
This is a repository copy of A LED-Based IR/RGB End-to-End Latency Measurement 
Device.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/179726/

Version: Accepted Version

Proceedings Paper:
Billeter, M orcid.org/0000-0003-1806-2587, Rothlin, G, Wezel, J et al. (2 more authors) 
(2017) A LED-Based IR/RGB End-to-End Latency Measurement Device. In: 2016 IEEE 
International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct). 2016 IEEE 
International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), 19-23 Sep 
2016, Merida, Mexico. IEEE . ISBN 978-1-5090-3741-4 

https://doi.org/10.1109/ismar-adjunct.2016.0072

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



A LED-Based IR/RGB End-to-End Latency Measurement Device

Markus Billeter∗

Chalmers University

Gerhard Röthlin†

Disney Research

Jan Wezel ‡

Disney Research

Daisuke Iwai §

Osaka University

Anselm Grundhöfer ¶

Disney Research

Figure 1: The developed prototypical latency measurement device. It consists of three rows of 16 white and IR LED pairs (lower row: visible light,
upper row: IR) emitting time stamps encoded as gray codes. Encoding and LED control is carried out using an Arduino micro controller. Decoding
is done by an external camera.

ABSTRACT

Achieving a minimal latency within augmented reality (AR) systems
is one of the most important factors to achieve a convincing visual
impression. It is even more crucial for non-video augmentations
such as dynamic projection mappings because in that case the su-
perimposed imagery has to exactly match the dynamic real surface,
which obviously cannot be directly influenced or delayed in its move-
ment. In those cases, the inevitable latency is usually compensated
for using prediction and extrapolation operations, which require
accurate information about the occurring overall latency to exactly
predict to the right time frame for the augmentation. Different strate-
gies have been applied to accurately compute this latency. Since
some of these AR systems operate within different spectral bands
for input and output, it is not possible to apply latency measurement
methods encoding time stamps directly into the presented output
images as these might not be sensed by used input device.

We present a generic latency measurement device which can
be used to accurately measure the overall end-to-end latency of
camera-based AR systems with an accuracy below one millisecond.
It comprises a LED-based time stamp generator displaying the time
as a gray code on spatially and spectrally multiple locations. It is
controlled by a micro-controller and sensed by an external camera

∗e-mail: markus@newq.net
†e-mail:gerhard@disneyresearch.com
‡e-mail:jan.wezel@disneyresearch.com
§e-mail:daisuke.iwai@sys.es.osaka-u.ac.jp
¶e-mail:anselm@disneyresearch.com

device observing the output display as well as the LED device at the
same time.

Index Terms: H.5.2 [HCI]: User Interfaces—Benchmarking;

1 INTRODUCTION

Calculating the overall latency of AR systems is an important task
when gathering the required information to asses the overall system
performance, especially in situations where real-time feedback is re-
quired. This is in particular important for spatial augmentations such
as dynamic projector-camera (procams) systems since, as opposed
to video-see-through augmentations, the real world impression obvi-
ously cannot be delayed to match the augmentation. In these systems
often the camera is not capturing the same region of the electromag-
netic spectrum which is used for projection since then the projection
would interfere with the surface information. Examples for that are
IR based tracking systems.

Optical see-through AR systems in general require an extremely
low overall latency to guarantee a convincing impression to the user.
Ng et al. [8] show that human perception cannot on average perceive
a delay if the end-to-end latency is below 6.04ms with a standard
deviation of 4.33ms. If the delay is significantly higher than this time
delta, the augmentation appears to be delayed which greatly reduces
the visual quality as well as the user’s performance in accomplishing
specific tasks.

Therefore, it is important to use sophisticated prediction methods
to accurately estimate what exactly has to be rendered to compen-
sate for the inevitable latency. Adjusting the parameters of such
predictors, however, requires the accurate knowledge of the overall
end-to-end latency of the system.

In this paper we propose a generic latency measurement method,
which uses a configurable LED-based time stamp generator to enable
an accurate latency measurement (cf. Figure 1) without interfering



with the system’s internal processing. It can be tuned to specific
wavelengths, and temporal accuracies and has been proven to gener-
ate accurate measurements within different configurations.

2 RELATED WORK

Since optical see-through and spatial augmentations have the pur-
pose to directly superimpose the real world with additional, computer
generated content within interactive frame rates, it is crucial to dis-
play them with minimal, hopefully imperceptible latency. This also
guarantees a high visual quality leading to a significantly improved
immersion, but also guarantees that the users are able to accomplish
specific tasks with the required accuracy.

