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Abstract— Gait prediction is crucial in exoskeleton-assisted 

gait rehabilitation by recognizing the movement intention of 

patients, so as to realize the adaptive and transparent robotic 

assistance. Human locomotion has inherent synergies and 

coordination, and the dynamic mapping of the upper and lower 

limbs is beneficial to improve the prediction accuracy. Current 

prediction methods did not consider the correlation of gait data 

in time and space, resulting in a large amount of redundant 

data and low prediction accuracy. This paper proposes a gait 

trajectory prediction method based on convolutional neural 

network-long short-term memory (CNN-LSTM) model, which 

predicts the human knee/ankle joint trajectory based on upper 

and lower limb collaborative data. The attention mechanism is 

applied to determine which dimensions are essential in gait 

prediction, so the accuracy can be improved by adopting key 

elements. Results show that, within a predicted horizon of 50ms, 

the prediction RMSE is as low as 0.317 degrees.  

I. INTRODUCTION 

According to World Health Organization (WHO), the 
proportion of the global aging population will increase from 
12% to 22% between 2015 to 2050 [1]. Meanwhile, there are 
24.72 million disabled people in China [2], and China ranks 
the first in the world for the incidence of stroke [3]. The 
elderly and stroke patients are accompanied by varying 
degrees of limb weakness. Lower-limb exoskeletons can 
provide gait rehabilitation for patients, which can effectively 
promote muscle strength and neural circuit remodeling. In 
existing exoskeletons control strategies, pre-defined gait 
trajectory control is usually used for gait rehabilitation [4], 
but this pre-defined gait trajectory usually does not take into 
account the characteristics of the patient’s gait and cannot 
meet the individualized rehabilitation needs. The patient's 
motion intention prediction model has been applied to gait 
trajectory prediction. However, the prediction accuracy of 
these models is still limited without fully extracting the 
characteristics of the data in time and space. 
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Trajectory prediction of lower limb is currently the main 
focus, but the coordination of upper and lower limbs has a 
positive significance for gait prediction. Several studies have 
examined the coordination between the upper and lower 
limbs of the gait. Research has proven that the activities of 
the arms and legs remain coordinated in various human 
locomotion, and the arm and leg movement keep the 
frequency locked at 1/1 during walking [5]. Boudali et al. 
used Koopman operator to identify the dynamic mapping 
between the upper limb and its opposite lower limb in human 
motion, and the authors intended to design a new method of 
controlling the exoskeleton of the lower limbs based on the 
mapping principles. The wearer can control the movement of 
the damaged leg through the movement of the arm to realize 
more voluntary control [6]. In addition, no difference has 
been observed in any coordination measurements between 
healthy subjects and stroke subjects, indicating that the ability 
to coordinate arm and leg movements during walking is still 
maintained in stroke individuals [7]. 

Human motions contain complex neuromusculoskeletal 
coordination between the different joints of the upper and 
lower limbs. Therefore, the upper and lower limbs can be 
coordinated to more accurately predict the joint angle through 
this connection [8, 9]. Eslamy et al. developed an advanced 
controller which could map calf kinematics to ankle torque 
and angle. Meanwhile, it did not require speed determination, 
gait percentage recognition, etc. [10]. He et al. proposed a 
method for lower limb trajectory prediction based on LSTM 
model. This approach based on synergy theory utilized the 
joint angle of the previous swing process to generate the 
motion trajectory of the lower limb joint [11]. 

Machine learning methods have been used in gait 
prediction to achieve high prediction accuracy. Huang et al. 
built a model to predict knee angles in real time, which was 
created based on a combination of electromyography (EMG) 
signals and inertial data of the thigh and calf. The prediction 
model based on fusion signal achieve a balanced between 
prediction accuracy and computational complexity [12]. 
Compared with a single neural network, hybrid neural 
networks can achieve better performance. Xiong et al. used a 
small number of input variables selected through the elastic 
network as the input of the artificial neural network (ANN) to 
predict the joint torque, which could make predictions in 
daily life, and has good individual adaptability and 
environmental adaptability [13]. Gautam et al. developed an 
accurate hybrid deep learning model that could recognize 
lower limb movements and predict the joint angle 
information of the executed limb movements [14]. 

