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Modelling risk perception using a dynamic hybrid choice model and brain-

imaging data: application to virtual reality cycling 

Martyna Bogacz, Stephane Hess, Chiara Calastri, Charisma F. Choudhury, Faisal Mushtaq, 

Muhammad Awais, Mohsen Nazemi, Michael A.B. van Eggermond, Alexander Erath 

Abstract 

Road risk analysis is one of the key research areas in transport, where the impact of perceived 

risk on choices, especially in a dynamic setting, has been long recognised. However, due to the 

lack of dynamic data and the difficulty in capturing risk perception, the existing studies 

typically resort to static and stated approaches to infer the experienced level of risk of 

individuals. In this paper, we aimed to address this research gap through developing a hybrid 

choice model that jointly employed dynamic data on cycling behaviour in virtual reality and 

neural data to evaluate how the fluctuations in momentary risk perception influence the 

behaviour of cyclists. The results of the developed model confirm our hypotheses, 

demonstrating that cyclists reduce their speed when approaching a junction as the potential for 

a collision with passing cars increases. Moreover, the latent component allowed us to establish 

a link between the neural data, the amplitude of alpha brainwaves, and objective risk measures. 

In line with our hypothesis, we found that decreased alpha amplitude is associated with higher 

perceived risk which in turn increases the likelihood of braking. The implications of our study 

are manifold. On the one hand, it shows the ability of virtual reality to elicit complex cyclists’ 
behaviour and the feasibility of a joint collection of dynamic neural and choice data. On the 

other hand, we demonstrate the potential of the employment of neural data in a hybrid model 

framework as an indicator of risk that allows us to gain a better understanding of cycling 

behaviour and associated neural processing. These promising findings pave the way for future 

studies that would explore the advantages of neuroscientific inputs in the choice models. 

Keywords: cycling, virtual reality, EEG, hybrid choice model 

1 Introduction 

Modelling risk perception in the transport context plays a critical role in the prediction of 

individuals’ behaviour in a risky situation on the road. Traditionally, perceived risk and its 

effect on choices have been explored by means of paper or web-based stated preference (SP) 

surveys or simple laboratory experiments. In particular, direct questionnaires and attitudinal 

scales have been widely used in the transport context, for example, Ram and Chand (2016); 

Rundmo and Iversen (2004); Ulleberg and Rundmo (2003) to obtain insights on the perception 

of different modes, willingness to pay for their use (Román et al., 2014) as well as to assess 

road users’ risk and safety perception (Zhang et al., 2011). Therefore, Driver Behaviour 

Questionnaire (Reason et al., 1990) or Young Driver Attitude Scale (Malfetti et al., 1989) are 

commonly used measures. They are claimed to perform well when respondents have sufficient 

experience or general knowledge about the context to reliably compare the situation in 

question, assess and report it (Mummolo and Peterson, 2019). Nonetheless, these explicit 

approaches have also been demonstrated to be susceptible to biases stemming from different 
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sources, such as experimenter effect (Iyengar, 2011), degree of familiarity with the topic 

(Patterson and Mattila, 2008), survey wording or social desirability bias (Näher and Krumpal, 

2012). 

Therefore, the major issue associated with these approaches is the possible incongruence 

between the stated and experienced risk and between the stated and actual actions. For instance, 

Andersson (2013) found a significant discrepancy between stated and observed willingness to 

pay for traffic safety, with Svensson (2009) also showing an inconsistency between the 

willingness to pay for risk reduction and the precautionary behaviour actually used to reduce 

it. Consequently, some studies attempted to resort to more implicit approaches to alleviate the 

issues associated with self-reported measures (Bennett and Vijaygopal, 2018). One of the 

examples is the Implicit Attitude Test (IAT) that measures the strength of association between 

concepts (e.g. man, woman) and evaluations (e.g. good, bad). It is based on the principle that 

the response time for the associations which are consistent with respondents’ beliefs will be 
shorter than for the inconsistent ones. However, these implicit approaches are not problem less, 

where a study by Kim (2003) showed that the respondents can be successfully taught how to 

influence the IAT results. Beyond, De Houwer et al. (2007) demonstrated that experimenters 

were able to induce the formation of new attitudes in participants, which, in turn, had an impact 

on the outcome of the IAT measure. For this reason, instead of self-reported responses, which 

are prone to errors, neural or physiological activations can be measured to provide a raw, neural 

(or bodily) response to a specific situation. 

Additionally, a limitation arises from the lack of dynamic data on risk, where attitudinal 

questions provide only a static indication of the inherently dynamic risk perception. While the 

experimental techniques may not capture the experience of risk to the same degree as real-life 

settings, some headway can be made with augmented and virtual reality (VR) technologies. 

These have been previously used, mostly in psychology research, to measure risk perception 

(Dixit et al., 2015) as well as physiological responses (Johnson et al., 2011; Shechtman et al., 

2009; Chirico et al., 2017). A key advantage is the dynamic nature of the VR experiments, 

where many studies, focussed on risk, have adopted such a dynamic approach to improve 

realism and better capture the reactions to momentary changes in risk perception on the road 

(Frankenhuis et al., 2010; Mai, 2017; Underwood et al., 2011). 

Virtual reality provides an alternative to the established methods of measuring risk perception 

and associated stress levels. Crucially for the present work, it also enables joint use with 

physiological devices and neuroimaging techniques such as electroencephalography (EEG), 

where the signal can be a proxy for risk perception. Previous literature in the transport context 

employed the EEG to predict driving behaviour on an operational level (Michon, 1985) 

including braking, acceleration and overtaking (Haghani et al., 2021). For instance, Kim et al. 

(2014) identified and used neural patterns of emergency braking situation to predict future 

braking. While other studies used biometric data to detect drivers’ fatigue or drowsiness (Hu 
et al., 2009; Furman and Baharav, 2010). For example, a study by Awais et al. (2017) required 

the participants to drive in a simulator at a constant speed for a prolonged period to evoke 

drowsiness. Meanwhile, their electrical activity of the brain and heart rate data were recorded 
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to then make inferences about the relationship between these biometric measures and drivers’ 
state. These studies by capturing the physiological and neural measures associated with 

different behaviours and states allow for a better understanding of mechanisms that drive them, 

which in turn allows to detect and predict them more accurately. 

Therefore, a major opportunity arises with the greater accessibility to neuroimaging equipment 

to provide a new perspective on behaviour in risky and stressful conditions. Studies in 

neuropsychology have established that α waves1 are a reliable stress marker (Verona et al., 

2009; Lewis et al., 2007; Nishifuji et al., 2010; Vanitha and Krishnan, 2016; Seo and Lee, 

2010) and links have been made between α wave variations and its role in attention and 

perception (Magosso et al., 2019; Ray and Cole, 1985; Cooper et al., 2006). In particular, a 

study by Brouwer et al. (2011) looked at neural correlates of stress evoked by the use of virtual 

reality. They found that simulated stressful conditions significantly influenced several 

physiological stress indicators used in the study, including frontal α power. Finally, Magosso 
et al. (2019) used virtual reality simulations and electroencephalography to detect changes in 

attention. The results of the study demonstrated that the α power decreased during tasks which 
required high attention to the external environment and conversely, α amplitude increased 
when the attentional demands of the task diminished. The results of these studies provide a 

promising basis for using α wave data as an indicator for the perceived risk, in the transport 
context, which increases the attentional demands. In particular, its usefulness in modelling of 

the perceived risk on the road could be explored if continuous EEG and behavioural data are 

collected jointly. 

