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Abstract: 
High value manufacturing systems still require ergonomically intensive manual activities. 
Examples include the aerospace industry where the fitting of pipes and wiring into confined 
spaces in aircraft wings is still a manual operation. In these environments, workers are 
subjected to ergonomically awkward forces and postures for long periods of time. This leads 
to musculoskeletal injuries that severely limit the output of a shopfloor leading to loss of 
productivity. The use of tools such as wearable sensors could provide a way to track the 
ergonomics of workers in real time. However, an information processing architecture is 
required in order to ensure that data is processed in real time and in a manner that meaningful 
action points are retrieved for use by workers.  
In this work, based on the Adaptive Control of Thought—Rational (ACT-R) cognitive 
framework, we propose a Cognitive Architecture for Wearable Sensors (CAWES); a wearable 
sensor system and cognitive architecture that is capable of taking data streams from multiple 
wearable sensors on a worker’s body and fusing them to enable digitisation, tracking and 
analysis of human ergonomics in real time on a shopfloor. Furthermore, through tactile 
feedback, the architecture is able to inform workers in real time when ergonomics rules are 
broken. The architecture is validated through the use of an aerospace case study undertaken in 
laboratory conditions. The results from the validation are encouraging and in the future, further 
tests will be performed in an actual working environment.  
 
Keywords: real-time, ergonomics, manual assembly, wearable 
 
1.0 Introduction 
High value manufacturing systems still require ergonomically intensive manual activities. 
Examples include the aerospace industry where the fitting of pipes and wiring into confined 
spaces in aircraft wings is still a manual operation (Figure 1). Such manual activities could 
benefit from real time digitization in order to alert workers when they exceed ergonomically 
safe limits [1]. Currently, this is not the case and workers are exposed to dangerous levels of 
ergonomically awkward positions that lead to musculoskeletal conditions [2][3]. This results 
in sick days off and impacts the productivity of a shop floor, company and consequently a 
nation [4]. 
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Figure 1. An aircraft wing assembly process 

 
This is a major concern for a leading Aircraft manufacturer, employing over 6000 workers to 
produce a thousand Aircraft wings annually. Although common arm and hand activities do not 
present a significant injury risk in daily life; in the work environment these actions usually need 
to be repeated with strong forces applied. This leads to work-related musculoskeletal disorders 
[5]. In general, back and spinal injuries are the most common musculoskeletal injuries, 
affecting more than a quarter of adults each year. These musculoskeletal injuries are a major 
cause of disability in work environments with manual activities [6]. 
 
For a manufacturing system such as aeroplane assembly, the issue of musculoskeletal injuries 
severely limits output. For example, in addition to the 20.9 hour part preparation process, a 
single aircraft wing assembly requires 65.7 hours of manual installation of the pipeline process 
[7]. Ensuring safe ergonomic standards of workers is an important factor during such manual 
assembly processes. A worker in such an environment could benefit from a digital real time 
system that informs them when to take a break and when force limits are exceeded during work. 
Such a digital real time system could keep track of all the activities worked on during a shift 
and then recommend other activities to compensate or achieve an ergonomic balance workload 
profile. Furthermore, such a system will also ensure that shop floor manual activities are 
recorded for offline analysis and consequently ergonomic improvement of current manual 
activities. In order to achieve this, real time manual activity digitization through sensors, real 
time ergonomic assessment, and real time feedback to workers is needed. Towards this, in the 
next section, we present a review of work that has been carried out towards supporting real 
time ergonomic assessment of manual activities on shop floors.  
 
2.0 Literature review 
The attractiveness of applying sensors to digitize processes in manufacturing has been 
increasing in recent years. For example, Kerner et al. [8] investigated the use of a wearable 
sensor placed on a glove for push pull operations during manual assembly. In [8] the authors 
aimed to provide real-time feedback to workers as a source of automated task completion in a 
manufacturing process.  
 
Until very recently, ergonomic assessment of manual tasks were often preventative and 
assessed beforehand. CAD like software such as SAMMIE CAD ltd [9] were often used to 
derive the necessary ergonomics requirements that would ensure the safety of workers during 
manual assembly. However, such software did not capture the intricacies that were unforeseen 
during initial evaluations and studies. Also, it did not provide instant feedback to workers. For 
real time ergonomic assessment, posture recognition, detection of forces being generated and 
used by limbs as well as recognition of the weight being carried by workers is needed in real 
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time. In order to achieve real time posture recognition, the acquisition of data for joint angles 
calculation is required. This requires the need for motion capture technology and there have 
been multiple research works conducted in this area. For example, OpenPose is an open library 
and package built by the Perceptual Computing Lab of Carnegie Mellon University (CMU) 
that detects human body and outputs the acquired human body image as a skeleton image of 
the human body and the two-dimensional coordinate data of each joint point of the human 
body. This is achieved through the use of a convolutional network to extract features of the 
human body.  Furthermore, bipartite matching is used to perform part association, and connect 
the joint points of the same person [10]. 
 
A similar technology called Kinect has been used by Prabhu et al. [11] to capture human motion 
information in conjunction with machine learning algorithms. This was used to analyse the 
digitisation of skilled workers in composite laying operations. Furthermore, [12][13] discuss 
how Kinect sensors could be used to ergonomically assess workers on the shop floor in real 
time and provide feedback to them. However, such devices require line of sight to the worker 
and have limited field of view. By using more than one Kinect, it is, however, possible to 
provide multiple viewpoints of workers and ensure that there is adequate coverage of the 
workspace [14][15].  
 