Due to the periodicity of gait data, long short-term 
memory (LSTM) can well capture the time characteristics of 
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gait signals [15]. He et al. used a method based on the 
synergy theory to make the joint angle of the previous upper 
limb data can generate the subsequent lower limb joint 
trajectory [11]. Liu et al. used LSTM to take advantage of the 
synergy of the lower limbs, and predicted the motion 
trajectory of the knee joint based on the hip and ankle joints 
[16]. Convolutional neural network (CNN) model can predict 
gait data as the convolution kernel can learn the 
characteristics of gait data for a period of time, and make 
predictions based on historical gait data. Compared with 
LSTM, CNN can see more historical data. Although LSTM 
has a certain memory ability, this memory is only short-lived 
[17]. William et al. used five pre-trained CNN models to 
compare the multiple regression of the 3D ground reaction 
force and torque based on the marker-based motion capture, 
and each model had been tested for margins, which made it 
possible to accurately predict the force and torque outside the 
laboratory [18]. Gholami et al. chose the CNN model as the 
regression model to minimize the joint angle prediction error 
in the scene between participants, and the root mean square 
error (RMSE) of the CNN model's prediction error from the 
actual angle was less than 3.5° and 6.5° in intra- and 
inter-participant scenarios [19]. 

By fusing LSTM and CNN neural network, more spatial 
and temporal characteristics of gait data can be integrated, 
thereby improving the prediction accuracy [20, 21]. Zhen et 
al. proposed an algorithm based on long and short-term 
memory network and convolutional neural network 
(LCWSnet), which uses leg Euler angle information to 
diagnose and classify gait abnormalities, and can adaptively 
adjust feature-related parameters [20]. The attention 
mechanism can devote more attention to important areas to 
obtain more detailed information and suppress other useless 
information [22]. Chen et al. proposed an attention-based 
CNN-LSTM method for sleep awakening detection using 
heterogeneous sensor data, with a significant improvement 
from 5% to 46% [23]. 

In this paper, we propose a lower limb trajectory 
prediction framework for patients with certain mobility in the 
middle and late stage of rehabilitation, which combines the 
synergy and the attention mechanism to improve the 
prediction accuracy. The personalized predicted trajectory 
used to drive the exoskeleton robot is more conducive to 
assisting patients in rehabilitation. The remaining of this 
paper is organized as follows: Section Ⅱ introduces adopted 
model and the basic principles of CNN, LSTM and attention 
mechanism. Section Ⅲ describes the experimental 
environment and data preprocessing. The experimental 
results and their analysis are in Section Ⅳ. Section Ⅴ is the 
discussion and prospect of this article. 

II. METHODS  

A. Attention-based CNN-LSTM Model 

CNN is suitable for spatial abstraction and generalization, 
while LSTM is fit for extending temporal features and 
processing sequential data. To construct a gait trajectory 
prediction model, it is necessary to consider not only the 
relationship of its spatial characteristics, but also the 
associated information in the time dimension. Therefore, this 
article combines the advantages of the two models to use the 

CNN-LSTM model. CNN mines the correlation between 
multi-dimensional data and removes noise and unstable 
components. LSTM uses the information processed by CNN 
for long sequence prediction. The attention mechanism 
assigns more weights to important features to improve the 
prediction accuracy. 
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Figure1. The structure of attention-based CNN-LSTM model 