In a choice modelling context, and with perceived risk being unobserved, Hybrid Choice 

Models (HCM) are a suitable framework to incorporate neural data into the model. HCMs have 

been previously used mostly to combine latent constructs such as attitudes, opinions or 

perceptions together with observed choices in a single model structure by the means of 

measurable indicators (Ben-Akiva et al. (2002); Bolduc and Alvarez-Daziano (2010); Abou-

Zeid and Ben-Akiva (2014)). More recently, Paschalidis et al. (2019) applied a hybrid 

framework with heart rate and skin conductance as indicators of unobserved stress to 

investigate its impact on driving behaviour. 

The present paper addresses the shortcoming of past work by exploiting these novel 

opportunities in terms of an experiment that employs neuroimaging techniques to explore 

cycling risk perception in virtual reality simulation. We employ a dynamic HCM with an 

unobserved risk as a latent variable and we use α wave data as an indicator of the perceived 

risk to better explain the behavioural responses of the cyclist in the simulated environment. 

This approach allows us to achieve better understanding of cyclists’ choices and make 
inferences about their neural background. 

                                                           

1
 Brain patterns form sinusoidal waves that are measured from peak to peak, with amplitude ranging from 0.5 to 

100 µV. The brainwaves are measured in cycles per second (Hertz) which are also known as a frequency of brain 

wave activity. There are five major brainwaves identified: beta, alpha, theta, delta and gamma. The frequency of 

alpha brainwaves ranges between 8-13 Hz (Isa et al., 2014; Teplan et al., 2002; Ambekar and Achrekar, 2014). 
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The remainder of this paper is organised as follows. We present our specific hypotheses guided 

by the literature in the next section. The data collection design and sample characteristics are 

presented next, followed by the model structure and specification. We next turn to the results 

section, followed by the discussion section which reviews the insights from the analysis. 

2 Hypotheses  

In this section, we propose a number of hypotheses related to the changes in cyclists’ 
behaviour with respect to fluctuations in the perceived level of risk due to dynamic traffic 

conditions and associated neural processing of their choices. 

Behavioural data 

• Hypothesis 1a: The presence of a passing car at the junction increases perceived risk, 
which in turn increases cyclists’ propensity to reduce speed. 

• Hypothesis 1b: The increase (or decrease) in perceived risk and hence the propensity 
to reduce (or increase) speed is a function of the remaining distance to reach the 

junction. That is, a shorter distance until the potential collision with the car at the 

junction increases cyclists’ propensity to reduce speed. 

These hypotheses are driven by the fact that junctions are parts of the road in our experiment 

where accidents with cars are possible, while speed reduction is the most common avoidance 

manoeuvre among cyclists (Johnson et al., 2010). Therefore, closer proximity to the junction 

and the presence of a car are expected to make cyclists brake more often in order to avoid 

collisions with other agents on the road or to gain more time to assess the dynamic situation at 

the junction, similarly to how we expect cyclists to react in reality when approaching a 

dangerous road. 

Neural data - α amplitude 

• Hypothesis 2: The α wave decreases (or increases) with increased (or reduced) risk. 

This hypothesis draws on previous studies in the transport field which looked at the pre- diction 

and detection of braking intention based on the EEG features (Kim et al., 2014; Haufe et al., 

2011; Hernández et al., 2018), providing evidence of a potential link between them. In 

particular, the existing neuroscientific literature links α wave to stress, visual attention, task 
performance and information processing relevant to the task (Verona et al., 2009; Fournier et 

al., 1999; Borghini et al., 2014; Fairclough et al., 2005; Slobounov et al., 2000). In particular, 

multiple previous studies have shown that the changes of α activity were related to the strength 

of attention to external stimuli required by the task (Mann et al., 1996; Vanni et al., 1997; Lei 

and Roetting, 2011; Simon et al., 2019). In other words, the presence of a dangerous element 

in the scenario (car crossing at the junction) is considered to increase the task complexity, and 

consequently, higher attentional demands lead to a decrease in the α power (amplitude). 
Therefore, it is hypothesised that α power is negatively associated with perceived risk. 

3 Experimental design and sample information 
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This section explains the experimental procedure, technical details of the data collection and 

describes the equipment employed in the experiment i.e. the instrumented bicycle, virtual 

reality goggles and the EEG device. Beyond, we present the key sample characteristics. 

Following the experimental design from Bogacz et al. (2020) the study employed six scenarios 

with an immersive simulation of a street from the cyclist perspective. All the scenarios were 

similar with respect to certain aspects. Firstly, the cyclist was riding on the pavement, separated 

from the pedestrian zone on the left by a painted lane and segregated from the road traffic on 

the right by a grass strip, as seen in Figure 1.  

Figure 1: The location of the bicycle lane in the scenario. 

 

 

Secondly, in each scenario, there were two junctions that were places of a potential collision 

with cars, as demonstrated in Figure 2. Moreover, all the scenarios involved both, pedestrians 

and cars. The pedestrians could only walk along the bicycle lane, but cars could turn at the 

junctions. While the proportion of cars that would turn was constant across all the scenarios, 

the movement of a particular vehicle was random. Consequently, there were some differences 

between scenarios in terms of the actual number of cars that were present at the junction at the 

same time as the cyclist. This was also influenced by the cycling speed of the participant which, 

in turn, had an impact on the time when the cyclist arrived at the junction. The microsimulation 

of traffic used in the scenarios was designed using PTV Vissim software (PTV-Group, 2021) 

and later developed in Unity as a 3D, virtual reality scenario (Unity, 2017). The scenarios 

included a 360-degree view of the street around the cyclist and were responsive to their head 

movements. The sound was also included in the simulation to account for the auditory cues 

that are normally available to cyclists in real life. Importantly, the loudness of the vehicles 

depended on their distance to the cyclist so that the noise of a car increased as it was becoming 

closer (Bogacz et al., 2020: 247). 
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Figure 2: An example of collision point - a junction. 

 

 

The reason for using six scenarios is the simultaneous collection of neural data that required 

more trials to achieve higher EEG signal stability. The experimental task was to cycle through 

the scenario at the desired speed until arriving at the finish line. The participants used the pedals 

to move forward and the hand brake located on the right-hand side of the handlebar to brake 

but they could not steer. The instrumented bike can be observed in Figure 3 and it is a part of 

the Future Cities Laboratories in Singapore. 

Figure 3: Instrumented bicycle used in the experiment 

 

 

The experimental session began with familiarising the participant with the operation of an 

instrumented bicycle, where all the participants could ride a bike in reality. Next, the participant 

was sat on the bicycle and the HTC Vive head-mounted display (HMD) (Borrego et al., 2018) 

and the EEG recording device Enobio (Riera et al., 2008) were put on their head. The Enobio 

headset used the following electrodes: FP1, FP2, Fz, C3, Cz, C4, P3 and P4 to record the signal 
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from the whole scalp at sampling rate of 128 Hz2. The compact build of the mobile EEG device 

enabled us to use it jointly with HTC Vive. To collect the baseline activity of the brain, the 

participants were asked to focus their gaze on one point on the screen for one minute. 

Subsequently, the same procedure was performed with eyes closed. It was followed by the trial 

session to familiarise the participants with the operation of the bicycle as well as the simulation. 

The summary of the data collected in the experiment is presented in Table 1. 

Table 1: Summary of data collected in the experiment. 

