSD 17, resulting in the possibility of selection bias and confounding 

(TA558, TA604, TA614 and TA616).15 

 

The last issue concerns small sample sizes, as ERGs raised concerns around the precision of estimated TPs. In TA565 

(ribociclib with fulvestrant for breast cancer), the ERG noted that the TPs used in the company’s analysis might not be 

robust given the relatively small sample sizes (n = 47 to 136) used to obtain these estimates. Furthermore, the ERG 

could not verify the company’s treatment effectiveness analysis, as IPD were not provided. Another example is TA578 

(durvalumab for NSCLC), in which  the ERG raised concerns about the small number of progressed patients through 

which to estimate PPS. PPS data were immature, and there was substantial uncertainty around its extrapolation. To 

address some of the uncertainty in PPS, the ERG explored alternative assumptions by selecting an alternative parametric 

survival model to represent PPS and found that the ICER varied from £49,868 to £59,131 per QALY gained (the base 

case ICER was £50,238 per QALY gained). Small sample size concerns were also noted in TA614 (cannabidiol for 

Dravet syndrome), where patients in the study trial were mostly under 18 years of age (98.11%). The model population 

was stratified into four age groups (2-5, 6-11, 12-17, and 18-55 years). However, using the study population estimate 
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for the 18-55 years age group raised concern around biased TPs because this group represented only 1.89% of the study 

population.  

 

3.3.2 Missing Transitions: 

Missing transitions, i.e., ignoring relevant transitions that are likely to occur in reality, but were not included in the 

company’s model, represented another common issue reported by ERGs. A frequently reported reason for excluding 

these transitions was that they were not observed in the dataset used to inform the TPs (usually the pivotal RCT). 

However, if these transitions are possible but have not been observed, then applying a zero probability will bias the 

model results. This issue was raised as a concern in TA556, TA590, TA605, TA607, and TA623. In exploratory analyses 

conducted by ERGs, it was found that assigning non-zero TPs to the missing transitions led to considerable variation in 

the ICER, ranging from -24% to 202% relative to the company’s base case. 

 

3.3.3. Extrapolation 

Extrapolation was one of the most significant concerns raised by ERGs, as this requires strong assumptions about TPs 

beyond the observed period of RCTs or other studies used to inform the model. The ERGs highlighted that some of 

these assumptions might be inappropriate. For example, in TA588 (nusinersen for spinal muscular atrophy), the ERG 

was concerned that the company’s assumptions about the intervention’s continued effectiveness beyond the observed 

period of the relevant RCTs were highly optimistic. The ERG explored these assumptions and found that the ICER 

increased by a factor between 1.2 and 40 compared with the company’s base case estimate. In other appraisals, when 

parametric survival models informed the extrapolation, ERGs found that the ICER was very sensitive to the parametric 

model choice. For instance, in TA556 (darvadstrocel for Crohn’s disease), the use of different parametric survival 

models for the remission and relapse time-to-event functions led to ICERs ranging from £20,591 to £133,311 per QALY 

gained. This issue was also raised by the NICE AC, who were concerned about the uncertainty around the long-term 

benefit and cost-effectiveness of the treatment.  

 

Assumptions regarding the duration of treatment effects beyond observed trial follow-up were also key factors 

impacting the extrapolation. In an exploratory analysis by the ERG in TA569 (pertuzumab for breast cancer), the ICER 

increased by 60% when a different assumption on treatment effect waning was considered compared to the company’s 

base case. Similarly, in TA578, the ERG explored assumptions around treatment effect waning in the extrapolated 

period and found that the ICER varied from £47,000 to £64,531 per QALY gained, with ERG preferred base case of 

£50,238 per QALY gained. With no treatment waning effect, the ICER was £60,928 per QALY gained. Another concern 

for ERGs was when constant TPs were assumed during extrapolation for some transitions, as reported in TA556 and 

TA569.  

 

 

4. Discussion  

Our review of NICE TAs demonstrates that various data sources and methods are used to estimate TPs for STMs. IPD 

obtained from RCTs and non-randomised observational studies were the most commonly used data sources for TP 

estimation. Survival analysis and non-parametric count methods were the most commonly used approaches for 

estimating TPs. In the included models, ERGs identified several important issues with the TP estimation. The key issues 
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were related to data sources used for TP estimation, missing transitions and extrapolations. These issues ultimately 

impact model results and decision-making.  