However, working in confined areas or areas that require the ingress of human limbs as in 
Figure 1 above, will impact the data collection process. In order to solve this challenge, 
wearable sensors are currently being explored. For example, a low-cost ubiquitous approach 
that made use of the built-in sensors in smartphones were used to monitor construction 
worker’s postures and identify potential work-related ergonomic risk in [16][17][18]. Similarly 
[19] made use of the off-the-shelf single-parameter monitoring wearable sensor (SPMWS), the 
ActiGraph GT9X Link, which was worn at six locations on the body, and a multi-parameter 
monitoring wearable sensor (MPMWS), the Zephyr BioHarness™3, to investigate the effect 
of sensor placement on the trunk posture for construction activities.  
 
However, the data from the wearables needs to be processed and data fusion techniques applied 
in order to derive meaningful insight about the ergonomic conditions of the workers. Research 
has investigated the use of various machine learning methodologies such as Support Vector 
Machines to extract various activities related to lifting, transporting, pushing and pulling [17]; 
the use of Regression to understand the relationship between each part of the spinal curve and 
the corresponding upright posture [20], Artificial Neural Networks to evaluate posture [21] and 
various data fusion  techniques such as Kalman filters [22], k-nearest neighbour (kNN) [23], 
Dempster-Shafer evidence theory [24], amongst others [25]. 
 
Unlike these previous works, we propose the use of a cognitive architecture to process and fuse 
the streams of data collected from wearable sensors on a worker’s body [26]. This is because a 
human is a cognitive agent and in the future wearables will be seen as extensions of the human 
cognition [27][28][29]. Taking this view will enable closer fusion of both cognitive agents 
(humans and wearables) together. As a result, in this work, we take the view that the data 
collected by sensors on the human body should be fused and processed by a cognitive element 
attached to the body. 
 
Furthermore, the application of a cognitive architecture enables us to model human and 
environment conditions virtually so that insights can be gained on how to better understand the 
data generated by the wearables and the conditions under which the data was collected [26]. 
We believe that by following this approach, a closer integration and fusion of wearables and 
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their corresponding data processing elements will result. In the future, this enables us to 
develop a cognitive wearable system that could be extended to a wearable robotic system 
capable of aiding humans during manual activities. 
 
Cognitive architectures have their roots in the robotic community where they were developed 
in order to achieve autonomous agents that can navigate the real world. ACT-R (Adaptive 
Control of Thought—Rational) [26] and SOAR are among the established and earliest 
cognitive architectures still in use today [28]. Furthermore, these are the architectures that have 
been applied by researchers to achieve closer fusion between the human body and a wearable 
external asset [29]. As discussed previously, it is proposed that such an external asset should 
be cognitive in its nature in order to ensure closer and seamless fusion with the human’s 
musculoskeletal system.  
 
All cognitive architectures require a means to perceive their immediate environment. Towards 
this, use is made of two wearable technologies, Perception Neuron and Myo armband that can 
be worn, non-intrusively, on the human body. Nevertheless, these two sensor modalities collect 
different data types from their surrounding environment. As a result, data from these two 
sensors need to be fused together because each one on its own is not sufficient to discover 
whether ergonomic rules are being followed or not. The Perception Neuron® is a whole body 
motion sensing capture system, comprising of a comprehensive set of wearable sensors. It 
collects data on limb movements. This sensor system has been used for a variety of tasks such 
as in Kim et al. [30] where the motions of trainee surgeons were examined in order to create a 
system that helps to optimise body posture for doctors performing operations.  When used 
within a games engine and Virtual Reality Rendering Development environment, Perception 
Neuron can provide a data stream for real time and near to real-time rendering of human 
movement [31]. 
 
Another wearable sensor for obtaining data streams is an armband based device called Myo. 
This armband is a sensor that collects Electromyography signals from the forearm and upper 
arm. From these signals, it is possible to detect arm and hand gestures [32]. Myo has been used 
by [33] in the realm of physiotherapy in order to assess the effectiveness of treatments and 
assist with the aim of eventually assisting in the early diagnosis of patient conditions. In 
research by [34] experiments have been undertaken to investigate Myo in terms of the 
measurement of fatigue in muscles in order to validate the device as an accepted method for 
fatigue assessment. Authors such as Silva et al. [35] have also experimented with using Myo 
in combination with a sensor such as Leap motion (used for fine grain hand movement tracking) 
in order to overcome the limitations of both sensor types when they are used independently. 
Finally Koskimäki et al. [36] put forward a data set relating to the capture of gym based fitness 
movements with the aim of describing more challenging movements for use in the development 
of more capable machine learning approaches for movement detection and identification. 
 
Faber et al. [37] estimated hand forces by measuring the ground reaction force with the full-
body inertial motion capture system through a mechanical sensor mounted on the sole. The 
core principle of the system is that while an object exerts a different amount of force on the 
hand, the foot exerts a different amount of force on the ground. Noguera (2018) [7] judged the 
weight of the pipe taken by the worker's hand by installing pressure sensors at the fingertips of 
the gloves in conjunction with a machine-learning algorithm. Even though the glove has been 
mounted on the back of the hand, the six force-sensing resistors installed at the fingertips still 
affect the activity of the hands, especially when it comes to the need for fine-grained operation. 
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Another wearable technology is the Kinetic Reflex. It is equipped with an inertial measurement 
unit (accelerometer and gyroscope) that is worn around the user's waist. When doing daily 
work in a factory, warehouse, or other location, the device detects high-risk actions by workers, 
such as lifting an object by bending over rather than bending the knee. When a high-risk 
condition is detected, it provides a real-time reminder with a slight vibration and a warning 
message on the screen. Kinetic reflex pays more attention to the back, and it is more suitable 
for workers who are often carrying heavy objects in logistics companies. However, it is 
gratifying to note that there are cases where workers have reduced their high-risk posture by 
84% after wearing Kinetic reflex for five weeks [38]. This shows that ergonomic reminders do 
help workers improve their habits. 
 