Data type Variable Resolution of recording Unit of measurement 

Behavioural Speed 4 Hz km/h m/s2 

Neural Acceleration 4 Hz µV (microvolt) 

Behavioural α wave amplitude 128 Hz km/h m/s2 

 

The sample consisted of fifty individuals recruited from staff and students of the National 

University of Singapore (NUS) as well as members of the general public. Nonetheless, two of 

them did not complete the whole experiment hence they were dropped from the analysis 

leading to a final sample size of 48. The mean age of the sample was 26.5 years (6.7 years 

standard deviation). Importantly, small sample size is a typical issue faced by the studies that 

use virtual reality or driving simulators (Camara et al., 2021; Nuñez Velasco et al., 2021) due 

to longer experiment duration and higher costs as compared to stated preference studies. 

 

4 Methods for EEG data cleaning and extraction 

We used the EEG data cleaning protocol described in Bogacz et al. (2020), where firstly the 1-

20 Hz bandpass filtering (BPF) was applied to preserve the components of the data within this 

specific band of frequencies (Christiano and Fitzgerald, 2003) and remove those which we 

were not interested in. The use of BPF allowed us to eliminate, for example, the noise stemming 

from external sources such as the operation of electronic equipment or internal, physiological 

sources. Then, the artefacts such as eye blinks and other body movements were removed 

manually using multiple source analysis method within BESA 6.0 software (MEGIS Software 

GmbH, Gräfelfing, Germany) (Berg and Scherg, 1994; Ille et al., 2002). Next, Welch’s method 
was used to compute the power spectrum of the EEG (Welch, 1967), before we averaged the 

EEG data from 128 Hz to 4 Hz to match the resolution of the behavioural data. Finally, we 

normalized the logarithm of the α wave so that for each individual α values have a mean of 0 

and a standard deviation of 1. 

 

 

                                                           

2 Hertz (Hz) is a unit of temporal frequency which denotes the number of occurrences of an event per one 

second. For example, a recording resolution of 128 Hz means that the data has been collected 128 times per one 

second. 
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5 Modelling framework 

In this section, we describe the modelling framework used in this study, where we developed 

a hybrid choice model with discrete and continuous choice components and a latent variable. 

Cyclists’ choices of action in the virtual environment were recorded every quarter of a second. 
In Figure 4, the latent variables are presented in ovals and the observed variables are presented 

in rectangles. The utility of each of the discrete actions (i.e. accelerate, brake, decelerate, 

maintain speed and wait) is influenced by the different exogenous variables related to the 

situation in the scenario and latent perceived risk. The latent component of the model consists 

of the latent risk with α wave as its indicator and two explanatory variables. If the cyclist 
chooses to accelerate, brake, or decelerate, then the continuous component for a given action 

is considered. Importantly, in the continuous part, the acceleration is split into two cases, 

namely acceleration when previously stopped and when previously in motion. We present a 

more detailed description of each model component in turn. 

Figure 4: A model structure 

 

 

Specification of latent risk 

The developed hybrid choice model encompasses a latent component that seeks to capture the 

impact of risk on cyclist’s actions, where it is believed that in real life the individuals also 
adjust their cycling in response to the observed level of risk. We assumed that the perceived 

risk is influenced by a cyclist’s distance to the junction and the presence of a car at the junction. 
The latter was included as an additive interaction term. The structural equation for the latent 

variable can be seen in Equation 1. 
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θlatent−risk = (γdist−to−junction + γcar−present · xcar−present) · xdist−to−junction + εα 

 

(1) 

Where: 

• xdist−to−junction is the variable representing the cyclist’s distance to the junction 
(measured in meters); 

• xcar−present is a dummy variable, taking value 1 if a car is present at the junction at the 

current point in time and 0, otherwise; 

• εα is an error term. 

Further, the corresponding parameters: 

• γdist−to−junction is the parameter representing the influence of the cyclist’s distance to 
the junction on the perceived risk; 

• γcar−present is the interaction parameter representing the additive shift in the perceived 

risk if a car is present at the junction. 

Importantly, different forms of structural equations for the latent variable were tested, 

including, for example, discrete levels of time to collision, however, the final specification was 

chosen as described above because the analysis of the data showed that the level of risk that 

the cyclist perceives in each time point is related to their distance to the hazardous part of the 

scenario, i.e. the junction. This particular relationship can possibly be explained by the fact that 

distance is an easier feature to be judged by the cyclist compared to, for example, time until 

arrival to the junction. Then, we included the presence of the car at the junction which 

undoubtedly amplifies the perceived risk since it materialises the potential hazard. Moreover, 

to obtain more insights into the relationship between variables included in the structural 

equation and the indicators, one-sided t-test was conducted, firstly on mean values of alpha 

amplitude in cases when the car was absent and present at the junction. The result was in line 

with our expectations, where α amplitude was significantly lower (t-ratio = 1.92) in cases where 

there was a car present at the junction. Moreover, Spearman’s correlation coefficient of 0.16 

between α amplitude and distance to the junction is statistically significant and although it is 
small, it suggests a positive relationship between these two variables, as expected. 

Specification of discrete component 

Dependent variable 

The choice variable for the discrete part of the model allows for five possible actions, namely, 

accelerate, brake, decelerate, maintain speed, and wait. These actions are linked to the changes 

in cycling speed, where accelerate refers to an increase in speed, brake encompasses cases of 

an abrupt decline in speed, while decelerate covers instances where a person slows down at a 

slower rate than when braking. This distinction was made to account for different underlying 

reasons for these actions. For example, braking may be the result of a sudden emergence of a 
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car at the junction leading to an increase in the risk of collision; while deceleration may be 

chosen when there are no imminent risks of collision, but the need for increased caution (e.g. 

when the cyclist is still far from the junction) or it is possible that deceleration arises simply 

when the cyclist stops or reduces pedalling due to physical exhaustion. Cases, where a person 

is moving while keeping a constant speed, are classified as maintain speed. Finally, wait refers 

to instances where a cyclist has stopped and remains still. Importantly, the wait is not available 

when the cyclist is currently moving. On the other hand, when the cyclist is not in motion, the 

only two available actions are wait and accelerate. The wait was included as an alternative 

because we observed in the data that cyclists chose it close the junction to allow for the traffic 

to clear and cross the junction at an appropriate time. 

To summarise, when the cyclist is moving, the available actions are: accelerate, brake, 

decelerate, maintain speed, whereas when the cyclist is not moving, he can either wait or 

accelerate. For this reason, the reference category in the model is accelerate because this is the 

only action that is always available, whether moving or not. Finally, this categorisation of 

actions was chosen because it allows us to capture a cyclist’s reactions to the dynamic 
environment in the scenario by the degree to which he adjusts his current speed, similarly to 

individuals cycling in the real world. In other words, we are interested in the instances when 

the changes in the external environment induce the cyclist to switch his currently chosen action 

to a different one. 

Utility functions 

As a result of our approach described in the previous section, the utility associated with each 

action is a function of: 

• the cyclist’s distance to the junction; 

• the cyclist’s speed; 

• the presence of a car at the junction and the time until the collision with the given car 

(if there is one), considering the current speed of the cyclist. 

