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Abstract— Robot-assisted gait training is promising to help 

patients recover from stroke. One key problem is how to design 

an adaptive and coordinated gait trajectory for each subject. In 

this paper, we utilize long-short term memory (LSTM) neural 

network with feature-level fusion, to effectively learn the 

multi-source motion characteristic data of lower limbs and adapt 

to the individual gait. Experiments are implemented on healthy 

subjects with motion capture system to get the joint data and 

electromyography acquisition equipment to collect the muscle 

signals simultaneously. The extracted features are input into the 

adopted neural network for fusion, and then train the model 

through a large amount of data. This learning-based approach 

can predict knee joint trajectory in conformity with individual 

gait patterns by combining kinematic data and biological signals. 

Experimental results indicate that this model can achieve a 

superior prediction performance compared with other traditional 

neural networks and the trained LSTM model also presents 

better adaptability between individuals.  

I. INTRODUCTION 

Stroke is a cerebrovascular disease and has a high potential 
of causing motor dysfunction or even permanent disability in 
the aged population [1]. Walking abnormality is the major 
sequela of most stroke survivors, affecting the quality of daily 
routines. Although physical therapy by physiotherapists can 
help patients regain their movement capability, with the 
unceasing expansion of number of stroke patients, physical 
therapy becomes limited accessible. In order to alleviate the 
workload of physiotherapists and lengthening the training, 
lower limb rehabilitation robots have been developed and 
revealed a natural superiority in rendering physical movement 
assistance that includes a long-term process of high-intensity 
repetitive training. 

Robot-assisted gait training for hemiparetic stroke patients, 
has become a research hotspot [2, 3]. Most of the lower limb 
exoskeleton robots carry out rehabilitation training based on 
gait tracking. However, every stroke survivor’s condition is 
different, and even during treatment process, the gait pattern of 
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specific patients also varies. Therefore, individualized 
reference trajectory that effectively reflects the subject’s gait 
characteristics becomes a momentous and challenging issue. 

For the sake of obtaining personalized gait trajectories, the 
strategy of mimicking the healthy side gait to help the affected 
side restore normal gait was developed[4]. However, due to 
the gait asymmetry in stroke patients and the different 
biomechanical properties of bilateral lower limbs[5], the 
feasibility and safety of this approach remains to be discussed. 
Another traditional method to obtain individualized gait 
pattern is to build the complex kinematic and dynamic model 
from healthy individuals[6]. Unfortunately, the gait of each 
walking cycle for different users can be diverse. It is 
impossible to record all the gaits from healthy persons and this 
strategy would break down in the face of dimensions barriers.  

Machine learning technologies have recently gained 
well-deserved attentions in robot-assisted rehabilitation, and 
gait prediction is certainly one of the issues that can benefit 
from it [7]. Plenty of learning-based techniques have been 
applied to let the robot understand or speculate about human 
intentions, as well as to learn the regularity of human 
movements. Some researchers apply artificial neural networks 
to the trajectory design of lower limb exoskeletons. While 
others use convolutional neural networks for gait analysis and 
trajectory reconstruction[8]. Wu et al. predicted an 
individualized gait pattern by using machine learning 
techniques based on the wearer’s physical characteristics[9].  

Long-short term memory (LSTM) is a kind of extensive 
applied recurrent neural networks that specialize in learning 
long range relationships of time series data, and show better 
performance than others[10, 11]. It has been adopted for gait 
recognition, clinical diagnosis of gait disorder and 
model-based gait analysis. Quite a few researchers leverage 
LSTM networks to learn multi-sequence joint data for 
completing the gait recognition task, while others proposed a 
prediction technique based on LSTM technology to predict 
angle trajectories of the damaged lower extremity. For instance, 
Liu [12] used LSTM to model the intra-limb coordination for 
generating knee joint trajectory of lower limb exoskeleton. 

Gait is a unique walking posture, influenced by mutually 
independent factors, such as weight, gender and age[13]. 
Through analyzing various motion characteristic data in 
different movement states, the kinematic law of human lower 
limb can be grasped. Electromyography (EMG) signals have 
an inherent advantage in reflecting the internal activities of the 
muscle, providing critical information during the onsets of 
muscle contraction and relaxation[14]. Since the advance 
prediction of EMG signals can eliminate the time delay 
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between human and robot, it is widespread applied to estimate 
the user’s movement intention accurately and quickly[15, 16]. 
However, due to the uniqueness of gait pattern, the gait 
prediction method using single sensor information cannot 
balance accuracy, globality and real-time. Little research on 
how to generate suitable gait pattern of lower limb exoskeleton 
robot for the wearer’s own physical characteristics is involved. 