The overall latency of such systems stems from several
sources [9]:

• Camera exposure, readout and transmission

• Image processing

• Output image generation

• Synchronization between image generation and display device

• Internal delay inside of the display device

While some of these steps can be optimized by using more sophis-
ticated algorithms and faster processing hardware, others, such as
the exposure time of the camera cannot be arbitrarily reduced due
to physical limitations. Thus, there will always be an unavoidable
latency in the system, which needs to be taken into account when ren-
dering the augmentation. Unlike video–see-through AR applications,
delaying of the input real-world data as by Bajura and Neumann [2]
is obviously not possible for optical see-through applications. In
other words, not only the relative latency between different de-
vices [4] has to be taken care of, but also the absolute latency of
the system has to be exactly known to enable an accurate prediction
of the augmentation [1, 5, 7]. Experimental methods for reducing
the latter were presented by several researchers [6, 11, 12, 13] using
specialized hardware components. Both methods are not able to be
used with standard camera-display processing pipelines.

End-to-end latency within camera-based AR systems has already
been measured before by either using a pulse generator driving an
LED which is sensed by an oscilloscope [4], or by displaying time-
encoding blobs on a display [10]. Although these methods are able
to quite accurately measure the end-to-end latency of such systems,
they partially require specialized hardware such as oscilloscopes,
which require further processing for automated measurements or
can only work when spectral bands for input (camera) and output
(display) devices overlap. We present a hardware device which
overcomes the latter limitations and only requires simple image
processing methods to calculate the latency with a highly precise
accuracy.

3 METHOD

To overcome the limitation that display and camera need to share the
same spectral bands, we developed an external hardware device for
latency measurements. The device encodes pre-defined time stamps
as gray code patterns displayed via LEDs which are emitting light in
the required spectral bands. In our case this is a pair of LEDs, one
emitting in the visible spectrum and another one with a wavelength
of 850nm (near IR). An image of the developed prototype hardware
is shown in Figure 1.

The purpose of the device (L in Figure 2) is to emit time stamps
with the desired temporal resolution in the spectral band visible to
the input camera I as well as in the spectral range of the output
device O of the system whose latency is to be measured. In one
example, the LEDs at 850nm are visible to an IR tracking camera,