The model constructed in this paper consists of three parts: 
CNN network, LSTM network and attention mechanism. 
First, in the CNN network, a one-dimensional convolution 
kernel is used to convolve the joint angle data to extract the 
characteristic components in the spatial structure. The 
MaxPooling layer reduces the number of model parameters 
and overfitting problem. Subsequently, the LSTM network 
performs sequence prediction based on the extracted feature 
components. Since the features extracted by the CNN 
network still have timing characteristics, it can be directly 
and effectively modeled by using LSTM. The position of the 
attention module is adjustable. The attention module 
multiplies and adds the output vectors of the hidden layer at 
different time points and the corresponding weights to give 
more weight to important feature as the final feature 
expression of the model. The attention module can make the 
model obtain more comprehensive and detailed feature 
information. The attention-based CNN-LSTM model 
(attention module before the LSTM) is shown in Figure 1. 

B. CNN Networks 
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Figure2. The structure of CNN model 

CNN model uses a sliding window to perform 
convolution operations on the original data to extract gait 
features over a period of time. The MaxPooling layer to 
extract more important features to form high-dimensional 
features. The fully connected layer is to reduce the feature 
dimensionality extracted by the MaxPooling layer, which 
interprets the high-dimensional features as low-dimensional 
outputs. Finally, the dense layer is used to correspond to the 
output dimensions. The CNN structure is shown in Figure 2 

Spatiotemporal features can be easily extracted by the 

one-dimensional (1D) CNN (1D-CNN) from the model input. 

Let the given model input be                   , consisting 

of joint angle of upper and lower limbs. Firstly, the model 

input X is input to the 1D-CNN layer, and there has        (        ) (1) 



 

where    represents the input vector,    is the convolution 

kernel,    represents bias vector, and    is the output vector 

of the 1D-CNN layer. The output of the 1D-CNN layer is a 

spatiotemporal feature matrix                     
C. LSTM Networks 

As a special kind of RNN, the LSTM network is capable 
of learning long-term dependencies. It has the advantage of 
connecting previous information to the present task. Because 
of its special memory cell architecture, the LSTM network 
overcomes the defects of the traditional RNN, especially the 
problems of gradient disappearance and gradient explosion. 
The architecture of an LSTM memory cell is shown in Figure 
3, where each cell has three “gate” structures, namely, the 
input gate, the forget gate, and the output gate. A chain of 
repeating cells forms the LSTM layer. 
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Figure3. Standard LSTM model    represents the tth time series value fed in LSTM.    represents the memory cell, which is the core of LSTM. 
Memory cell can control the transformation of different time 
information. The input gate determines the information that 
the current time deliver to the next time. The forget gate 
indicates how much information of the previous time has 
been retained in the current time. The output gate determines 
the output of the current state to the next state. The equation 
of different cells in LSTM is shown as the following:     (                )  
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    (                )     (                )   ̃      (                )                 ̃           (  ) 

where   ,   ,    represent the tth input gate, forget gate and 

output gate function.    ,    ,    ,     represent 

weights of input gate, forget gate, input gate and memory cell.    ,    ,    ,     represent weights from hidden layers 

to input gate, forget gate, input gate and the memory cell.   ,   ,   ,    are the bias values of the input gate, forget gate, 

output gate and the memory cell. 

D. Attention Layer 

   The attention mechanism performs a weighted 

summation calculation on the hidden layer vector expression 

output, where the size of the weight indicates the importance 

of the feature at each time point. The attention mechanism is 

shown in the Figure 4. 
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Figure4. Attention mechanism [24]    ∑     
    

 

(3) 

Suppose the input is k feature vectors    (Encoder 

hidden state),         . Attention weight    is the 

weight added by the state. The content vector   is the 

weighted sum of all hidden states of the encoder and their 

corresponding attention weights. 

Ⅲ. EXPERIMENTS 

A. Experimental Setup 

The following experimental procedures are designed to 
develop the proposed algorithm and verify its performance. 
The subjects participated in the experiment and reached a 
consensus with the research team on the detailed procedures. 
The subject is healthy and has no history of neurological 
abnormalities.  