To overcome these problems, this paper presents an 
intention prediction model based on personal gait patterns and 
walking habits. Each hidden layer of the employ neural 
network has a great quantity of LSTM units, and thus our 
approach is a prediction model for periodic learning. This 
study aimed to utilize multiple motion characteristics of lower 
limbs during walking to estimate knee kinematics trajectories. 
The rest of this paper is organized as follows: Section II 
introduces the principle of LSTM internal module and the 
fusion LSTM model for knee joint. Section III designs 
materials and experimental setup. In Section IV, the actual gait 
experiment is carried out and the results are obtained. Then the 
conclusion is given in Section V. 

II. LSTM MODEL FOR GAIT PREDICTION 

A. Description of LSTM Internal Module 

LSTM is a recurrent neural network (RNN) variant for 
time series modeling and forecasting. By adding two hidden 
states based on RNN, the LSTM network can better handle the 
issue of gradient vanishing or explosion while training to 
capture the long-term dependencies[17]. The structure of an 
LSTM unit is presented in Figure 1. Three nonlinear gates are 
located in the LSTM unit, namely input gate, forget gate and 
output gate. These three gates are designed to control 
information transmission and final result calculation. 

Figure 1.  Structure of an LSTM unit 

The first gate in the LSTM unit is the forget gate 𝑓𝑡 , 
controlling the extent to which the existing memory 
information should be erased[18]. The forget gate at time t can 
be calculated as: 𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

where 𝑓𝑡 stands for the forget gate vector at time t; 𝑊𝑓 and 𝑏𝑓  is the weight matrix and bias vector of forgot gate, 

respectively; [ℎ𝑡−1, 𝑥𝑡] denotes connecting two vectors into a 
longer vector; σ means the sigmoid activation function. The 
expansion of 𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡] is as shown below: 

𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡] = [𝑊𝑓] ∙ [ℎ𝑡−1𝑥𝑡 ] 

=[𝑊𝑓ℎ  𝑊𝑓𝑥 ] [ℎ𝑡−1𝑥𝑡 ] = 𝑊𝑓ℎ ℎ𝑡−1 + 𝑊𝑓𝑥 𝑥𝑡 

(2) 

In addition to the intermediate state �̃�𝑡 , LSTM also 
maintain a memory cell 𝐶𝑡 , which is updated by partially 
forgetting the existing memory content and adding new one. 
The two states are formulated respectively by: �̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐 (3) 𝐶𝑡 = 𝑓𝑡   𝐶𝑡−1 + 𝑖𝑡   �̃�𝑡 (4) 

where tanh denotes the nonlinear tanh activation function; 𝑊𝑐 
and 𝑏𝑐 presents the weight and bias vectors of the current 
gate, separately; and  stands for the pointwise multiplication 
operation for two vectors[19]. 

The input gate 𝑖𝑡  is used to decide when to let the 
activation enter the internal state while the output gate 𝑂𝑡 is 
to calculate how much information can eventually be chosen 
as the output. The input and output gate can be computed 
separately as: 𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (5) 𝑂𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (6) 

where 𝑊𝑖  and 𝑊𝑜  are the weight matrices of the 
corresponding gate; 𝑏𝑖 and 𝑏𝑜 stand for the bias vectors of 
the commensurately gate. 

As a last step, the final output ℎ𝑡 of the LSTM unit at 
time step t is defined by: ℎ𝑡 = 𝑂𝑡   𝑡𝑎𝑛ℎ(𝐶𝑡) (7) 

B. LSTM Model for Knee Joint 

In gait sequences, the joint angle of current time is 
associated with the previous angles and also corresponding 
EMG signals of extensor and flexor muscles. Based on the 
formula (1) - (7), the unfold LSTM neural network in 
time-domain is pictured in Figure 2. 
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Figure 2.  The unrolled LSTM neural network in time-domain 

Referring to [20], we established a knee joint model based 
on the LSTM framework to better predict the knee joint 
trajectories in real time, as depicted in Figure 3.  
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Figure 3.  The architecture of LSTM neural network employed (θ=angle, 
h=hip, k=knee and a=ankle) 

Concretely, the applied LSTM model consists of two 
stages. The first stage is stacked by LSTM units where the 
inputs are the sequential loads in the order of different 
timestamps and the output is the hidden state ℎ𝑡 at the last 
timestamp, corresponding to the encoded   characteristics 
learned from the historical loading. To learn the movement 
pattern of the subjects efficiently, angles of hip, knee and ankle 
joints as well as the EMG information related to knee extensor 
and flexor muscles are included. Gait data and EMG signals 
pass through each gate function of two LSTM modules 
respectively. Then key information in input features is retained 
and transmitted by updating the whole unit state.  