TLC5925IDWR TLC5925IDWR

1

2

3

4

5

6

J
P

2

1

2

3

4

5

6
7

8

J
P

1

1

2

3

4

5

6

7

8

J
P

3

1

2

3

4

5

6

7

8

9

10

J
P

4

V
D

D
2

4

C
L

K
3

L
E

4

~
O

E
2

1

R
-E

X
T

2
3

S
D

O
2

2

S
D

I
2

G
N

D
1

~
O

U
T

0
5

~
O

U
T

1
6

~
O

U
T

2
7

~
O

U
T

3
8

~
O

U
T

4
9

~
O

U
T

5
1

0

~
O

U
T

6
1
1

~
O

U
T

7
1

2

~
O

U
T

8
1

3

~
O

U
T

9
1

4

~
O

U
T

1
0

1
5

~
O

U
T

1
1

1
6

~
O

U
T

1
2

1
7

~
O

U
T

1
3

1
8

~
O

U
T

1
4

1
9

~
O

U
T

1
5

2
0

IC_IR1

IR
1
_
1

IR
1
_
2

IR
1
_
3

IR
1
_
4

IR
1
_
5

IR
1
_
6

IR
1
_
7

IR
1
_
8

IR
1
_
9

IR
1
_
1
0

IR
1
_
1
1

IR
1
_
1
2

IR
1
_
1
3

IR
1
_
1
4

IR
1
_
1
5

IR
1
_
1
6

V
D

D
2

4

C
L

K
3

L
E

4

~
O

E
2

1

R
-E

X
T

2
3

S
D

O
2

2

S
D

I
2

G
N

D
1

~
O

U
T

0
5

~
O

U
T

1
6

~
O

U
T

2
7

~
O

U
T

3
8

~
O

U
T

4
9

~
O

U
T

5
1

0

~
O

U
T

6
1
1

~
O

U
T

7
1

2

~
O

U
T

8
1

3

~
O

U
T

9
1

4

~
O

U
T

1
0

1
5

~
O

U
T

1
1

1
6

~
O

U
T

1
2

1
7

~
O

U
T

1
3

1
8

~
O

U
T

1
4

1
9

~
O

U
T

1
5

2
0

IC_VS1

V
S

1
_
1

V
S

1
_
2

V
S

1
_
3

V
S

1
_
4

V
S

1
_
5

V
S

1
_
6

V
S

1
_
7

V
S

1
_
8

V
S

1
_
9

V
S

1
_
1
0

V
S

1
_
1
1

V
S

1
_
1
2

V
S

1
_
1
3

V
S

1
_
1
4

V
S

1
_
1
5

V
S

1
_
1
6

1
2

3

P
T

_
IR

1

1
2

3

P
T

_
V

S
1

GNDGND GND

GND

G
N

D

G
N

D

CLK_1

LATCH_1

DATA_1

CLK_2

CLK_2 CLK_2

LATCH_2

LATCH_2 LATCH_2

DATA_2

DATA_2 DATA_2

CLK_3

DATA_3

LATCH_3VCC_5 VCC_5 VCC_5

VCC_5

arduino
IR1-VS1

IR2-VS2 IR3-VS3

Figure 3: Board Schematic

and the visible output overlaps with the output spectrum of standard
RGB-based projection/display devices.

This device is placed within the view-frustum of I. Since the
small areas of common LEDs approximate point light sources, the
device is not required to be placed exactly within the focal plane of
I. During measurement, the captured image of L is cropped to the
region of interest which contains the device data and displayed at
the end of the processing pipeline at a freely defined area on O.

An external camera E is used to capture the displayed image of
the device and, at the same time, the actual device displaying the
current time stamp. Out of these captured images, the time codes and
thereby the latency can be automatically decoded using homography
warps, blob detection and standard gray code decoding (Section 3.3).

3.1 Prototype

The presented method was prototypically realized as a small hard-
ware device and encoding/decoding algorithms were implemented
as described in the following.

3.1.1 Hardware

The LED Clock hardware is built around an Arduino UNO, using a
16 MHz Atmel ATmega 328P. It provides more than sufficient clock
resolution for our requirements. The Arduino communicates with
three pairs of TLC5925 16-bit shift registers using three GPIO pins
each. Each shift register drives one line of 16 LED-pairs (see Figure
1). Since one infrared and one visible LED line form a combined
logic line displaying the same code, they do not have to be controlled
separately.

Two GPIO Pins are used via standard Arduino digitalWrite
and shiftOut API calls, carrying the data and a per-bit write
clock. Once 16 bits are written into the register, the third GPIO Pin
is used to trigger the register write, updating all LEDs at the same
time. This, in combination to the grey code property of only ever
changing the state of one bit per step, ensures that no invalid states
are visible.

Potentiometers connected to the shift registers control the current
provided to each set of LEDs, allowing fine-tuning of the brightness
according to the requirements of the IR and visible light cameras.
Obviously the spectral ranges of the LEDs could also be varied
depending on the actual setup.

3.1.2 Software

For displaying the time stamps as binary on/off combinations of
LEDs, we encoded them using a standard ”Binary Reflected Gray
Code”. Besides the fact that it is easy to generate, compared to
direct binary encoding, this gray code encoding has the significant
advantage that it guarantees that only a single bit changes between
successive codes, which makes it much more insensitive against
errors [3].

In our current prototype we are using three LED lines instead of
one since we want to ensure that even a camera that captures with at



Time

7 8 9 10 11

...

Processing

L

I

O

E

Figure 2: Overview of the latency measurement setup. The top row shows state of the hardware prototype (for simplicity, we show only a single
row of LEDs). The bottom row represents the system whose latency we wish to measure. The system captures an input image that includes the
clock from the top row, performs its processing and displays the captured clock image together with its results. Both the displayed clock image and
the live clock are captured by an external camera. The external camera’s image is then examined – the systems latency is equal to the difference
of two times encoded in the image (in this case 11−8 = 3 ticks).

least a third of the clock frequency still records valid images. With
a delta of 750µs between consecutive clock ticks, this allows us to
use an observing camera (E in Figure 2) with an exposure time of
around 2ms or less, which fits well to our measurement hardware.
Obviously this configuration can easily be adopted for other needs.

Listing 1 shows the LED control algorithm we implemented on
an Arduino UNO for our prototype.

3.2 External Recording

To acquire the time difference between the captured and displayed
image of the LED device and the current time, an external camera
is used to capture both time stamps, i.e. the real physical device as
well as the projected image of it, within the same image. This can
be an arbitrary camera, but should be able to be configured to an
exposure time similar to the frame rate of the display device. If that
is not the case, the displayed image of the captured LED image has
to be spatially switched similar to the work of Sielhorst et al. [10] in
each consecutive frame n, such that the display’s frame rate times n
exceeds the camera’s exposure time.