By using these technologies with support from a “wearable” cognitive architecture, the aim is 
to fuse the data streams from these sensing modalities towards digitally tracking and analysing 
the ergonomics of a worker in real time. The wearable cognitive architecture developed in this 
work was inspired by the Adaptive Control of Thought—Rational (ACT-R) architecture. The 
ACT-R architecture is a versatile architecture that has been used successfully to create models 
in domains such as learning and memory, problem solving and decision making, language and 
communication, perception and attention as well as researching cognitive development. The 
structure of the architecture offers the ability to add assumptions, in the form of rules, about 
the domain of interest into the architecture. Compared to the SOAR architecture, the features 
of ACT-R makes it more cognitively plausible in researching the way human cognition works.  

The ACT-R architecture has four main modules and a central production system. Each of the 
modules have a related buffer. The modules are as follows: (a) a visual module for encoding 
and representing objects detected in the environment visually, (b) an intentional module for 
keeping track of goals and intentions of the user, (c) a declarative module for retrieving relevant 
information from memory, and (d) a manual module for planning motion and activating the 
limbs. The central production system coordinates the communication and performance of these 
modules through the application of developed production rules. As discussed above, these 
production rules can be updated depending on the intricacies of the domain. As a result of this 
feature, the ACT-R architecture enables us to investigate various production rules to achieve 
real time ergonomics assessment in this work [26][39]. 
 
The third section of this paper introduces this wearable cognitive architecture as well as the 
wearable sensors used. The fourth section discusses the results of the experiments that were 
conducted while the fifth section discusses the results obtained as well as limitations of the 
approach. The concluding section six provides an agenda for future work.  
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3.0 Methodology 
The aim of this work is to propose and introduce an architecture inspired by the ACT-R 
cognitive architecture to process and fuse the data obtained from off-the-shelf wearable 
sensors. This approach will enable the tracking of worker assembly tasks, the development of 
ergonomic indicators for assembly operations as well as reveal methods to extract these 
ergonomic indicators from real-time data. The rich data obtained by the wearable motion 
capture system can be used to do more analysis both online and offline. While the human 
electromyography signal is complex, we show that production rule heuristics could be 
developed to extract information from it and fuse it with the Perceptron Neuron data stream. 
Furthermore, the use of virtual reality technology (via the visual buffer in the cognitive 
architecture shown in Figure 2) enables the adaption of workers to new assembly processes 
and the development of standardized and safe operating habits. In this work, tactile feedback 
via the Myo armband is used to provide feedback to a worker when ergonomic rules are broken. 
 

 

 

  
Figure 2. A Cognitive Architecture for Wearable Sensors (CAWES) based on applying the 
ACT-R architecture [26] to develop a data fusion pipeline for data streams from multiple 
wearable sensors. The numbers beside each module relate to the corresponding sections that 
provide relevant detailed narrative.  
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As mentioned before, there are many cognitive architectures in relevant literature [28]. In this 
work, focus is given to the development of an architecture, called CAWES (Cognitive 
Architecture for Wearable Sensors) to fuse data streams from two wearable sensors for the 
digitisation, tracking and analysis of human ergonomics in real time. The CAWES architecture 
shown in Figure 2 is inspired by the ACT-R architecture and is detailed in the following sub-
sections. 
 
3.1 Environment: In the current work, the environment is comprised of participants carrying 
out tasks related to carrying weights and adopting various postures that could be adopted by 
workers during their work. These postures and the recommended weights for each of them is 
defined in Figure 3. As will be seen in Figure 3, these recommendations could be quite 
challenging to remember for a worker on a shopfloor especially when operating in the 
environment depicted in Figure 1.  
 

 

Figure 3. Various postures and allowable weights 
 

3.2 Sensors and actuators: A Perception Neuron® was used obtain joint data from a worker 
while EMG data was obtained from a Myo armband. After posture recognition and weight 
recognition (discussed below), the corresponding outputs were fused using the ergonomic rules 
developed from Figure 3. The worker is made aware of the cognitive architecture’s decision 
via the Myo armband tactile vibrations. If the worker is outside the ergonomic 
recommendations, the system feedbacks to the worker through vibrations in the Myo armband. 
Consequently, the Myo armband serves two purposes: to track the worker’s EMG signal during 
activities and to feedback to the worker. Such a system ensures that feedback is provided to the 
worker non-intrusively. 
 
3.3 Manual, Visual and Physics based Musculoskeletal buffer: The physics based module 
in the architecture, proposed in Figure 2, was used as humans have a heuristic model of how 
physics affects objects’ motions and behaviour as developed through interactions with various 
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objects. These physics models enable humans to perform internal simulations on how to dunk 
a ball into a hoop for example by running multiple hypothesis on the correct muscle tensions 
and motor controls to convert the internal simulation into physical muscle and motor 
kinematics. In this work, we make use of the Unity environment that comes with the Perceptron 
Neuron software to support the construction of the physics based musculoskeletal buffer. The 
mannequin in Figure 4 was used as a one to one mapping of the various joints in the human 
body and hence offered the capability to track the human body in real time. In this work, the 
manual buffer was used to acquire data from wearable sensors used as well as configure 
vibration data feedback to workers.  
 