The second stage is a fully-connected (FC) network 
followed by non-linear (NL) activation functions, where the 
inputs are the concatenated feature vectors generated from the 
above-mentioned stage. Specifically, the outputs of the two 
LSTM blocks are further concatenated to generate a 
high-dimensional feature vector[21]. After the concatenation 
layer, network trained with one additional fully connected 
layer with non-linear activation functions. The final output is 
the forecasted gait trajectory of knee joint after 50ms. 

The hyper-parameters of our model include the number of 
hidden units for each layer (in the range of 20-64), the training 
batch size (128), and the number of training epochs (200). In 
order to learn gait characteristics, mean absolute error (MAE) 
loss function is applied to quantify the loss during training and 
testing. Adam Optimizer is to adjust the learning rate for every 
parameter by estimating the first and second moments of the 
gradients[22]. Finally, the model is evaluated by calculating 
root mean squared error (RMSE) as well as the correlation 
coefficient (CC) after each run. 

One of the reasons for applying this network structure is 
that the human walking process is a long time series with a 
certain periodicity. LSTM neural network has been feasibly 
applied to learn the intrinsic spatial-temporal correlation of 
gait features in virtue of the capacity for processing and 
predicting the time series with prolonged intervals. 
Furthermore, stacking multiple basic LSTM units can make 
the gradient flow further backward in time and enhance the 
ability of the neural network to establish long-term 
connections. Beyond that, the neural network-based feature 
fusion could efficiently integrate two sequence features. 
Therefore, the model is robust and can retain the key 

information of the historical moment, while avoiding the 
occurrence of gradient dispersion.  

C. Model Training 

Our experiments are implemented on the TensorFlow 
framework using python. The dataset is split into two parts: 
approximately 70 percent for training set and the remaining 30 
percent for testing set. Figure 4 presents the results of the 
model learning process. It can be seen that the loss of this 
network is gently decreasing and then obtain a stable 
convergence during the training process, which indicates the 
amelioration of model performance. 

 

Figure 4.  Mean absolute error learning curve for each epoch 

III. MATERIALS AND EXPERIMENTAL SETUP 

A. Participants 

Four healthy male subjects (age 23.6 ± 1.4 years, height 
172.1 ± 5.8 cm, weight 65.2 ± 7.5 kg), with no reported history 
of gait dysfunction, participated in this study. Each subject was 
instructed to walk six times at their self-selected walking 
speeds. We gave no explicit indications about gait speed or 
posture so as not to induce gait alterations. Subjects signed an 
informed consent form before participating in the gait 
experiments.  

B. Data Acquisition 

The lower limb joints trajectories are recorded by 3D 
motion capture system (Qualisys, Sweden Qualisys company), 
which applies an infrared high-speed camera to capture the 
movement trajectories of reflective markers. Qualisys is 
capable of supporting both active and passive, indoor and 
outdoor, delivering high-quality data to users in an accurate, 
reliable, and real-time manner. The calibration of cameras and 
platforms locations is performed before each acquisition trial, 
following the standard procedure described by setup 
requirements of Qualisys motion capture system. The subject 
is equipped with nine reflective markers on hip, knee and 
ankle joints of lower extremities. 

Meanwhile, the EMG signals acquisition device is the 
portable surface electromyography (Trigno™ Wireless EMG, 
US DELSYS). More channels may decrease the prediction 
effect due to the crosstalk between different channels of EMG 
signals. Combining human anatomy and a great quantity of 
experimental outcomes, rectus femoris (RF), vastus lateralis 
(VL) in knee extensors and gastrocnemius (GM) in knee 
flexors are selected based on our trials. Each channel 
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corresponds to one muscle. These muscles are chosen due to 
its prominence and correlation with the motion state of knee 
joint muscles, thus providing effective and consistent EMG 
signals. The electrode pads of three EMG sensors are placed 
on the muscle belly, paralleling to the muscle spindle. The skin 
is meticulously shaved and cleaned with alcohol to reduce skin 
impedance. 

The aforementioned two kinds of data are collected 
synchronously. The synchronous data acquisition is managed 

by Qualisys Track Manager（QTM）, a motion acquisition 

software based on Windows platform, which can accurately 
realize 2D, 3D and 6DOF real-time data browsing. The 
specific experimental setup are described in Figure 5. 

 

Figure 5.  Experimental setup. (a) Qualisys 3D motion capture system. 
(b) Three-dimensional view of mark points on lower limb. (c)Location of 

EMG sensors. (d) Photographs of a subject equipped with markers and EMG 
electrodes during the experiment. 