3.3 Decoding Software

The decoding process is implemented as follows. First, we compute
the maximum image by taking the maximum intensity value at each
pixel over the whole sequence. Because the LEDs of L (raw LEDs)
and the projected dots of the captured LEDs (re-projected LEDs)
are all visible in the maximum image, we manually assign the four
corners of each region of raw and re-projected LEDs. The positions
of the corners are used to rectify the LED regions in each captured
image by applying the homography transformation. Second, at each
frame, we measure the intensity value of each LED in the rectified
image, in which the position of the LED is pre-defined. To achieve
a measurement robust to camera noise, we average the intensities
over a small region around the LED. Then, we decode the gray code
of each LED line by applying a simple thresholding process to the
averaged intensities, where different threshold values are applied
between the raw and re-projected LEDs. The decoded gray codes
are then converted to decimal values representing time. Finally, we
calculate the delay as the difference between the sum of decoded
time values of raw LED lines and those of re-projected LED lines.

Algorithm 1 Pseudo code for encoding the time stamps and driving
the LEDs.

rows← 3
codeBits← 16
quantum← 750 ⊲ microseconds

procedure BINARYTOGRAYCODE(binary)
grayCode← binary⊕ (binary/2) ⊲ ⊕ is XOR
return grayCode

end procedure

procedure DISPLAYGRAYCODE(row, code)
pins← out putPinsrow

DIGITALWRITE(pins.storageClock, LOW)
DIGITALWRITE(pins.shi f tClock, LOW)
for b← 0,codeBits/8 do

codeByte← code/2b∗8 mod 256 ⊲ extract byte b
SHIFTOUT(pins.data, pins.shi f tClock, codeByte)

end for
DIGITALWRITE(pins.storageClock, HIGH)

end procedure

procedure MAIN

row← 0
codeIdx← []
for ever do

delay← quantum−MICROS mod quantum
DELAYMICROSECONDS(delay)
code← BINARYTOGRAYCODE(codeIdxrow)
DISPLAYGRAYCODE(row, code)
codeIdxrow← codeIdxrow +1 mod 2codeBits

row← (row+1) mod rows
end for

end procedure



Figure 4: Measured overall system latencies of the proposed method
(setup #1)

3.4 Mismatches in frame rates

It is possible that the frame rate of the input and output devices
mismatches, or that the processing requires more time than a single
output frame. In such cases, one input image with a certain time
stamp may be displayed for multiple output frames. We can indicate
this by adding (in software) markers for each output frame the image
is being displayed. Our markers take the shape of small red dots.

The decoding software can detect these markers and determine
the age (in output frames) of the time stamp. This enables several
additional options for analysis. On one hand, a minimal latency for
the system can be determined by only considering time stamps with
an age of one – this is the latency the system could achieve if neither
the input capture rate nor the processing rate were a bottle-neck.
Considering all time stamps regardless of their age gives the average
observed latency.

4 EVALUATION

To evaluate accuracy as well the flexibility of our proposed latency
measurement device, we tested our hardware prototype with two
different setups.

1. A high-speed projector-camera system consisting of an Al-
lied Vision Bonito IR camera capturing at 1300Hz and a cus-
tomized Christie Mirage 4K35 3-chip DLP projector running
at 480Hz.

2. An LCD running at 60Hz in combination with an USB 3.0
Ximea xIQ camera set to its maximum frame rate and a shutter
time of 1ms

To externally record the LED device as well as the displayed image
of it, we used a Sony RX 100 IV camera capturing images at a frame
rate of 1000Hz for a sequence of 2 seconds. After recording these
images, they were processed as described in Section 3.3.

For the first system, the average system latency was measured on
average with 9.8ms with a standard deviation of 2.1ms (cf. Fig. 4).

Figure 5: Measured overall system latencies of a previous method [10]
and the proposed method: (left) raw latency values, and (right) aver-
ages and standard deviations. (setup #2)

1

2

3

Figure 6: Our system measures the latency of the path 1→ 2→ 3

using an external camera that observes the clock and display device
simultaneously. In comparison, the system by Sielhorst et al. [10]
measures the round trip latency of 2→ 3→ 1→ 2.