 
Figure 4. The mannequin 

 

3.4 Production Rules and Memory: As presented in Figure 3, the aerospace company’s 
ergonomics document describes the possible postures that arise during shopfloor work together 
with the weights that are ergonomically safe to hold with such postures. As would be seen, 
there is information on frequency of weights at various postures that could be lifted per minute 
as well as how long each posture can be held for. This information were digitised into 
production rules for the production memory module of the CAWES architecture. 
 
According to the leading aerospace manufacturer’s ergonomics booklet, the recommended 
mass limits are different when the body is in different postures or when the length of action 
time is different. Therefore, the system needs to recognise the posture state of the human body 
and recognise the weight of the object in the hands. In addition, the goal for the system was to 
implement a real-time ergonomic analysis system, so the two recognition systems should be 
fused together for better understanding of a worker’s posture. The two recognition systems 
required will now be discussed. 
 
3.4.1 Posture recognition: The nine poses in the manual are a combination of lower body 
states and upper body states. As shown in Figure 5 the lower body state can be divided into 
three states: standing, kneeling and sitting. While the upper body state can be divided into three 
states: "red state", "green state" and "yellow state". 

 
Figure 5. Simplified recommended mass limits and zones for repetitive tasks [40] 

2kg 
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The "red state" corresponds to the state of the human body when the human body needs the 
spine to stand straight, and the arms are lifted to reach the red area. The "green state" 
corresponds to the human body state in which the human body keeps the spine straight, and the 
arms remain in an approximately horizontal state. The "yellow state" corresponds to the human 
spine bent and the arms tilted down so that the hands can reach the yellow area. 
 
3.4.1.1 Lower body state recognition: When considering the recognition of these postures, 
the ground is used as a reference point. There are several ways to distinguish between the states 
of standing, kneeling and sitting. Two methods are proposed in this work. The first method 
made use of the height of the joints relative to the ground plane while the second method made 
use of the joint angles.  
 
In the first method, the height of the femur bone (thigh bone) relative to the ground and the 
height of the lower leg (tibia) relative to the ground were used to determine the state of the 
lower body. This involved using the values of the height of the hip joint, knee joint and ankle 
joint when the robot model in Unity is upright. The height values of these joints correspond to 
the Y-axis value in the world coordinate system of Unity and their values are shown in Table 
1. From these values, it was possible to obtain the leg and thigh bone lengths. 
 
 

Table 1. Height of three joints when the robot model in Unity is upright. It should be noted 
that the values of the three joints would vary across ethnical backgrounds. In this work, these 

values were informed by the participants’ body morphology.  
 Hips joint Knee Ankle 

Y of position 1.114 0.569 0.102 
 
 

 

High  

Low  

Medium 

 
Figure 6. Joint height level partitioning diagram 
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The three height values were then used to inform three range values of "High", "Medium" and 
"Low", as shown in Figure 6. This is because each joint is not a fixed value when the human 
body performs various postures in reality and also because of the differences in the joint values 
in the human population. The ranges are shown in Table 2. The height of the hip joint plus one-
fifth of the length of the thigh are set to the upper limit of the "High" range and the height of 
the hip joint minus one-quarter of the thigh is set to " The lower bound of the High" range.  
 
The ankle height plus one-fifth of the leg length was used as the upper limit of the "Low" range 
and 0 was used for the lower limit of the "Low" range. Since the sitting position is largely 
influenced by the height of the chair, the range of the "Medium" level was determined to be 
wider than the range of the first two height levels. We set the height of the knee when standing 
upright plus one-third of the length of the thigh to the upper limit of the "Medium" range and 
the height of the knee when standing upright minus one-third of the length of the lower leg to 
the lower limit of the "Medium" range. 
 

Table 2. The height range values of the hip, knee and ankle joints 
 High Medium Low 

Interval range 0.9775 - 1.223 0.413 - 0.751 0 – 0.195 
 

 
Table 3. Method 1 Rule Table. The relationships between the joints and the range values the 

joints fall in during manual work are used to determine the lower body state status. For 
example, when the hip joint is in the high range and the knee joint is in the medium range, 

then a participant is estimated to be standing. 

 
 
After determining the interval of each height level, the posture of the lower body can be 
estimated according to the height of the hip and knee joints from the floor as shown in Table 
3. If the hip joint is in the "High" range, we infer that the worker is in a "Standing" state. If the 
position of the knee is in the "Low" range, we infer that the worker is in a "Kneeling" state. If 
both joints are at "Medium" level, we infer that the worker is in a "Sitting" state. If none of the 
three states is satisfied, the system does nothing.  
 
The second method distinguishes the state of the lower body by determining the angle between 
the thigh and the ground and the angle between the lower leg and the ground. When a person 
is standing, the thighs and calves can be seen as almost perpendicular to the ground. When a 
person is kneeling, the calf is parallel to the ground, and the thigh is perpendicular to the 
ground. When a person is sitting, the calf is perpendicular to the ground, and the thigh is parallel 
to the ground. 

Joint height level 

Lower body state 

Hips joint Knee 

High Medium Standing 

Medium Medium Sitting 

Medium Low Kneeling 
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Figure 7. The angle between the left thigh and the horizontal plane when the person is sitting 

 
However, the terms "vertical" and "parallel" as used herein are ideal. It is impossible to achieve 
true vertical and parallel. Especially when the person is in the "sitting" state, the angle between 
the thigh and the ground is largely affected by the length of the calf and the height of the chair. 
As shown in Figure 7, the angle between the thigh and the ground is 35.9265°. Therefore, the 
range of angle requirements for the identification of each state is also broadened, as shown in 
Table 4. 
 