The setup of Qualisys 3D motion capture system is shown 
in Figure 5(a). This system embodies the analysis and 
processing software of host computer, eight infrared 
high-speed cameras and a video camera. Three-dimensional 
view of the lower limb markers (white dots in Figure 5(b)) is 
displayed in QTM software, where the markers are named and 
subsequently processed. Figure 5 (c) and (d) show the 
mounting positions of nine reflective markers together with 
three EMG electrodes. 

C. Data Process 

Raw sensors outputs are synchronized by the software and 
then exported to a standard mat file format. Subsequently, all 
the data files are processed under MATLAB (R2018b, The 
MathWorks, Natick, USA). Gait data and EMG signals are 
recorded at a sampling rate of 100 Hz and 2000 Hz, 
respectively. After completing the gait data acquisition 
experiment. the labels of nine optical marks are indicated in 
accordance with the actual joint position. The named mark 
points are wired together, and every three Mark points form a 
plane, from which a joint angle can be calculated. By 
connecting the marks of the entire lower limb, a skeleton 
model of the lower extremity can be constructed to calculate 
the human motion trajectory. 

Since EMG signals are closely related to the knee joint 
angle, in order to fully and correctly obtain the information in 
the EMG signal, the raw signal must be preprocessed to 
extract the features. Step 1: Full-wave rectification. Step 2: 
EMG signal is filtered to remove the bias and noise. In this 
step, a 6th-order Butterworth low pass filter with a 30 Hz 
cut-off frequency is used. Step 3: The sliding window is 
engaged in extracting the features by setting a time window 
with an increment window. Finally, the foregoing processed 
features are used as input signals for the LSTM model. It is 
worth noting that all data have been normalized before being 
fed into the neural network. 

IV. RESULTS AND DISCUSSION 

A. Comparison with Traditional Methods 

We compare the predicted trajectory of knee joint by our 
model with that of traditional LSTM, and the performance of 
traditional RNN without three gates is also tested for 
comparison. Our approach along with two additional methods 
is trained and tested with the same dataset. The prediction 
results of gait trajectory are presented in Figure 6.  

 

Figure 6.  Contrastive results between real and predicted trajectories  

Notice that the result of adopted LSTM model is closer to 
actual trajectory than traditional LSTM, and the capability of 
smoothing is also better than other methods. This indicates that 
the LSTM neural network with feature-level fusion can 
accurately learn various motion characteristic data of lower 
limbs, which is propitious to gait modeling. Nevertheless, 
there are some fluctuations in the predicted trajectory. 
Although the learning-based gait modeling method can 
quickly obtain spatiotemporal characteristics of gait by 
training a large amount of diverse data, the produced outcome 
is a probability distribution, which may lead to a few poor 
results within error permissibility. 

To quantify the validity and stability of the proposed 
approach, for the same sample dataset, the RMS and CC of the 
knee angle estimated by different models are calculated (mean, 
std, max, min derived from thirty experiments). As illustrated 
in Table I and Table II, the employed adaptive LSTM model 
exhibited better performance, yielding the best mean, std, min 
and max RMSE value for all trials, as well as CC. For instance, 
the applied LSTM shows a mean RMSE error of 0.464°, while 
the error in traditional RNN model is equal to 2.523°. 
Although the standard deviation difference between the 



  

traditional LSTM and our model is not too big, indicating that 
both of them have strong stability, it is far worse than our 
method in terms of prediction accuracy. The predicted 
trajectory error of our approach changes from 0.348° to 0.713°, 
and traditional LSTM from 1.359° to 1.729°. Moreover, the 
average value of CC generated by our method is larger, 
indicating a stronger correlation and better regression 
performance of the model. It demonstrates that this approach is 
superior to traditional neural networks in prediction results and 
fitting capabilities. 

TABLE I.  RMSE (°) OF GAIT TRAJECTORY PREDICTION CORRESPONDING TO 

DIFFERENT METHODS 

Type Mean Std Min Max 

Our approach 0.464 0.096 0.348 0.713 

Traditional LSTM 1.500 0.098 1.359 1.729 

Traditional RNN 2.523 0.373 1.900 3.353 

TABLE II.  CORRELATION COEFFICIENT (CC) OF GAIT TRAJECTORY 

PREDICTION CORRESPONDING TO DIFFERENT METHODS 

Type Mean Std Min Max 

Our approach 0.999 0.00001 0.998 0.999 

Traditional LSTM 0.984 0.00219 0.979 0.987 

Traditional RNN 0.963 0.01223 0.927 0.983 

 

The LSTM model we utilized can get the utmost out of the 
subjects' own multi-source motion data, so that the predicted 
results can better adapt to the patient's own conditions and 
avoid rigid gait. It is a promising method to generate adaptive 
reference trajectory to assist stroke survivors in walking 
naturally and rhythmically. This method is also applicable to 
healthy people. Furthermore, the acquired trajectories are 
capable of being improved with individual's performance 
during gait rehabilitation process. By encouraging patients to 
actively participate in the gait training, the central nervous 
function can be reshaped and the motor ability can be 
optimized continuously until they can regain normal gait. 