 

Despite the widespread use of STMs in health economic evaluation, guidance on how to estimate TPs is limited. A 

recent review by Olariu et al (2017) found no consensus statements or guidelines regarding TP estimation in STMs.9 

The review identified one relevant publication in which limited guidance was provided on the use of rates and 

probabilities. Also, a recent tutorial published by Gidwani et al. (2020) provided recommendations on TP estimation 

when data to derive TPs are in the form of: relative risks, odds, odds ratios or rates.16 These limited recommendations 

are helpful, but several challenges in TP estimation remain.  

 

Other researchers have made a significant contribution in providing solutions to some of the issues in TP estimation. 

For example, Williams et al. (2016), Putter et al. (2007) contributed to methods based on MSMs.17,18 However, MSMs 

are not commonly used in health economics. Chhatwal et al (2016) and Craig et al (2002) provided method of estimation 

when TPs are from different sources with varying follow-up durations or intervals (Suppl. Table 3).19,20 However, the 

generalisability and applicability of these solutions are still unexplored, and their recommendations have not been 

implemented yet. 

 

We recommend issues around TP estimation related to multiple data sources, extrapolation, and post-randomised health 

states should be considered as priorities for further methodological research. Analysts will frequently encounter multiple 

data sources with mismatching populations when estimating TPs. The inappropriate use of data for estimating TPs can 

impact on modelled on cost-effectiveness outcomes (as observed in this review) and ultimately, decision making. 

Extrapolation is a key element of cost-effectiveness assessments. Guidance regarding survival model selection for 

extrapolation is available for individual and independently modelled survival endpoints;21 however, guidance to inform 

survival model selection in STM settings is scarce. Further work in this area would be valuable. In addition, it is very 

common for STMs to include TPs from health states that patients only enter after a period of time – for example, once 

disease has progressed. Careful thought is required regarding the appropriateness of the data and methods used to 

estimate TPs from these health states. If data from RCTs are used, the potential presence and impact of selection bias 

and informative censoring should be considered. Research on methods to address these issues is needed. Similarly, if 

observational data are used to inform TPs from late-occurring health states, potential population mismatches must be 

considered, as should the relevance of the data source(s) to the target population under consideration. Finally, it is 

important to recognise that TPs estimated from RCT datasets represent transitions observed in trial sample populations, 

which may not fully represent the target population for whom treatment recommendations will be made. Therefore, the 

use of Bayesian methods for estimating TPs representing disease populations should be explored. 

 

To the best of our knowledge, this is the first attempt to identify the frequency of TP estimation related issues in NICE 

appraisals. Given the lack of recommendations and guidance in this area, it is important to properly identify problems 

associated with TP estimation, to highlight this for analysts and decision-makers, and to provide a basis for subsequent 

research. Although we have focused on TPs in this paper, some of the issues raised (e.g., sources of data, data 

missingness) are also relevant for other model parameters such as costs and utilities; hence, the implications are broad. 
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Our study is subject to some limitations. To make our review concise and pragmatic, we only considered recent TAs, 

i.e., from January 2019 to May 2020. Consequently, our review found examples of only three of the seven potential 

issues (sources of data, missing transitions, and extrapolation) associated with estimating TPs that we identified prior 

to conducting our review. The other four issues (data missingness, data on subgroup unavailable, long intervals between 

assessments, and data incongruence) were not identified in the review; however, we believe these remain important 

concerns for TP estimation. We may have missed some other techniques used to estimate TPs, or additional issues that 

ERGs may have raised in earlier appraisals. In addition, TAs were reviewed and checked by only one reviewer (TS); 

however, substantive discussions and debate took place between co-authors during the review process. Notably, we 

have only reported on TP estimation issues that ERGs and ACs identified. There is a possibility that issues may have 

been identified which were not included in published reports and documents or that other issues existed that were not 

identified by ERGs or ACs. However, the scope of our review did not include an assessment of whether ERGs and/or 

ACs correctly identified or addressed specific issues; rather, we sought to provide a complete summary of the issues 

associated with TP estimation reported in TAs.  

 

TP estimation is very common in other areas, such as medical statistics, finance, agriculture, computer science and 

engineering. We suggest that expertise from these broader areas can be borrowed in health economics to enhance TP 

estimation and hence, healthcare decision-making.  