Table 4. Parallel and vertical definitions in the system 

 “Parallel” (degree) “Vertical” (degree) 
Interval range 0 - 45 60 - 90 

 
Another consideration is that since the person is sitting, the calves are in a relaxed state. Among 
the states of "standing", "kneeling" and "sitting", people's thighs are "parallel" to the ground 
only in the state of "sitting". Therefore, the identification of the state of "sitting" only considers 
whether the angle between the thighs and the horizontal plane is "parallel" or not. The specific 
identification system is shown in Figure 8. 

 
Figure 8. Flow chart for distinguishing lower body state by angles. This flowchart was used 

to specify the production rules for recognising the status of the lower body state. 
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3.4.1.2 Upper body state recognition: For the identification of the upper body state, we check 
the inclination angle of the spine, the angle between the upper arm and the horizontal plane, 
and the angle between the forearm and the horizontal plane, as shown in Figure 9. After 
calculating the inclination angle of the spine (that is, the angle between the spine and the 
positive direction vector of the Y-axis), it is compared with the set threshold size to determine 
whether the human body is bent. Considering that the human body is erect, there will be slight 
forward and backward tilting, so the threshold is set to 35 degrees. When the angle is greater 
than 35 degrees, the human body is considered to be in a bent state. 
 

 
Figure 9. Flow chart for distinguishing the upper body state by the angle. This flowchart was 

used to specify the production rules for recognising the status of the upper body state.  
 
 
When checking the state of the arm, we use the function on the Euler angle in Unity3D. For a 
frame of reference in three dimensions, the orientation of any coordinate system can be 
represented by three Euler angles. Correspondingly, “eulerAngles” is a Vector3 variable in 
Unity3D and all three values in the variable range from 0 to 360. The hierarchical relationship 
is ZXY, that is, the innermost layer is the Z-axis, the middle layer is the X-axis, and the 
outermost layer is the Y-axis. The initial state of the right forearm of the robot model is shown 
in Figure 10 (a) to demonstrate Euler angle rotation. Figure 10.  (b), (c) and (d) correspond to 
the robot model rotating only about the X-axis, the Y-axis and the Z-axis by 45° respectively. 
 
For the world coordinate system, the right forearm is in the positive direction of the Y-axis due 
to the establishment of the initial model. Therefore, the rotation of the model only about the X-
axis can be understood as the rotation of the forearm skeleton, the arm is fixed in one position, 
and the rotation of the forearm when the wrist is only rotated. Rotation of the model only about 
the Y-axis can be understood as the rotation of the forearm in the horizontal plane. Rotating 
the model only about the Z-axis can be understood as the "up and down" movement of the 
forearm. 
 
 

Yes 
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Yellow state 

Yes 

½ 
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Empty 

Yes 
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(a) 

(b) 

(c) 

(d) 

Figure 10.  The sample model is not rotated in (a), the sample model is rotated 45° about the 
X-axis in (b), the sample model is rotated 45° about the Y-axis in (c), and the sample model is 
rotated 45° about the Z-axis in (d). It should be noted that achieving some of the rotations in 
the figures above could quickly lead to intense muscle fatigue. 
 

 
In reality, whether the arm is active above, in front or below, the range of motion of the forearm 
is larger than that of the upper arm. In other words, the determination of the angle between the 
upper arm and the horizontal plane is more stringent. Therefore, the range of the Euler angles 
corresponding to the Y-axis which is determined to be the "front" state is also larger. Since the 
initial model and state of the left arm of the robot model is different from that of the right arm, 
its orientation is in the negative direction of the Y-axis. As a result, it is in the "upper" state 
and the angle of rotation around the Y-axis is just opposite to the right arm. The determination 
range of each state of the upper body is shown in Table 5.  
 
Table 5. Some definitions about the direction of the arm 

 Right forearm Right upper arm Left upper arm Left arm 

“Upward” 10-90 30-90 270-330 270-350 

“Horizontal” 0-10, 320-360 0-30, 320-360 0-40, 330-360 0-40, 350-360 

“Downward” 270-320 270-320 40-90 40-90 
 

 
 

3.4.2 Weight recognition: This section of the paper focuses on the processing of the original 
EMG signal obtained from the Myo armband, the analysis of the EMG signals obtained when 
carrying different weights, and the estimation of weights using the data from the Myo armband.  
The Myo armband collects signals at a high frame rate of 200Hz from eight channels. The 
absolute values of the data from the eight channels are summed up into a single value.  This 
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Z-axis 

Y-axis 
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value is then used as a reference for muscle stimulation level. However, the signal from the 
Myo armband is very noisy and difficult to analyse as shown by the blue lines in Figures 11 
and 12. As a result, the signal needs to be filtered. 
 

 
Figure 11. Frequency domain diagram of the original EMG signal 

 

 
Figure 12. Time-domain diagram of EMG signal 

 

 
Figure 13. Weight identification flow chart. This flow chart was used to specify the 

production rules for weight recognition 
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A digital first-order low-pass filter (Equation 1) was used to ensure that low-frequency signals 
can pass through normally while the high-frequency signals exceeding the cut-off frequency 
were cut off and weakened. 

Where 𝑋𝑋𝑛𝑛 is the current sampled value, 𝑌𝑌𝑛𝑛−1 is the output value after the last filtering, 𝑌𝑌𝑛𝑛 is the 
output value of this filtering and 𝑎𝑎 is the filter coefficient (Equation 2). 
 𝑎𝑎 =

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥+ 12𝜋𝜋𝑓𝑓𝑐𝑐 =  0.06          2                                                                                                           

           
Where 𝛥𝛥𝑇𝑇  is the sampling period which is 0.02 seconds, 𝑓𝑓𝑐𝑐 is a cut-off frequency which was 
set as 0.5 Hz in order to filter out part of the noise. The curve of the EMG signal after filtering 
by the low-pass filter is significantly smoother, as shown by the red line in Figure 12. 
 