In terms of experimental data, the subjects (male between 
23 and 24 years old) with body weight ranging from 46 kg to 
70 kg and height ranging from 158 cm to 177 cm were 
selected to collect joint data. The subject’s legs or feet did not 
have any diseases that could affect normal walking. 

We prepared a total of 24 gait feature data from the 
subject’s upper and lower limbs, and the normal walking data 
was captured by the Qualisys system. Figure 5 (a, b) shows 
the marking points attached to the subject, Figure 5 (c) shows 
the camera position of the motion capture system. Our 
experiment is implemented on the Tensorflow framework, 
which is a popular deep learning framework. The sampling 
frequency of the Qualisys system is 150 Hz, and the step 
length is 15, so the joint angle after 0.1s can be predicted. 

 

 



 

      
(a)                           (b) 

 
(c) 

Figure5. (a) Marked points on the subject, (b) Marked points on QTM 

software, (c) Motion capture using Qualisys system 
 

B. Model Evaluation Metrics 

There are two common metrics of neural network 

regression prediction. 

1. Root Mean Square Error (RMSE) 

 

2. Mean Absolute Error (MAE) 

where    is the forecasted value,  ̂  is the true value. From 

these equations, lower MSE and MAE represent better 

forecasting accuracy. 

C. Results. 

The proposed model is built by Python deep learning 
module TensorFlow 2.0. The loss function is set to MSE, 
optimizer is set to Adaptive moment estimation. Epochs are 
set to 300. The batch size is set to 128. Experiment platform 
is shown as follows. Operation system: Windows 10, CPU: 
Intel Xeon, Random Access Memory (RAM): 13 GB.  

 
Figure6. Loss curve in the training process 

 

As illustrated schematically in Figure 6, the loss function 
values of both the training set and the testing set decrease 
rapidly. The loss of the training set converges after 100 
epochs, and the loss of the test set converges after 80 epochs. 

TABLE I.  PREDICTION ERROR RESULTS FOR ANGLE 

 

In order to ensure the effectiveness and stability of the 
proposed method, for the same sample dataset, the average 
value of predicted angles from thirty repeated experiments is 
calculated. Table Ι shows the MAE and RMSE of various 
methods and synergies in 30 repeated calculations. Some 
conclusions can be drawn by comparing the prediction angles 
of different algorithms and synergies. 

 

(a)                     (b) 

Figure7. Prediction results of different algorithms 

According to Figure 7, CNN-LSTM has lower forecasting 
error than CNN and LSTM, indicating that the combined 
model of CNN and LSTM has better predictive ability. In 
addition, the model using CNN is better than the model 
without CNN, which shows that CNN can effectively extract 
features from the data to improve prediction performance. 
The performance of attention-based CNN-LSTM is better 
than the other three structures, indicating that assigning 
appropriate weights to different dimensions can effectively 
improve the prediction accuracy. It is worth mentioning the 
results of the proposed model are more stable than 
CNN-LSTM models in 30 calculations. When there are many 
input dimensions and the importance of different dimensions 
is varying, more attention can be paid to the important 
dimensions to achieve better prediction performance. 
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Method Metric Right 

lower 

limb 

Lower 

limb 

Upper and 

lower limb 

CNN RMSE 1.369 0.995 0.810 

MAE 1.031 0.744 0.619 

LSTM RMSE 1.014 0.844 0.745 

MAE 0.770 0.636 0.562 

CNN-LS

TM 

RMSE 0.823 0.741 0.665 

MAE 0.618 0.569 0.523 

CNN-LS

TM-atte

ntion 

RMSE 0.391 0.373 0.317 

MAE 0.269 0.249 0.202 



 

 

(a)                    (b) 

Figure8. Prediction results of different synergies 

This study tested the effect of upper and lower limb 
synergy on improving the accuracy of single joint prediction. 
Figure 8 shows the influence of different synergies on the 
prediction results of the knee joint angle. Figure 8 (b) shows 
that the error of lower limb is lower than that of the right 
lower limb, indicating that there is a synergy between the left 
and right legs. Similarly, there is also a synergy between the 
upper and lower limbs. A healthy gait movement is the result 
of complex neural coordination between different moving 
joints of the human body, and this synergy can be used to 
improve the accuracy of gait prediction. 

