UNIVERSITY OF LEEDS

This is a repository copy of Decoupling Radiative and Auger Processes in Semiconductor Nanocrystals by Shape Engineering.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/179755/
Version: Supplemental Material

Article:

Zhou, Y and Califano, M orcid.org/0000-0003-3199-3896 (2021) Decoupling Radiative and Auger Processes in Semiconductor Nanocrystals by Shape Engineering. The Journal of Physical Chemistry Letters, 12 (37). pp. 9155-9161. ISSN 1948-7185
https://doi.org/10.1021/acs.jpclett.1c02300

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supporting Information for:

Decoupling Radiative and Auger Processes in Semiconductor Nanocrystals by Shape

 EngineeringYang Zhou ${ }^{\dagger}$ and Marco Califano*, ${ }^{\text {, }, \ddagger}$
† Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds
LS2 9JT, United Kingdom
\ddagger Bragg Centre for Materials Research University of Leeds, Leeds LS2 9JT, United Kingdom

E-mail: m.califano@leeds.ac.uk

AC times as a function of arm length and TP volume

Figure S 1: Auger cooling (AC) relaxation times in CdTe TPs with $D=2.1 \mathrm{~nm}$, calculated as a function of L (a) and as a function of the volume (b), expressed as the total number of atoms in the TP, N_{a}. Black and green dashed lines, indicate fits to power ($a x^{p}$) and exponential ($b e^{c x}$) functions, respectively. We find $A_{0}=3.4 \times 10^{-3}, B_{0}=4.6 \times 10^{-2}$, $C_{0}=1.8 \times 10^{-12}$, and $D_{0}=2.7 \times 10^{-2}$ give the best fits. The red symbol represents the AC lifetime calculated for a CdTe quantum dot with $R=1.7 \mathrm{~nm}$ for reference.

AR times as a function of TP volume

Figure S 2: Auger recombination (AR) times in CdTe TPs with $D=2.1 \mathrm{~nm}$, calculated as a function of the TP volume, expressed as the total number of atoms in the TP, N_{a}. Blue and green dashed lines, indicate fits to power $\left(C_{1} x^{p}\right)$ and linear $\left(t_{0}+D_{1} x\right)$ functions, respectively. We find $C_{1}=3.2 \times 10^{-4}, p=1.58, t_{0}=-97.7 D_{1}=7 \times 10^{-2}$ give the best fits. The red symbol represents the AC lifetime calculated for a CdTe quantum dot with $R=1.7 \mathrm{~nm}$ for reference.

Auger Cooling: comparison of the lifetimes calculated using two different approaches for the screening

Figure S 3: Comparison of the Auger Cooling lifetimes calculated, as a function of the energy variation around the calculated electron transition energy (corresponding to $\Delta E=0$), in a CdTe spherical nanocrystal with $r=1.7 \mathrm{~nm}$, using the 'regional screening' approach of Wang et al. ${ }^{1}$ (coloured lines and symbols), and the 'size-dependent screening' approach of Franceschetti et al. ${ }^{2}$ (black line and symbols). In the 'regional screening' approach the dielectric constant inside the $\operatorname{dot}\left(\epsilon_{i n}\right)$ is assumed equal to the bulk dielectric constant. The variation to the external dielectric constant $\epsilon_{\text {out }}$ occurs via a smoothly decaying sine-like function. ${ }^{1}$ The 'size-dependent screening' approach assumes $\epsilon_{\text {in }}$ to be size- and position-dependent ${ }^{2}$ and $\epsilon_{o u t}=1$.

Auger Recombination: comparison of the lifetimes calcu-

lated using two different approaches for the screening

Figure S 4: Comparison of the Auger Recombination lifetimes calculated, as a function of the energy variation around the calculated single-particle gap (corresponding to $\Delta E=0$), in a CdTe spherical nanocrystal with $r=1.7 \mathrm{~nm}$, using the 'regional screening' approach of Wang et al. ${ }^{1}$ (coloured lines and symbols), and the 'size-dependent screening' approach of Franceschetti et al. ${ }^{2}$ (black line and symbols). Experimental data relative to a CdTe spherical dot with $D=3.4 \mathrm{~nm}$ (magenta circle) ${ }^{3}$ are also included for comparison. In the 'regional screening' approach the dielectric constant inside the dot $\left(\epsilon_{i n}\right)$ is assumed equal to the bulk dielectric constant. The variation to the external dielectric constant $\epsilon_{\text {out }}$ occurs via a smoothly decaying sine-like function. ${ }^{1}$ The 'size-dependent screening' approach assumes $\epsilon_{i n}$ to be size- and position-dependent ${ }^{2}$ and $\epsilon_{o u t}=1$.

References

(1) Wang, L.-W.; Califano, M.; Zunger, A.; Franceschetti, A. Pseudopotential Theory of Auger Processes in CdSe Quantum Dots. Phys. Rev. Lett. 2003 91, 056404.
(2) Franceschetti, A.; Fu, H.; Wang, L.-W. \& Zunger, A. Many-Body Pseudopotential Theory of Excitons in InP and CdSe Quantum Dots. Phys. Rev. B 1999, 60, 1819-1829.
(3) Kobayashi, Y.; Pan, L.; Tamai, N. Effects of Size and Capping Reagents on Biexciton Auger Recombination Dynamics of CdTe Quantum Dots. J. Phys. Chem. C 2009, 113, 11783-11789.