In order to account for the potential non-linear effects of distance and speed, we included the 

polynomials of distance to the junction and cyclist’s speed up to the third order. Furthermore, 
the impact of a car being present at the junction is captured by a dummy which indicates a 

potential collision with a car, given the cyclist’s current distance to the junction and his current 
speed, which are recorded every quarter second. The reason for using the attribute on a possible 

collision in the future is that it allows us to capture how a cyclist adjusts his current behaviour 

to avoid colliding with the car. We did not use the presence of the car at the junction, because, 

while it increases the perceived risk, it does not automatically require acting upon. In other 

words, it would not enable us to observe how a cyclist changes his behaviour as a result of an 

increase in situation riskiness. Moreover, we included a variable that accounts for the time 

remaining until collision (again with the resolution of a quarter second) if a car is present at the 

junction. This time component allows us to consider the impact of the remaining time to the 
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collision on the choice of different actions. Finally, we also included a random variable to 

account for individuals’ heterogeneity in preferences for different actions. 

Therefore, below we present the utility functions associated with the decision of a cyclist n to 

choose one of the five actions (Acc = accelerate, Br = brake, Dec = decelerate, Maintain = 

maintain speed, Wait = wait) at time t, where accelerate is used as the baseline. Importantly, 

Equations 2 - 5 show full specification but some components were removed during the actual 

estimation of the model because they were insignificant, or they were not relevant explanators 

for that given alternative3. For instance, in the actual utility function for Wait, we did not retain 

the speed or distance to the junction as they were not meaningful components when the cyclist 

was not moving. 

 𝑉𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑛,𝑡 = 𝛿𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛 + 𝜎𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∙  𝜉𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛 + 𝛽𝑑𝑖𝑠𝑡−𝑡𝑜−𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∙ 𝑥𝑑𝑖𝑠𝑡−𝑡𝑜−𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑛,𝑡+ 𝛽𝑑𝑖𝑠𝑡−𝑠𝑒𝑐𝑜𝑛𝑑𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∙ 𝑥2𝑑𝑖𝑠𝑡−𝑡𝑜−𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑛,𝑡+ 𝛽𝑑𝑖𝑠𝑡−𝑡ℎ𝑖𝑟𝑑𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∙ 𝑥3𝑑𝑖𝑠𝑡−𝑡𝑜−𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑛,𝑡  +  𝛽𝑠𝑝𝑒𝑒𝑑𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∙ 𝑥𝑠𝑝𝑒𝑒𝑑𝑛,𝑡 + 𝛽𝑠𝑝𝑒𝑒𝑑−𝑠𝑒𝑐𝑜𝑛𝑑𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∙ 𝑥2𝑠𝑝𝑒𝑒𝑑𝑛,𝑡 + 𝛽𝑠𝑝𝑒𝑒𝑑−𝑡ℎ𝑖𝑟𝑑𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∙ 𝑥3𝑠𝑝𝑒𝑒𝑑𝑛,𝑡+ 𝛽𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∙ 𝑥𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑛 ∙ 𝑥𝑡𝑖𝑚𝑒−𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑛𝜆𝑡𝑖𝑚𝑒−𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛+ 𝛽𝑟𝑖𝑠𝑘𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∙  𝜃𝑙𝑎𝑡𝑒𝑛𝑡−𝑟𝑖𝑠𝑘 

(2) 

 

  𝑉𝐵𝑟𝑛,𝑡 = 𝛿𝐵𝑟 + 𝜎𝐵𝑟 ∙  𝜉𝐵𝑟 + 𝛽𝑑𝑖𝑠𝑡−𝑡𝑜−𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐵𝑟 ∙ 𝑥𝑑𝑖𝑠𝑡−𝑡𝑜−𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑛,𝑡+  𝛽𝑑𝑖𝑠𝑡−𝑠𝑒𝑐𝑜𝑛𝑑𝐵𝑟 ∙ 𝑥2𝑑𝑖𝑠𝑡−𝑡𝑜−𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑛,𝑡 + 𝛽𝑑𝑖𝑠𝑡−𝑡ℎ𝑖𝑟𝑑𝐵𝑟 ∙ 𝑥3𝑑𝑖𝑠𝑡−𝑡𝑜−𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑛,𝑡  +  𝛽𝑠𝑝𝑒𝑒𝑑𝐵𝑟 ∙ 𝑥𝑠𝑝𝑒𝑒𝑑𝑛,𝑡+  𝛽𝑠𝑝𝑒𝑒𝑑−𝑠𝑒𝑐𝑜𝑛𝑑𝐵𝑟 ∙ 𝑥2𝑠𝑝𝑒𝑒𝑑𝑛,𝑡 + 𝛽𝑠𝑝𝑒𝑒𝑑−𝑡ℎ𝑖𝑟𝑑𝐵𝑟 ∙ 𝑥3𝑠𝑝𝑒𝑒𝑑𝑛,𝑡 + 𝛽𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐵𝑟 ∙ 𝑥𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑛 ∙ 𝑥𝑡𝑖𝑚𝑒−𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑛𝜆𝑡𝑖𝑚𝑒−𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐵𝑟+ 𝛽𝑟𝑖𝑠𝑘𝐵𝑟 ∙  𝜃𝑙𝑎𝑡𝑒𝑛𝑡−𝑟𝑖𝑠𝑘 

(3) 

 

                                                           
3 Beyond, there were other variables such as cyclist’s distance to the junction after crossing it, which were tested 
as well but not included in the final models due to non-intuitive sign and statistical insignificance. 
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𝑉𝐷𝑒𝑐𝑛,𝑡 = 𝛿𝐷𝑒𝑐 + 𝜎𝐷𝑒𝑐 ∙  𝜉𝐷𝑒𝑐 + 𝛽𝑑𝑖𝑠𝑡−𝑡𝑜−𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐷𝑒𝑐 ∙ 𝑥𝑑𝑖𝑠𝑡−𝑡𝑜−𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑛,𝑡 +  𝛽𝑑𝑖𝑠𝑡−𝑠𝑒𝑐𝑜𝑛𝑑𝐷𝑒𝑐 ∙ 𝑥2𝑑𝑖𝑠𝑡−𝑡𝑜−𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑛,𝑡 + 𝛽𝑑𝑖𝑠𝑡−𝑡ℎ𝑖𝑟𝑑𝐷𝑒𝑐 ∙ 𝑥3𝑑𝑖𝑠𝑡−𝑡𝑜−𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑛,𝑡  +  𝛽𝑠𝑝𝑒𝑒𝑑𝐷𝑒𝑐 ∙ 𝑥𝑠𝑝𝑒𝑒𝑑𝑛,𝑡+ 𝛽𝑠𝑝𝑒𝑒𝑑−𝑠𝑒𝑐𝑜𝑛𝑑𝐷𝑒𝑐 ∙ 𝑥2𝑠𝑝𝑒𝑒𝑑𝑛,𝑡 +  𝛽𝑠𝑝𝑒𝑒𝑑−𝑡ℎ𝑖𝑟𝑑𝐷𝑒𝑐 ∙ 𝑥3𝑠𝑝𝑒𝑒𝑑𝑛,𝑡 +  𝛽𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐷𝑒𝑐 ∙ 𝑥𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑛 ∙ 𝑥𝑡𝑖𝑚𝑒−𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑛𝜆𝑡𝑖𝑚𝑒−𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐷𝑒𝑐+ 𝛽𝑟𝑖𝑠𝑘𝐷𝑒𝑐 ∙  𝜃𝑙𝑎𝑡𝑒𝑛𝑡−𝑟𝑖𝑠𝑘 

(4) 