B. Data Validation 

 

Figure 7.  knee angles prediction using fusion data Vs single data 

The outcomes of the applied LSTM model with and 
without EMG signals fusion are sufficiently different. As 
visualized below in Figure 7, for the fusion data, the error 
between the predicted trajectory and the original trajectory of 
knee joint is very low. Our approach can provide more 
accurate prediction than the model with single signal. The 
employed knee joint model with fusion data perfectly 
represents the walking gait characteristics.  

In order to comprehensively compare the model 
performance of two distinct data, the outcomes of RMSE and 
CC after thirty runs are obtained in the tables below. A better 
prediction effect can be obtained by our model with the fused 
features of gait characteristics and EMG features. The RMSE 
errors of the model with single data range from 1.496° to 
2.443°, which is larger and less stable than that of fusion data. 
The mean RMSE error of single signal is equal to 1.848° 
compared to the value of 0.464° using fusion signal. 
Additionally, a high correlation is achieved by our approach 
(mean CC = 0.999). Even under the worst circumstances, our 
approach leads to better values with a max RMSE error of 
0.713° and a min CC of 0.998. 

TABLE III.  RMSE (°) OF GAIT TRAJECTORY PREDICTION WITH DIFFERENT 

DATA 

Type Mean Std Min Max 

Fusion signal 0.464 0.096 0.348 0.713 

Single signal 1.848 0.277 1.496 2.443 

TABLE IV.  CORRELATION COEFFICIENT (CC) OF GAIT TRAJECTORY 

PREDICTION WITH DIFFERENT DATA 

Type Mean Std Min Max 

Fusion signal 0.999 0.00001 0.998 0.999 

Single signal 0.975 0.00745 0.957 0.984 

 

To validate the performance of inter-individual adaption, 
we need to prove that the knee joint motion data can be 
effectively predicted by multiple motion data of randomly 
selected subjects. Thus, we carry out experiments on all 
aforementioned models with four able-bodied subjects.   
Mean value is the average RMSE error of different estimation 
results based on various subjects. As depicted in Figure 8, our 
approach’s mean error is the smallest among all methods. Not 
only is the trajectory prediction error per subject much lower 
than that of other neural networks, but there is little difference 
of error values between different subjects. It is noticeable that 
our approach has shown a tremendous advantage over other 
models. 

Consequently, training data from any subjects can be 
applied to our LSTM model to commendably predict the 
motion track of the knee joint in the next moment, which is 
based on the multi-dimensional movement feature data of 
individuals. It turns out that our approach has good 
adaptability and universality on different subjects. This model 
shows excellency in taking advantage of current fusion 



  

information to predict next step data through variations over 
time such as walking.  

 

Figure 8.  Trajectory RMSE (°) for different subjects 

C. Limitations of the Study 

This study has a limitation of including only young healthy 
subjects without any lower extremity motor dysfunction. It 
would be beneficial to further investigate gait patterns of 
actual patients, and our strategy will be adopted on the 
self-developed exoskeleton robot to verify its practical 
feasibility. Another limitation is the relatively small number 
and scope of recruits, which limits the universality and 
prediction effect of the model. In order to obtain complete gait 
characteristics, we will add larger gait sets with more 
participants in future work. 

V. CONCLUSION 

In this paper, a LSTM neural network are developed to 
model and predict the suitable knee joint trajectory of subjects. 
Gait experiments on four fit individuals with different ages, 
weights and heights are conducted to collect fusion data from 
motion capture system and EMG sensors. Subsequently, gait 
data and EMG signals are processed and fused to predict 
movement trajectory based on individual gait. The 
effectiveness of the presented approach is demonstrated 
quantitatively compared with traditional neural network models. 
Additionally, the comprehensive evaluation method is applied 
to test the performance. Results indicate that the employed 
LSTM model has an excellent performance in terms of both 
prediction performance and generalization ability. The 
generated gait trajectory is adaptable to different rehabilitation 
stages, physical fitness and personal gait patterns in real time. 
Our ultimate goal is to carry out clinical trials to help stroke 
survivors achieve a more natural, adaptive and stable gait 
rehabilitation training. 
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