 
 

 
Figure 14. The flowchart after adding a timer 

 
In order to make the program better judge the size of the hand bearing and the timing function 
of the program, the output value of the first 25 samples after the first filtering is selected every 
0.5 seconds (in fact, 25 is also the number of all the values acquired within 0.5 seconds).  
We find the average of them, as the value at time t and use this value to carry out the weight 
judgment. 0.5 seconds can also be considered as the second data smoothing of the filtered 
signal, as shown by the yellow line in Figure 12. The 25 samples are chosen because although 
the more values are selected, the smoother the curve will be, but the delay will be higher, and 

𝑌𝑌𝑛𝑛 = 𝑎𝑎𝑋𝑋𝑛𝑛 + (1 − 𝑎𝑎)𝑌𝑌𝑛𝑛−1 
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the 0.5-second refresh rate is within the acceptable range of system design. Using production 
rules as defined by Figure 13, is was possible to build a weight classification algorithm to 
recognise which weight a worker was carrying. In order to ensure that different users can use 
the system, a calibration procedure was performed after the Myo armband was worn. The 
details of the calibration are discussed in the results section. 

 

 
Figure 15. A flowchart showing the fusion of posture and weight recognition  

 
 
3.5 Fusing posture and weight recognition information for achieving real-time ergonomic 

assessment: According to the requirements of the aerospace ergonomics case study, a weight 
cannot be held for longer than a duration. Also, the safe duration varied depending on the 
posture. As a result, there was a need to fuse the information from both the posture and weight 
recognition modules into a cohesive system. In order to achieve this, firstly, a timer function 
was added to the flowchart of Figure 13 in order to realise a time based weight recognition 
system (Figure 14). The fusion of posture and weight recognition information are shown in 
Figure 15. The fusion was achieved through the use of ergonomics rules obtained from the 
knowledge on weight, duration and postures.  
 
3.6 Production execution and feedback to the user: In order to provide feedback to the user, 
we make use of both tactile vibration in the Myo armband and visual buffer via the Physics 
based Musculoskeletal buffer. When the system recognises one of the nine types of standard 
predefined postures, the corresponding pose picture is displayed in the lower-left corner of the 
user interface. If the current posture is not defined, it will be displayed as a small white square. 
When the weight or time of the hand does not meet the current posture standards required by 
case study Company, the green game objects on the arms of the robot model used to symbolise 
muscles turn red. In this way, an operator can playback and review the activities performed 
during an assembly and see how often ergonomics rules are broken. This could provide 
feedback to the worker on areas for improvement.  
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Table 6. The results of posture recognition. 

Booklet posture Real life posture Visual Buffer Representation Posture Recognition Result 
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4.0 Results 
In this section the results obtained from the implementation of the architecture are discussed. 
Firstly, the posture recognition is detailed, followed by weight recognition and then the results 
obtained from the fusion of the posture and weight recognition. 
 

4.1 Posture Recognition: Using the upper body and the lower body states, the posture of the 
entire human body as well as its ergonomics compliance was determined according to the 
requirements of the leading aerospace manufacturer’s ergonomics booklet. The result of the 
posture recognition was displayed in the visual buffer using pictures related to the recognised 
posture (see Table 6). 
 

Table 7. The results of weight recognition 

The object weight (kg) In real life Result of recognition 

0 

 

 

1 

 

 

2 

 

 

3 

 

 

 

4.2 Weight Recognition: The system was able to recognise the function of picking up objects 
of 1 kg, 2 kg and 3 kg by hand. The results of the test are shown in Table 7.  Each user was 
equipped with two Myo arm bands on each arm. By importing the two Myo EMG data into the 
Unity environment at the same time, it was possible to identify the sum of the weights in the 
left and right hands. Figure 16 shows the forearm EMG signal of the hand of one user taking 
different weighted objects. 
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Figure 16. The forearm EMG signal diagram of the hand taking different weight objects 

 
The EMG data obtained from the forearm muscle was stable at around 25 at rest state. The 
value was about 50 when carrying 0.5 kg, 95 when carrying 1kg and 125 at 2 kg. When the 
right hand carried 3 kg, 4 kg and 5 kg dumbbells respectively, the curve fluctuates greatly and 
the demarcation between these weights was not clear cut. 

 
Figure 17. The upper arm EMG signal diagram of the hand taking different weight objects 

 
When the Myo was moved to the upper arm, in order to find out if it was possible to improve 
the demarcation results, the resulting EMG data was produced as shown in Figure 17. 
According to the data obtained from the upper arm, the muscle signal at the upper arm position 
does not change significantly when no weight is taken on the hand. When the objects of 0.5 kg, 
1 kg and 2 kg were carried, the value of the EMG signal kept at about 50. When the weight 
carried by the hand was 3kg, the value of the EMG signal suddenly increases to 150 or more. 
It is also worth noting that when an object of 3 kg or more was lifted with only one hand, the 
muscles were put under a lot of stress. According to the case study’s ergonomic booklet, a load 
of 5kg is the maximum load-bearing standard for all postures when using both hands to carry 
objects. As a result, this work added a new rule to the original rules to specify that no matter 
what posture, the weight of one hand should not exceed 3kg. Based on the above, it was 
concluded that the Myo armband can be placed on the forearm to obtain a suitable range of 
recognition of the following weights: 1 kg, 2 kg and 3 kg. 
 