 𝑉𝑊𝑎𝑖𝑡𝑛,𝑡 = 𝛿𝑊𝑎𝑖𝑡 + 𝜎𝑊𝑎𝑖𝑡 ∙  𝜉𝑊𝑎𝑖𝑡 + 𝛽𝑑𝑖𝑠𝑡−𝑡𝑜−𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑊𝑎𝑖𝑡 ∙ 𝑥𝑑𝑖𝑠𝑡−𝑡𝑜−𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑛,𝑡 + 𝛽𝑑𝑖𝑠𝑡−𝑠𝑒𝑐𝑜𝑛𝑑𝑊𝑎𝑖𝑡 ∙ 𝑥2𝑑𝑖𝑠𝑡−𝑡𝑜−𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑛,𝑡 + 𝛽𝑑𝑖𝑠𝑡−𝑡ℎ𝑖𝑟𝑑𝑊𝑎𝑖𝑡 ∙ 𝑥3𝑑𝑖𝑠𝑡−𝑡𝑜−𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑛,𝑡  +  𝛽𝑠𝑝𝑒𝑒𝑑𝑊𝑎𝑖𝑡 ∙ 𝑥𝑠𝑝𝑒𝑒𝑑𝑛,𝑡+ 𝛽𝑠𝑝𝑒𝑒𝑑−𝑠𝑒𝑐𝑜𝑛𝑑𝑊𝑎𝑖𝑡 ∙ 𝑥2𝑠𝑝𝑒𝑒𝑑𝑛,𝑡 +  𝛽𝑠𝑝𝑒𝑒𝑑−𝑡ℎ𝑖𝑟𝑑𝑊𝑎𝑖𝑡 ∙ 𝑥3𝑠𝑝𝑒𝑒𝑑𝑛,𝑡 + 𝛽𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑊𝑎𝑖𝑡 ∙ 𝑥𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑛 ∙ 𝑥𝑡𝑖𝑚𝑒−𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑛𝜆𝑡𝑖𝑚𝑒−𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑊𝑎𝑖𝑡+ 𝛽𝑟𝑖𝑠𝑘𝑊𝑎𝑖𝑡 ∙  𝜃𝑙𝑎𝑡𝑒𝑛𝑡−𝑟𝑖𝑠𝑘 

(5) 

 

  𝑉𝐴𝑐𝑐𝑛,𝑡 = 0 (6) 

 

 

The δi parameters in Equations 2 to 5 above represent the alternative specific constants 

(ASC), where the subscripts refer to each action. We allowed for random heterogeneity in 

these preferences through the additional terms σi, which multiply a standard Normal variate 

ξi. 

Also, there are several other components that look at the impact of different variables in the 

scenarios on the utilities, as seen in Table 2. 

The Equations 2 to 5 also have parameters for each action, where for the ease of notation we 

use subscript i in the text that can denote Accelerate, Brake, Decelerate, Maintain speed and 

Wait: 

• δi represent the alternative specific constant (ASC) for each action; 

• σi captures the heterogeneity in the alternative specific constant (ASC) for each 

action; 
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• 𝛽𝑑𝑖𝑠𝑡−𝑡𝑜−𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖 , 𝛽𝑑𝑖𝑠𝑡−𝑠𝑒𝑐𝑜𝑛𝑑𝑖  and 𝛽𝑑𝑖𝑠𝑡−𝑡ℎ𝑖𝑟𝑑𝑖 are parameters which represent the 

impact of the distance to the junction on the utility for each action, first, second and 

third order, respectively; 

• 𝛽𝑠𝑝𝑒𝑒𝑑𝑖 , 𝛽𝑠𝑝𝑒𝑒𝑑−𝑠𝑒𝑐𝑜𝑛𝑑𝑖  and 𝛽𝑠𝑝𝑒𝑒𝑑−𝑡ℎ𝑖𝑟𝑑𝑖 are parameters which represent the impact 

of the cyclist’s speed on the utility for each action, first, second and third order, 
respectively; 

• 𝛽𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑖 are the parameters which show the impact of the potential presence of the 

car at the junction on the utility for each action; 

• 𝛽𝑟𝑖𝑠𝑘𝑖 are the parameters that represent the impact of latent risk on different ac- 

tions; 

• 𝜆𝑡𝑖𝑚𝑒−𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑖 are the parameters which represent the impact of the time left until 

the collision on each action. 

Table 2: Variables used in the utility functions. 

Variable 

name 

Variable meaning Units 

xdist−to−junction cyclist’s distance to the junction; used also in the polynomial 

form: xdist−to−junction2 and xdist−to−junction3 to capture the non-

linear impacts 

metres 

xspeed cyclist’s speed; used also in the polynomial form: xspeed2, 

xspeed3 to capture the non-linear impacts 

Km/h 

xcollision dummy variables which denote if there would be a collision 

with the car at the junction when the cyclist would arrive 

there, given his current speed and distance to the junction 

equal to 1 

if true, 

0 otherwise 

xtime−collision remaining time to the collision between a cyclist and the 

car given cyclists current speed and distance to the junction 

seconds 

θlatent−risk latent risk variable - 

ξi a random variable that represents the individual’s 
heterogeneity for different actions 

- 

 

Specification of the continuous component 

The continuous component of the model was developed to give an additional level of detail on 

cycling behaviour, providing information on the magnitude of the actions chosen in the discrete 

component (Varotto et al., 2018; Koutsopoulos and Farah, 2012). This not only allows to 

achieve a higher level of understanding of modelled behaviour, but it also helps to validate 

further the adopted methodological approach. Importantly, the aim of the continuous 

component was not to improve the model efficiency, but to gain behavioural insights, and from 

the mathematical standpoint it does not influence the performance of the model as the discrete 

and continuous components were estimated separately (see Appendix B, Table 5 for the full 
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output of the model without the continuous component). Therefore, in the continuous 

component of the model, the dependent variables are the continuous values of accelerate, 

decelerate and brake (called acceleration, deceleration and braking deceleration, respectively, 

in the continuous part), chosen by the cyclist. The model assumes that the cyclist firstly chooses 

one of these three actions in the discrete part of the model and subsequently he decides on the 

acceleration/deceleration associated with the chosen decision in the continuous part. The 

continuous decision is thus conditional on the discrete choice. In the case of acceleration in the 

continuous part, it differentiates between accelerating when the cyclist was moving in the 

previous time point and when he was waiting (i.e. was stopped). For the former, the current 

cycling speed is expected to affect the chosen value of acceleration while for the latter, the 

current speed is zero. Importantly, the dependent variables in all four cases are derived from 

the absolute values of acceleration but for each of them, the values are only considered when 

the given action is chosen in the discrete part, as described above. Therefore, for correct 

interpretation of the parameter estimates, it should be noted that the acceleration refers to 

increasing velocity in the case of accelerate as a discrete choice and decrease in velocity for 

deceleration and braking deceleration. Guided by the shapes of the distributions of the observed 

acceleration and deceleration values, the dependent variable is assumed to follow a log-normal 

distribution with the mean being a function of explanatory variables (e.g. current speed). 

Consequently, the specification of the continuous variable can be seen in Equation 7. 

𝑃(𝑙𝑜𝑔(𝐴𝑐𝑐𝑛,𝑡)) = 1(𝜎𝑙𝑜𝑔(𝐴𝑐𝑐𝑛,𝑡)√2𝜋) ∗ 𝑒𝑥𝑝 (− 12 ((𝑙𝑜𝑔(𝐴𝑐𝑐) − 𝑥𝑆𝑝𝑒𝑒𝑑𝑛,𝑡 − 𝜇𝑙𝑜𝑔 (𝐴𝑐𝑐𝑛,𝑡))𝜎𝑙𝑜𝑔(𝐴𝑐𝑐𝑛,𝑡) )2) 
(7) 

 

Where, 

• 𝜇𝑙𝑜𝑔 (𝐴𝑐𝑐𝑛,𝑡) denotes the mean of the logarithm of the dependent variables 

• 𝜎𝑙𝑜𝑔(𝐴𝑐𝑐𝑛,𝑡) denotes the standard deviations of the logarithm of the dependent variables 

• 𝑥𝑆𝑝𝑒𝑒𝑑𝑛,𝑡 is the cyclist's current speed. 