As these numbers indicate, this system was extremely tuned for
minimal latencies. Another, more generic system, was tested in the
second evaluation (Fig. 5). Here the overall system latency was
measured with 135.2ms with a standard deviation of 16.8ms. As it
can be seen, the used USB3 interface of the camera seems to add a
significant delay to the system. Since the latter system fully operates
in the visible spectrum, we used it to compare our method to the
one presented in [10] with which we measured an average latency
of 199.3ms with a standard deviation of 90.4ms using exactly the
same hardware and software combination. As it can be seen in the
diagram, severe outliers tend to occur with their method, even after
a careful adjustment of the camera. Because of that, our method is
able to generate measurements with a significantly lower standard
deviation than the related work. But even when ignoring the outliers,
the latency measured by our system is on average lower compared
to one by the other system [10]. This is expected, since our system
measures the latency from the input camera (labeled 1 in Figure 6)
to the display (labeled 3 in Figure 6), whereas the other system
measures the round trip from the computer (labeled 2 in Figure 6)
to the display, the input camera back to the computer. The latency
measured by our system thus better represents the latency that we
seek to measure.

5 CONCLUSION

In this paper we presented a LED-based time stamp device which
enables an accurate latency measurement within camera-based AR
systems. The system can be easily configured for the given accuracy
requirements and spectral sensitivities ranging from the ultravio-
let up to the mid infrared thermal spectrum as long as LEDs are
available for the desired range. Since the latency is measured by an
external camera, the only required system overhead is the read-out
of the region in which the LED device is captured by the camera
of the AR-system and the displaying of these pixels on the output
device which can be arbitrary, for example a LCD screen, an OLED
device or a projector. As shown in the evaluation, the system can
easily be used within different environments in either overlapping
or non-overlapping spectral bands. In the future we will further
investigate its practical applicability to other spectral ranges.

REFERENCES

[1] R. T. Azuma. Predictive Tracking for Augmented Reality. University

of North Carolina at Chapel Hill, 1995.

[2] M. Bajura and U. Neumann. Dynamic registration correction in video-

based augmented reality systems. IEEE Computer Graphics and Ap-

plications, 15(5):52–60, Sept. 1995.

[3] R. W. Doran. The gray code. J. UCS, 13(11):1573–1597, 2007.

[4] M. C. Jacobs, M. A. Livingston, and A. State. Managing latency

in complex augmented reality systems. In Proceedings of the 1997

Symposium on Interactive 3D Graphics, I3D ’97, pages 49–ff., 1997.



[5] J. Knibbe, H. Benko, and A. D. Wilson. Juggling the effects of latency:

Software approaches to minimizing latency in dynamic projector-

camera systems. In Adjunct Proceedings of the 28th Annual ACM

Symposium on User Interface Software & Technology, UIST ’15 Ad-

junct, pages 93–94, 2015.

[6] P. Lincoln, A. Blate, M. Singh, T. Whitted, A. State, A. Lastra, and

H. Fuchs. From motion to photons in 80 microseconds: Towards

minimal latency for virtual and augmented reality. IEEE Transactions

on Visualization and Computer Graphics, 22(4):1367–1376, 2016.

[7] S. Miyafuji and H. Koike. Ballumiere: Real-time tracking and pro-

jection system for high-speed flying balls. In SIGGRAPH Asia 2015

Emerging Technologies, SA ’15, pages 2:1–2:1, 2015.

[8] A. Ng, J. Lepinski, D. Wigdor, S. Sanders, and P. Dietz. Designing

for low-latency direct-touch input. In Proceedings of the 25th Annual

ACM Symposium on User Interface Software and Technology, pages

453–464, 2012.

[9] D. Schmalstieg and T. Hollerer. Augmented Reality: Principles and

Practice. Addison-Wesley Professional, 2016.

[10] T. Sielhorst, W. Sa, A. Khamene, F. Sauer, and N. Navab. Measure-

ment of absolute latency for video see through augmented reality. In

Proceedings of the 2007 6th IEEE and ACM International Symposium

on Mixed and Augmented Reality, ISMAR ’07, pages 1–4, 2007.

[11] T. Sueishi, H. Oku, and M. Ishikawa. Robust high-speed tracking

against illumination changes for dynamic projection mapping. In 2015

IEEE Virtual Reality (VR), pages 97–104, March 2015.

[12] Y. Watanabe, G. Narita, S. Tatsuno, T. Yuasa, K. Sumino, and

M. Ishikawa. High-speed 8-bit image projector at 1,000 fps with

3 ms delay. In Proceedings of The International Display Workshop,

pages 1064–1065, 2015.

[13] F. Zheng, T. Whitted, A. Lastra, P. Lincoln, A. State, A. Maimone, and

H. Fuchs. Minimizing latency for augmented reality displays: Frames

considered harmful. In Mixed and Augmented Reality (ISMAR), 2014

IEEE International Symposium on, pages 195–200, Sept 2014.


	Introduction
	Related Work
	Method
	Prototype
	Hardware
	Software

	External Recording
	Decoding Software
	Mismatches in frame rates

	Evaluation
	Conclusion