4.3 Multi-person test and analysis: In order to see if the characteristics of EMG signals are 
similar when different people take the same weight of objects, five people were randomly 
invited to participate in the test. According to Figure 18, it can be seen that when different 
people carry the same weight (2kg) in their hands, the collected EMG signals have different 
levels of magnitude. This may be due to various reasons such as the length of the forearm, the 
thickness of the forearm, the specific position of the Myo armband, muscle strength, muscle 
mass, or muscle fatigue differences in the testers. Four of the five testers had similar ranges of 
EMG signal values. However, the tester 3’s EMG signal value was significantly higher than 
the EMG signal value of the rest of the testers. Furthermore, it can be seen that the EMG signals 
are also different for the left and right arm even when the same weight is carried (Figure 19).  
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Figure 18. EMG data from five different testers carrying a 2kg weight 

 

 
Figure 19. EMG data for various weights carried by the left and right arm.  

 
 
4.4 Calibration for Different Users: Based on the results of the multiplayer test, it was 
inaccurate to use a uniform threshold to distinguish the weight of the hand from different 
people. Even for the same person's left forearm and right forearm, it was necessary to set 
different thresholds. Towards this a calibration procedure was designed for use at the beginning 
of a work shift. Taking the left-hand threshold setting as an example, when the user wears the 
Myo armband, the left hand picks up standard weights of 1kg, 2kg as well as 3kg and then 
remains motionless. During this time, 3 seconds of EMG data is recorded for each weight. The 
average of the recorded data for each weight is then used as a threshold. After all the thresholds 
have been set, the system was capable of identifying various weights.  
 

Table 8. Results of real-time assessment of manual tasks 

Posture Weight 
In real 

life 
0 s 1 s 3 s 3.5 s End 

 

1 kg  
+  
1 kg 
  

    

1 kg 

    
 
4.5 Results of fusing posture and weight recognition information for the real-time 

assessment of manual tasks: An experiment was conducted to test if the system was capable 
of tracking the ergonomics of workers in real time. To achieve this, the flowchart in Figure 15 
was used. Two groups were selected for testing. In the first group, 1 kg of objects were picked 
up by the left and right hands, and the second group picked up 1 kg of object only with the 
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right hand. The results of these experiments are shown in Table 8. It can be seen that after 3 
seconds, there the visual indication changed from green to red to indicate that ergonomic rules 
were being broken for this task. When the object is lowered, the arm muscles returned to green 
again. 
 

5.0 Discussion and limitations 
The benefits and implications of applying wearable sensors in manufacturing are broad for both 
academics and practitioners. For industrial practitioners, it has been observed that human errors 
drastically affect the profitability of companies. This is because human errors lead to product 
recalls which damage the reputation of the affected company as well as erode profit margins. 
In addition to this, space, cost and time is spent setting up a test station in order to ensure that 
manually assembled products are given a thorough test before shipping to customers. Of course 
one particular solution is provided by using automation, especially in situations where the tasks 
are highly repetitive. However, there are still a number of tasks where it is not possible to 
automate due to complexity and inherent dexterity required to facilitate variations that occur 
during the task. As a result, there has been an increase in research aiming to identify or develop 
wearable sensors and processing architectures that could be applied to get manual assembly 
progress directly from humans as well as understand the factors that contribute to human 
performance. Such systems will ensure that errors are caught earlier in the manufacturing 
process thereby potentially reducing the error rate and possibly the need for a test station in [8]. 
Furthermore, in [1], the authors highlighted that the applications of wearables could have a 
high beneficial impact on the work being digitised while having little to medium limitations. 
The limitations cited included pressure spots on the operator’s body which could be alleviated 
by taking regular breaks. 
 
In this work, a Cognitive Architecture for Wearable Sensors (CAWES) inspired by the ACT-
R framework has been presented. This architecture was used to guide the development of a 
wearable cognitive system to aid in keeping track of the ergonomics of workers during various 
tasks. Unlike previous work [41][42], CAWES is a cognitive architecture that fuses data from 
multiple wearable sensor systems  including EMG signals from wearables to enable recognition 
schemes for the weights carried by wearers as well as the postures being used during activities. 
This was achieved by converting the ergonomic requirements of a case study into production 
rules for the cognition architecture. Through the use of these embedded production rules, it is 
shown that the architecture was able to provide feedback to wearers with regards to task based 
ergonomics compliance. The production rules enabled the development of recognition rules for 
various postures assumed by workers as well as the weights carried by them. By fusing these 
recognition rules with a time function, it was possible to inform workers when an ergonomic 
rule was broken. In general, the results of human posture recognition are encouraging. After 
adding the calibration procedure, the accuracy of the weight recognition system using Myo 
armbands improved by up to 90%. 
 
However, this system has limitations and shortcomings. First, it was discovered that if the hand 
performs unnecessary gestures and the arm muscles were in a non-relaxed state, the recognition 
of the weight system may not be accurate. Secondly, the experiment only tested standard 
known weights of objects and did not perform more comprehensive tests on different objects 
in the actual working environment. Therefore, the applicability of the system to industrial 
environments has not been fully proven. 
 
Thirdly, the experiment recognises the weight of the object in hand by always grasping the 
object with the palm down. However, if the object is lifted in the upward position of the palm, 
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some of the muscle stimulation in the forearm will be shared with the upper arm, thus reducing 
the value of EMG signals collected by the Myo armband on the forearm. Fourthly, due to the 
complexity of muscle signals, when the weight carried by the hand exceeds a certain weight, 
the EMG signals collected on the forearm alone are not enough to clearly distinguish its weight. 
Also, when analysing the EMG signal obtained by Myo armband, our system incorporates low-
pass filtering. We do not exclude that there is a possibility that other kinds of relationships 
between the EMG signal and the weight exist in the high-frequency signal.  
 