 

Specification of the measurement component 

The final component of the hybrid structure is the measurement model which is used to link 

the latent variable with its indicators. In our model, the risk is not observed or measured 

directly, but instead, it is manifested in its indicator, the alpha (α) brain activity, derived from 

the EEG data. To account for the heterogeneity in the α ranges across the respondents, 
normalized values of α have been employed (as used by Paschalidis et al. (2019) for 
physiological indicators and Makeig and Jung (1995) for the EEG signal). Multiple previous 

studies showed that the changes of α activity were related to the strength of attention to external 
stimuli required by the task, where naturally more hazardous elements increase these attention 

demands. The measurement model can be seen in Equation 8. 

α = ζαθlatent−risk + να (8) 
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Where, 

• θlatent−risk is latent risk variable; 

• να is an independent error term, and the corresponding parameter: 

• ζα is a parameter relating the latent risk to its indicator, the α wave. 

6 Results 

This section presents the full results of the hybrid model in Table 3. Different components of 

the modelling approach developed in this paper are described in turns. The model was 

estimated simultaneously with 100 Halton draws using the Apollo software (Hess and Palma, 

2019). 

 

Table 3: A discrete-continuous model (robust standard errors and t-ratios in brackets). 

LL (final, whole model): -149642.40 

AIC: 299370.70 

BIC: 299752.40 

LL (final, MNL): -45129.09 

LL (final, acceleration when static): 464.95 

LL (final, acceleration when moving): -14384.50 

LL (final, deceleration): -7492.83 

LL (final, braking deceleration): -8338.87 

LL (final α): -74790.59 

Number of observations = 52896 

Number of respondents = 48 

 Action Estimate (rob.t-ratios) 

 Maintain -0.2644 (0.0797; -3.32) 

 Brake -2.4598 (0.1256; -19.58) 

ASC (𝛿) Decelerate -2.9847 (0.1183; -25.23) 

 Wait 4.1069 (0.1869; 21.98) 

 Accelerate 0 

 Maintain 0.2241 (0.0217; 10.34) 

Individual's heterogeneity (𝛽𝜎) Brake 0.0363 (0.0397; 0.92) 

 Decelerate -0.1051 (0.0445; -2.36) 

 Maintain 0.2031 (0.0384; 5.28) 

Collision Brake 0.7535 (0.1542; 4.89) 

Decelerate 0.3616 (0.1185; 3.05) 

 Wait 0.6292 (0.1758; 3.58) 

Time to collision Brake -0.5280 (0.0905; -5.83) 

Decelerate -0.1612 (0.1508; -1.07) 

 1st order Maintain 0.0444 (0.0038; 11.68) 

 2nd order Maintain -0.0835 (0.0085; -9.86) 

 1st order Brake 0.1900 (0.0138; 13.78) 

Distance to junction 2nd order Brake -0.2708 (0.0604; -4.48) 

3rd order Brake 0.0195 (0.0080; 2.44) 

 1st order Decelerate 0.0850 (0.0125; 6.78) 

 2nd order Decelerate -0.2446 (0.0621; -3.94) 

 3rd order Decelerate 0.0166 (0.0078; 2.12) 
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 1st order Maintain 0.0605 (0.0062; 9.80) 

 2nd order Maintain -0.0026 (0.0004; -5.79) 

Speed 1st order Brake 0.0458 (0.0141; 3.26) 

2nd order Brake 0.0014 (0.0006; 2.25) 

 1st order Decelerate 0.1931 (0.0270; 7.16) 

 2nd order Decelerate -0.0058 (0.0019; -3.09) 

 3rd order Decelerate 0.0001 (0.0000; 3.06) 

Continuous acceleration when stopped µ -3.0631 (0.1386; -22.10) 

σ 2.2931 (0.0795; 28.84) 

 µ -0.3722 (0.0336; -11.09) 

Continuous acceleration when in motion σ 1.0912 (0.0144; 75.58) 

 Speed 0.0518 (0.0022; 23.90) 

 µ -0.2864 (0.0435; -6.59) 

Continuous deceleration σ 1.1047 (0.0196; 56.38) 

 Speed 0.0394 (0.0026; 15.15) 

 µ -0.4394 (0.0639; -6.87) 

Continuous braking deceleration σ 1.1958 (0.0253; 47.32) 

 Speed 0.0602 (0.0038; 15.97) 

Latent risk (θ) 

Brake (𝛽𝑟𝑖𝑠𝑘𝐵𝑟) 0.3285 (0.0774; 4.24) 

Distance to the junction (γdist−to−junction) -0.0762 (0.0058; -13.11) 

Car at the junction (γcar−present) 0.0041 (0.0015; 2.72) 

ζα -0.0937 (0.0187; -5.01) 

 

Latent component 

We start by looking at the latent variable since it is a key component of the model, where we 

see that higher risk significantly increases the propensity to brake (estimate = 0.3285), whereas 

for the other actions the effect is not significantly different from that to accelerate. The result 

for brake is plausible because higher risk induces more braking. 

Measurement model 

Then, looking at the results of the measurement model, we observe a negative and significant 

ζα coefficient, which suggests that increased risk decreases the amplitude of the α wave, which 
is in line with the existing literature. 

Structural model 

Furthermore, in the structural model within the latent component, we observe a negative 

relationship between distance to the junction and perceived risk (estimate = -0.0762), which 

again makes sense where a higher distance to the hazardous area decreases perceived risk. 

Then, the presence of the car at the junction dummy variable is an additive shift for when there 

is a car present at the junction regardless of the cyclist’s distance to the junction. The effect (of 
a car being present) on risk perception is visualised in Figure 5, where we see that the presence 

of the car results in an upward shift in the perceived risk. To clarify, the negative sign of the 

perceived risk is not relevant here because it only shows us the relationship within the latent 

construct where the plot allows us to understand how the explanatory variables (here the 

distance and presence of the car) influence the unobserved risk. 
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Figure 5: Risk perception plot. 

 

 

Discrete component 

We then turn to the discrete component of the model, where the ASCs show us the impact of 

different actions on utility, all else being equal, nevertheless, their significance suggests there 

are some elements omitted in the model that have an impact on the utility. Next, the σ estimated 
for maintain speed and decelerate are statistically significant showing the individual’s 
heterogeneity for these two actions, while σ for wait and brake was not significantly different 
from zero. It suggests that individuals differ in their propensity to maintain speed and decelerate 

regardless of their perceived risk, which may be related to other factors such as the level of 

physical fitness, personal traits or cycling style. 

Next, the dummy collision variables demonstrate that the potential presence of a car at the 

junction when cyclists arrive at the junction increases the propensity to brake. The next more 

likely actions are wait and decelerate and finally maintain speed (all relative to accelerate, 

which is, therefore, the least likely action). These again show realistic cycling behaviour which 

we would observe in real-life situations when cyclists approach a junction in the presence of a 

car. 

Moreover, the time to collision parameters for brake and decelerate allowed us to factor in the 

time left to the collision given a cyclist’s speed and distance to the junction. These show us that 

less time left to the collision increases the probability of braking and decelerating relative to 

accelerating. Again, these results are plausible where closeness to a potential accident with a 

car at the junction increases the likelihood of reaction by decreasing the speed. Further, for 

maintain speed and wait, the effect was not significantly different compared to accelerate. 