 

5. Conclusion 

Problems associated with TP estimation are common, as observed in NICE TAs. It is important to address these issues 

to provide unbiased TP estimates. Failing to address these issues may result in biased model results, leading to sub-

optimal decisions. Further research is required to address these methodological problems. 
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Figure 1 : Example state transition model structure and permitted transition probabilities 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Note: Prs is a transition probability, which describes the likelihood of moving from state m to state n ≠ m at time t over a model 

cycle of length c, and Pm,m(t) describes the likelihood of remaining in state m at time t over a model cycle of length c. 
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Figure 2: Flow diagram of NICE Technology Appraisal inclusion and exclusion  
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Figure 3 : Data Sources used in NICE Technology Appraisals for 

informing transition probability estimation 

 

 

 
Abbreviations: IPD: Individual Patient Data; RCT: Randomised controlled trial 
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Figure 4: Methods used in NICE Technology Appraisals for transition probability 

estimation 

 

 
 

 

 

Table 1: Inclusion and exclusion criteria for the review 

Category Inclusion Criteria Exclusion Criteria 

Economic evaluation type Cost-effectiveness analysis; 

Cost-utility analysis 

Cost-analysis; 

Cost-minimisation analysis; 

Cost-consequence analysis; 

Budget impact analysis 

Modelling type State transition models 

(including Markov chain, 

Markov process, semi-

Markov and multistate 

models) 

Partitioned survival model; 

Microsimulation model; 

Discrete event simulation 

model; 

Decision tree; 

Sequence-based model with 

no transitions 

Issues related to transition 

probabilities  

Evidence Review Group 

(ERG) reports; 

NICE Final Appraisal 

Documents (FADs) 

Terminated Technology 

Appraisals 
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Table 2 : Summary of methods used to estimate transition probabilities 

Methods Description 

Non-

parametric 

count 

method 

This method is relatively straightforward if the states’ sequence for each 

individual observation is observed, i.e., if the individual transitions are observed. 

The method requires patients to have pairs of consecutive observations. The 

probability of transition from any given state i is equal to the proportion of 

individuals that started in state i and ended in state j as a proportion of all 

individuals that started in state i. 

Survival 

modelling 

Parametric survival functions are fitted to IPD typically using maximum 

likelihood estimation (MLE) to estimate the survival function parameters (e.g., the 

scale and shape of Weibull distribution) which is then used to derive TPs. The 

baseline TP of the event of interest is defined as one minus the ratio of the 

survivor function at the end of the interval to the survivor function at the 

beginning of the interval (TPbaseline = 1 -  
 S(ti)S(ti−1)

 ; (ti-1, ti) is time interval) 

Multi-state 

modelling 

A multi-state model framework describes how an individual move between a 

series of states in continuous time. This approach models each of the transitions of 

interest simultaneously and could be considered when there are a series of 

competing events and when these events occur sequentially. R packages such that 

mstate and msm can be used to implement the multi-state model to estimate TPs. 

The msm function fits the model to the available time-to-event data directly using 

maximum likelihood estimation. The TPs are estimated endogenously within the 

msm function. In contrast, the mstate package estimates TPs exogenously from the 

survival function and combines them under a competing risk framework. 

Logistic 

regression  

The logistic regression model is used to define covariate-dependent TPs in the 

presence of only two possible discrete outcomes. It is an appropriate regression 

analysis to conduct when the dependent variable is dichotomous (binary). 

Generally, in health economic models with multiple health states, multinomial 

logistic regression model used for TP estimation. Multinomial logistic regression 

is a classification method that generalizes logistic regression to multiclass 

problems, i.e., with more than two possible discrete outcomes. The model is used 

to estimate the effect of independent variables and predict the probabilities of the 

different possible outcomes of a categorically distributed dependent variable, 

given a set of independent variables. 

Negative 

binomial 

regression  

In the presence of a small sample and the need to account for over- or under-

dispersion by modelling the variance independently of the mean of the data, 

negative binomial regression is a good choice for TP estimation. It is a type of 

generalized linear model in which the dependent variable is a count of the number 

of times an event occurs.  

Model 

calibration  

Calibration is useful when exact transitions cannot be directly observed, but other 

observable data indirectly provide information about the unobservable parameters, 

given the model structure. The main objective of calibration is to ‘reverse 

engineer’ the model of interest; essentially, to find input parameters (e.g., TPs) so 

that the model predicts a known outcome (or outcomes) informed by existing data 

(e.g. long-term survival).  
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