Furthermore, the EMG signals could be affected by a number of factors including muscle 
fatigue, age, height, ethnicity and strength. Nevertheless, these are challenges that have also 
been highlighted in other related work such as in [43]. These shortcomings could be addressed 
through the use of more sophisticated systems than the production rules of our architecture. 
This might require combining the production rules with more sophisticated techniques such as 
applying neural networks, deep learning or swarm evolutionary computation techniques 
[43][44][45]. Such research might shed light into the neural mechanisms for data fusion and 
decision making in the Basal Ganglia as depicted in the ACT-R architecture of Figure 2.  
 
In this work, the visual buffer was represented using Unity3D. The use of Unity3D enables the 
playback of worker activities on the shopfloor to help individual workers improve their posture. 
Furthermore, the use of the Visual Buffer could be used to run multiple hypothesis of the 
assembly process before physical runs. This could be used by managers to digitally certify 
activities before deployment onto the shopfloor. The manual buffer was used to acquire data 
from sensors as well as configure tactile feedback to workers. However, the tactile feedback 
needs to be configured empirically to provide appropriate feedback. This is because the 
vibration feedback of the Myo armband may distract workers in the assembly process, thus 
affecting the efficiency of assembly and even causing errors in the assembly process. 
Furthermore, the use of wearable devices involves the collection of personal information from 
workers. This may make workers feel that their assembly efficiency is being monitored and 
may reduce uptake of the developed system.  
 
6.0 Conclusion and future work 

The aerospace industry is still heavily reliant on manual labour in various stages of an aircraft’s 
assembly. For such manufacturing systems, the issue of musculoskeletal injuries severely 
limits the output of such a system. Workers in such manufacturing systems could benefit from 
a real time system that can inform them when their posture is detrimental to their long term 
health. 
 
In this work, inspired by the Adaptive Control of Thought—Rational (ACT-R) architecture 
from psychology, we presented a Cognitive Architecture for Wearable Sensors (CAWES). 
According to [28], “Cognitive architectures are a part of research in general AI, with the goal 

of creating programs that could reason about problems across different domains, develop 

insights, adapt to new situations and reflect on themselves. ... To this end, cognitive 

architectures attempt to provide evidence (to) what particular mechanisms succeed in 

producing intelligent behaviour and thus contribute to cognitive science.” 
 

The CAWES architecture potentially provides a framework and a shift in the paradigm of how 
real time ergonomics assessment systems will be developed for use in future manufacturing 
systems. This is especially relevant as human-in-the-loop and human-centred systems become 
more commonly used in manufacturing. The architecture inspires: 
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(i) how data should be processed. This is especially true when considering multiple 
data streams from different sensing modalities, 

(ii) a framework that highlights how production rules and continuous learning 
algorithms that reason across different ergonomics tasks and adapt to new situations 
could be created and embedded in human-centred systems. 

(iii) how digital twins (via visual buffer in the architecture) and multi-sensor wearables 
should interact to ensure real time ergonomics safety and human comfort during 
manual intensive tasks [46]. 

The framework offers a step towards architectures that would be able to reflect on the 
performances of workers in order to elicit new rules that further improve safety, productivity 
and efficiency of workers. Currently, most approaches for real-time ergonomics assessment 
have been ad hoc and this architecture provides a starting point for enabling the research 
community to have a concentrated effort towards building improved human-centred systems. 

In this work, the CAWES architecture is able to recognise postures, weights as well as duration 
of tasks performed by workers. The architecture uses embedded production rules to process 
and fuse multiple wearable data streams in real time as well as provide tactile feedback via 
vibrations in the wearable worn by the worker. The tactile feedback was used to inform workers 
when an activity was not conducive for them. As mentioned earlier, the ACT-R architecture 
was used to inspire the information flow, processing and fusion of data streams in the CAWES 
architecture. However, it should be noted that not all aspects of the ACT-R architecture were 
used in this research.  
 
Furthermore, although the results of the proposed architecture are promising, experiments were 
conducted in laboratory settings. As a result, further work is required for fully validated 
application in actual assembly processes. Nevertheless, the data derived using the proposed 
system could be used to analyse a shopfloor. The data could reveal various unnecessary 
movement actions within an assembly activity; the reasoning behind such actions, when 
identified by the approach, could inform future process improvement programs. Additional 
future research targets include the further application of cognitive architectures for the 
processing and fusing of data provided by wearable sensors. By developing systems in this 
way, the psychological knowledge inherently present in the cognitive architecture could also 
be exploited and provide bootstrapping mechanisms and additional basis for the development 
of insight generating algorithms.  
 
Additionally, cognition is a holistic phenomenon which includes the acquisition of new rules 
as well as the transfer of previously learnt rules to new scenarios or context. As a result, when 
creating new artificial cognitive systems, the embedding of prior known production rules as 
well as acquiring new ones from the domain of interest (through learning) are all part of a 
complete cognitive architecture. In this work, we focused only on embedding rules from an 
ergonomics handbook into a cognitive architecture in order to meet official guidelines on 
repetitive working in the aerospace sector. These rules are part of an official standard that needs 
to be abide by. As a result, it was necessary to start with these rules in developing the production 
memory module of the CAWES architecture. In future work, it will be interesting to see how 
other rules could be extracted autonomously (through machine learning) from worker 
performance data. This would form part of a continuous learning scheme in the CAWES 
architecture. The development and application of the CAWES architecture as discussed in this 
work, provides us with initial steps towards achieving this. 
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