Then, we see a number of distances to junction variables, where the results of these variables 

are demonstrated in Figure 6. We can see the graphs of probability for accelerate, decelerate, 

maintain speed and brake depending on the cycling speed and distance to the junction. The 

same graph is shown from different angles to make the interpretation easier. 

Looking at the graph for brake, we observe that the probability of this action is the highest at 

high-speed levels and decreases as the speed falls. It suggests that at a fast pace the cyclists are 
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ready to react quickly (by braking) to the changes in the environment. Moreover, at low speed, 

the probability of braking increases up to about 20 meters away from the junction which is an 

area where cyclists tend to slow down (or stop) to assess the situation at the junction. After this 

point, the probability of braking decreases sharply as the cyclists intend to cross the junction. 

Next, looking at the graph for decelerate, we see that the probability of decelerating is the 

highest at the high-speed levels where there is the biggest scope for physical exhaustion to 

emerge, and it falls with speed. Similar to brake, the probability for decelerate increases up to 

about 15 meters from the junction. 

Finally, looking at the graph for maintain speed, we see that the utility for this action is the 

highest when cyclists are going at low to medium speed levels and decreases as the cycling 

speed goes up, nearly independently of the distance to the junction. Although, at a high-speed 

level an increase in the probability for this action can be observed, as the cyclists become very 

close to the junction, suggesting cyclists’ confidence to cross after assessing the situation at the 
junction. 

Figure 6: 3D graphs of the probability for each action given cyclist’s current speed and distance to the junction. 
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Continuous component 

Finally, the continuous part of the model shows us that all the estimates are significant. Firstly, 

comparing the values of µ  for acceleration when static and moving we see a considerably more 

negative value in case of stationary acceleration. This suggests that, on average, the 

acceleration rates are smaller when cyclists only start accelerating after being stopped, than 

when already moving, which can be expected as cyclist is only gaining speed from a standstill. 

Next, looking at the values of σ for acceleration when static and when in motion, we see that 

the standard deviation of acceleration from static position is twice as high, which can be 

attributed to the higher variability of individual strength input when starting the bicycle. 

Whereas when moving, the level of force required to accelerate is more homogenous because 

individuals benefit from momentum leading to smaller standard deviation of acceleration. 

Notably, the σ for acceleration when previously moving, deceleration and braking deceleration 

are similar in magnitude. 

Further, the estimated parameters for speed are positive in all three cases (it has been dropped 

from the model for acceleration when previously waiting because in this case the cycling speed 

is zero) and they show that at higher current speed, the magnitude of acceleration changes 

more. In the case of braking deceleration and deceleration, it shows that the scope for reducing 

the speed is larger if cyclist is going at a higher speed. While, in case of acceleration, we see 

that it becomes easier to accelerate. 

Hybrid choice model efficiency gain 

Finally, to assess the impact of the inclusion of the neural data in the hybrid model, we compare 

the model results between our model as showed in Table 3, and a reduced model, where the 

measurement component in the latent part was dropped (see Appendix A, Table 4 for the full 

model output). Hence, the role of the latent variable is explained only by the choice data. We, 

then, see that removing a measurement model changes the magnitude of distance variable in 

the structural equation and it becomes less significant (change from t-ratio = -13.11 to t-ratio 

= -1.72). Moreover, in the reduced model, the standard errors of variables increased from 

0.0058 to 0.0305 for distance variable and from 0.0015 to 0.0021 for car presence variable. 

Therefore, the inclusion of the measurement model not only increases the efficiency of the 

parameters, but also confirms the directionality of the link between risk and α wave amplitude 
as demonstrated in the previous literature. 

7 Discussion 

The aim of the current paper was to jointly model behavioural and neural data in the hybrid 

choice model framework to gain insights into cycling behaviour and associated neural 

processing and consequently, deepen our understanding achieved with the previous models. 

Therefore, we proposed three hypotheses with respect to observed behaviour and the α 
amplitude. 
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The results of the developed hybrid model are in line with our hypotheses. The model estimates 

indicate that the cyclists in the virtual scenarios are indeed more likely to reduce their speed 

when approaching the junction where passing cars are present (Hypothesis 1a). They also 

demonstrate that the reaction to the passing cars becomes stronger as the cyclists get closer to 

the potential collision (Hypothesis 1b). Further, the model allowed us to quantify the relative 

impact of a range of influencing variables (such as a cyclist’s current speed or distance relative 
to the junction) on the cyclist’s responses. Together, they build a complex picture of cyclist’s 
behaviour where we observe that among them, the most impactful on the choice of current 

action is the possibility of collision with other road users, providing evidence that our 

experiment was able to elicit realistic reactions to the traffic events. 

Further, the employment of the instrumented bicycle allowed us to capture the physical effort 

exerted by the cyclists, where we observe that high speed levels increase the physical tiredness 

and results in a gradual loss of speed. We could also observe that typical speed level developed 

by the cyclists in our experiment is in line with that observed in other studies and that cyclists 

naturally converged to that desired level by increasing or decreasing acceleration rate 

accordingly. In particular, cyclists were more inclined to accelerate or maintain speed if their 

current speed was below or within the range of average speed developed by the cyclists in 

reality (Schleinitz et al., 2017). 

The inclusion of the continuous element showed the magnitudes of the performed actions 

allowing us to reach additional level of detail with respect to how cyclists behave. Importantly, 

the observed results are in line with a priori expectations, which in turn, provide an additional 

evidence to support the validity for the adopted approach, that is essential in case of exploratory 

research such as the current one to increase the level of confidence in the findings and 

methodology. Nonetheless, even though what we observe is plausible from the behavioural 

perspective, the external validity of current results is yet to be established. Therefore, future 

studies should aim at the comparison of the magnitudes of cycling actions between virtual 

reality and the real world to provide evidence of relative and absolute validity of cycling 

behaviour (Branzi et al., 2017; Hussain et al., 2019). The experimental design encompassing 

real cycling activity and its replication within the simulated environment, as proposed in the 

recent study by Guo et al. (2021), would allow for evaluating the reliability of VR experiment 

in cycling context. 

Furthermore, the latent component in the model showed that the decreased α amplitude is 
associated with the increased perceived risk and elevated complexity of the task faced by the 

cyclist which in turn increases the propensity to brake which confirmed our hypothesis 

(Hypothesis 2). The benefits of incorporating the neural data in explaining the behaviour are 

reflected in the improvement in the efficiency (i.e. smaller standard errors) of variables 

included in the structural equation (in comparison with a model that does not use the neural 

data). These results, taken together, demonstrate a behavioural and neural congruence. In this 

sense, the neural data could be seen as an alternative or at least an addition to attitudinal scales, 

frequently used in the latent constructs. As these are claimed to be prone to bias of the 

respondent (conscious or unconscious), heavily dependent on the choice of scale or be 
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susceptible to the experimenter effect. Therefore, neural data, seen as an unfiltered response, 

could help offsetting these effects and provide a validation tool if used jointly in the models. 

The results also demonstrate the feasibility of successful incorporation of neural data into 

mathematical models in general through the hybrid structure. 