TABLE II.  PREDICTION ERROR OF MAIN ATTENTION ON ONE JOINT 

Type Ipsilateral 

ankle 

Ipsilateral 

hip 

Opposite  

knee 

RMSE 0.390 0.358 0.338 

MAE 0.256 0.253 0.250 

 
It can be seen from Table Ⅱ that main attention on 

different joints has various prediction error when we predict 
the right knee joint trajectory. It shows that although human 
gait movement is the result of the limb synergy, the degree of 
synergy between different joints is different. 

 
Figure9. Prediction errors of different attention mechanism location 

 

Adding attention mechanism to different parts of the 
model has different meanings, and its structure will be 
different. The attention layer has an N-to-1 structure before 
LSTM, and the attention layer has an N-to-N structure after 
LSTM. We will transform the position of the attention layer 
and place them in the input layer (before the LSTM) and the 
output layer (after the LSTM) of the entire classification 
model to compare it to check whether the attention 

mechanism can capture key information in each place. From 
Figure 9, it shows that using the attention mechanism after 
the LSTM layer has lower errors than using the attention 
mechanism before the LSTM layer. When using the attention 
mechanism after LSTM, more features will be assigned 
attention, but these features are more abstract to explain. 

Ⅳ. DISCUSSION 

The experimental results show that the proposed model 
combines the advantages of CNN and LSTM. Theoretically, 
CNN model is more suitable for spatial expansion, extracting 
local features of data and combining them into high-level 
features. The gait information can reflect the current state of 
motion in a period of time, and its gait characteristics also 
conform to local association and weight sharing, that is, each 
neuron only needs to analyze the surrounding data. LSTM is 
more suitable for time extension, has long-term memory 
function, and is more suitable for processing time series. The 
CNN-LSTM model has the ability of spatiotemporal feature 
expression, and the prediction effect will be more accurate. 
The CNN-LSTM model with attention mechanism has better 
accuracy in joint prediction tasks, which proves that attention 
mechanism can adjust the network structure and solve the 
loss of important features of CNN-LSTM model. 

The deep-RNN method collecting data from EMG and 
IMUs sensors is suitable for patients outside the lab [12], and 
the LSTM-based prediction method is suitable for the early 
stage of rehabilitation, generating lower limb intentions 
through previous swing process of upper limb [11]. By 
contrast, the proposed method is more suitable for patients in 
the middle and late stages of rehabilitation to perform 
specific exercise training in the lab. The gait information 
predicts the motion trajectory of the required joints, which 
has a wide range of applications in exoskeletons. When there 
are more input dimensions, more attention can be paid to 
important features to obtain higher accuracy. Therefore, it is a 
good option to combine the upper and lower extremity 
collaborative prediction with the attention mechanism. 

Ⅴ. CONCLUSION 

This paper establishes a neural network model, which 
uses the movements of the upper and lower limbs to predict 
the trajectory of the knee joint throughout the gait cycle. The 
results show that the upper and lower limbs have the better 
effect of synergy prediction. In addition, the results indicate 
that the degree of synergy between different joints is different. 
The upper and lower limb synergy and attention mechanism 
have the potential to be used in the control of exoskeleton 
robots. Correctly predicting angle can be used to achieve 
continuous and smooth control on exoskeletons, enabling the 
robot to perform human-like smooth movements, which is of 
great significance for human-robot compliance control. In 
future works, we intend to quantify the synergy of different 
joints in different movements and apply the method to gait 
recognition to control the exoskeleton more compliantly. 
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