Nonetheless, it is crucial to be aware of the potential constraints of this type of work. Even 

though, in this study we chose α power, which is a relatively well-understood brainwave with 

a broad spectrum of studies which explored it in different conditions, it is important to take our 

results with a degree of caution because this is an exploratory work. It attempts to marry 

difficult disciplines, therefore the promising results presented here are only a small step 

forward where undoubtedly more research is required to build a strong case. Moreover, the 

sample composition can be also considered a limitation, where it mainly consisted of students 

and staff of the National University of Singapore, therefore a future study on a more diverse 

population and larger sample size would allow for better capturing the role of demographics 

and improve the generalisability of the findings. Another potential limitation of this work are 

the aspects in the scenario such as the elements of urban infrastructure or features of other 

agents that also have influence on cyclists’ choices as suggested by the significant alternative 

specific constants in the model outputs, but which are not accounted for in the model. Future 

work should thus consider inclusion of various other variables. 

Overall, the practical implications of this study are three-fold. Firstly, this study extends the 

practical knowledge on the VR study design for those researchers who plan to implement it in 

the future, where we were able to capture the complex behaviour and reactions of the cyclists 

depending on the changing situation on the road. This, builds and increases the confidence in 

the validity of VR studies in transport context. Secondly, we provide evidence that behavioural 

and neural data can be collected jointly using state-of-art equipment currently available on the 

market with respect to HDMs and neuroimaging. Thirdly, we demonstrate how neural data can 

be incorporated into the mathematical models and provide an example of an integrative 

approach to understanding human choices in the dynamic context. This serves as the first step 

in bridging the gap between mathematical modelling and neuroscience and is expected to 

encourage further research in this direction. 

Appendices 

Appendix A 

In this appendix, we present the full output of the reduced discrete-continuous model, as 

described in section 6. 

Table 4: A reduced discrete-continuous model (robust standard errors and t-ratios in brackets). 

LL(final, whole model): -74840.15  

AIC: 149762.3 

BIC: 150126.2 

LL(final, choice component): -45088.89  

LL(final, acceleration when static): 464.95  

LL(final, acceleration when moving): -14384.50  
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LL(final, deceleration): -7492.83 

LL(final, braking deceleration): -8338.87 

 Action Estimate (rob. std. err.; 

rob.t-ratios) 

 Maintain -0.2479 (0.0734; -3.38) 

 Brake -2.1230 (0.0988; -21.49) 

ASC (𝛿) Decelerate -2.8950 (0.1129; -25.65) 

 Wait 4.1069 (0.1869; 21.98) 

 Accelerate 0 

Individual's heterogeneity (𝛽𝜎) Maintain 0.2650 (0.0301; 8.80) 

 Decelerate 0.1763 (0.0274; 6.42) 

 Maintain 0.2007 (0.0389; 5.16) 

Collision Brake 0.7376 (0.1529; 4.82) 

Decelerate 0.4067 (0.1249; 3.26) 

 Wait 0.6291 (0.1758; 3.58) 

Time to collision Brake -0.5257 (0.0916; -5.74) 

Decelerate -0.2144 (0.1459; -1.47) 

 1st order Maintain 0.0458 (0.0624; -4.70) 

 2nd order Maintain -0.0835 (0.0079; 2.73) 

 1st order Brake 0.1410 (0.0184; 7.66) 

Distance to junction 2nd order Brake -0.2661 (0.0683; -3.90) 

3rd order Brake 0.0187 (0.0089; 2.10) 

 1st order Decelerate 0.0967 (0.0124; 7.82) 

 2nd order Decelerate -0.2931 (0.0624; -4.70) 

 3rd order Decelerate 0.0216 (0.0079; 2.73) 

 1st order Maintain 0.0606 (0.0062; 9.71) 

 2nd order Maintain -0.0025 (0.0005; -5.61) 

Speed 1st order Brake 0.0481 (0.0137; 3.51) 

2nd order Brake 0.0013 (0.0006; 2.22) 

 1st order Decelerate 0.1265 (0.0151; 8.40) 

 2nd order Decelerate -0.0031 (0.0044; -0.70) 

 3rd order Decelerate 0.0028 (0.0050; 0.56) 

Continuous acceleration when stopped µ -3.0631 (0.1386; -22.10) 

σ 2.2931 (0.0795; 28.84) 

 µ -0.3722 (0.0336; -11.09) 

Continuous acceleration when in motion σ 1.0912 (0.0144; 75.58) 

 Speed 0.0518 (0.0022; 23.90) 

 µ -0.2864 (0.0435; -6.59) 

Continuous deceleration σ 1.1047 (0.0196; 56.38) 

 Speed 0.0394 (0.0026; 15.15) 

 µ -0.4394 (0.0639; -6.87) 

Continuous braking deceleration σ 1.1958 (0.0253; 47.32) 

 Speed 0.0602 (0.0038; 15.97) 

Latent risk (θ) 

Brake (𝛽𝑟𝑖𝑠𝑘𝐵𝑟) 0.1159 (0.0176; 6.58) 

Distance to the junction (γdist−to−junction) -0.0524 (0.0305; -1.72) 

Car at the junction (γcar−present) 0.0047 (0.0021; 2.27) 

ζα - 

 

Appendix B 

Table 5: A reduced model without the continuous component (robust standard errors and t-ratios in brackets). 

LL (final, whole model): -119891.1 

AIC: 239846.20 

BIC: 240130.20 
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LL (final, MNL): -45129.09 

LL (final α): -74790.59 

 Action Estimate (rob.t-ratios) 

 Maintain -0.2644 (0.0797; -3.32) 

 Brake -2.4598 (0.1256; -19.58) 

ASC (𝛿) Decelerate -2.9847 (0.1183; -25.23) 

 Wait 4.1069 (0.1869; 21.98) 

 Accelerate 0 

 Maintain 0.2241 (0.0217; 10.34) 

Individual's heterogeneity (𝛽𝜎) Brake 0.0363 (0.0397; 0.92) 

 Decelerate -0.1051 (0.0445; -2.36) 

 Maintain 0.2031 (0.0384; 5.28) 

Collision Brake 0.7535 (0.1542; 4.89) 

Decelerate 0.3616 (0.1185; 3.05) 

 Wait 0.6292 (0.1758; 3.58) 

Time to collision Brake -0.5280 (0.0905; -5.83) 

Decelerate -0.1612 (0.1508; -1.07) 

 1st order Maintain 0.0444 (0.0038; 11.68) 

 2nd order Maintain -0.0835 (0.0085; -9.86) 

 1st order Brake 0.1900 (0.0138; 13.78) 

Distance to junction 2nd order Brake -0.2708 (0.0604; -4.48) 

3rd order Brake 0.0195 (0.0080; 2.44) 

 1st order Decelerate 0.0850 (0.0125; 6.78) 

 2nd order Decelerate -0.2446 (0.0621; -3.94) 

 3rd order Decelerate 0.0166 (0.0078; 2.12) 

 1st order Maintain 0.0605 (0.0062; 9.80) 

 2nd order Maintain -0.0026 (0.0004; -5.79) 

Speed 1st order Brake 0.0458 (0.0141; 3.26) 

2nd order Brake 0.0014 (0.0006; 2.25) 

 1st order Decelerate 0.1931 (0.0270; 7.16) 

 2nd order Decelerate -0.0058 (0.0019; -3.09) 

 3rd order Decelerate 0.0001 (0.0000; 3.06) 

Latent risk (θ) 

Brake (𝛽𝑟𝑖𝑠𝑘𝐵𝑟) 0.3285 (0.0774; 4.24) 

Distance to the junction (γdist−to−junction) -0.0762 (0.0058; -13.11) 

Car at the junction (γcar−present) 0.0041 (0.0015; 2.72) 

ζα -0.0937 (0.0187; -5.01) 
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