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Abstract
We analyse a central broadcast continuous variable quantum key distribution protocol in which
a beam produced by a thermal source is used to create a secret key between two parties, Alice
and Bob. A beam splitter divides the initial beam into a pair of output beams, which are sent to
Alice and Bob, with Eve intercepting Bob’s beam. We investigate the protocol in detail,
calculating mutual informations through a pair of analytic methods and comparing the results
to the outputs of a Monte Carlo simulation of the protocol. In a lossless system, we find that a
lower bound on the key rate remains positive in the protocol under a beam splitter attack,
provided Bob receives a nonzero proportion of the beam initially sent to him. This suggests
that the thermal state protocol could be used experimentally to produce secure keys.

Keywords: thermal states, QKD, key distribution, continuous variables, correlation,
computing, quantum key distribution

(Some figures may appear in colour only in the online journal)

1. Introduction

In quantum key distribution (QKD), two parties, Alice and
Bob, want to communicate in a secure fashion despite the pres-
ence of Eve, who is eavesdropping on their communication
channel. They do this through establishing a cryptographic key
that is known only to them and no one else [1, 2]. However,
Alice cannot simply send Bob a key over their communica-
tion channel, as Eve will also learn the key by eavesdropping.
Therefore, protocols are needed which can distribute an iden-
tical key to Alice and Bob over an insecure channel, without
Eve discovering it.

Currently, protocols exist that can accomplish this, though
many methods of classical encryption base their security on
the fact that certain mathematical operations, such as factoris-
ing large semiprime numbers, are very difficult to perform
using current technology [3]. However there is no reason to
assume that solving these problems within a reasonable time-
frame will continue to be difficult in the future as computing
power increases and new algorithms are created.

∗ Author to whom any correspondence should be addressed.

In quantum protocols on the other hand, we make the
assumption that Eve has access to arbitrarily large amounts
of computing power while still being able to establish secure
communication between Alice and Bob. This is done by bas-
ing security on restrictions imposed by the laws of quantum
mechanics [2], such as the inability to measure a quantum state
without affecting the system. This cannot be overcome through
any amount of computing power.

Currently, most QKD protocols use coherent light, pro-
duced by lasers, as a method of generating secure keys. An
example of this is the Gaussian modulated coherent state
(GMCS) protocol [4–6], where the key is encoded in ran-
domly chosen quadratures of a beam described by randomly
distributed coherent states. However, recently more analysis
has been done concerning the use of thermal states in QKD
[7–9]. These involve splitting a beam emitted by a thermal
source at a beam splitter and sending the outputs to Alice
and Bob respectively. Previous work concerning thermal states
showed that they exhibit Hanbury Brown and Twiss correla-
tions [10] when split at a beam splitter, and quantum discord,
a requirement for QKD [11].

One of the main factors limiting thermal methods is that
noise and thermalisation of states are seen as detrimental for
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QKD protocols [12], however work in this area is valuable
due to the widespread use of microwaves in wireless modern
communication, such as in WiFi and Bluetooth, in which ther-
mal state QKD could be applied. Coherent state QKD is not
suitable for these applications as the devices involved do not
broadcast such states.

Here, we analyse a central broadcast protocol using a ther-
mal input, with Eve intercepting the beam sent to Bob in order
to eavesdrop. Monte Carlo simulations of the protocol are
performed to produce sample bit strings, setting up for
future experimental work using microwave sources. The paper
begins with a brief overview of thermal states in section 2,
followed by section 3, which describes the setup that will be
simulated, while sections 4–6 describe the measurements and
workings.

2. Thermal states

When written in the Fock basis, with â† denoting the cre-

ation operator and |n〉 =
(

â†
)n

√
n!

|0〉 describing an n-photon state,
thermal states are given in the form ρTh =

∑∞
n=0 pn|n〉〈n|.

Here, pn = exp(−nβ h̄ω)
1−exp(−β h̄ω) describes a thermal distribution where

β = (kBT)−1 is the thermodynamic beta. When a beam from
a thermal source is input into a beam splitter, correlations are
observed in intensity measurements performed on the output
beams [7, 10, 13] which are not present when a coherent source
is used.

These correlations exist due to the bunched nature of pho-
tons in thermal light. When detecting light from a thermal
source, photons are not detected in random intervals, but are
instead detected in clusters [13]. High variance in the intensity
of thermal light, which is not present with a coherent source,
is the result of this bunching.

We aim to take advantage of the correlations produced by
this phenomenon to devise a QKD protocol which produces
correlated bit strings between Alice and Bob using microwave
sources. These bit strings can then be used to create a secure
key to allow private communication in the presence of an
eavesdropper.

The use of thermal states differentiates this protocol from
similar versions involving modulated coherent states. Using
a thermal source lets us carry out the protocol with common
microwave-based wireless communication equipment instead
of relying on fibre.

Additionally, the output of a thermal source and a Gaus-
sian modulated coherent source are statistically equivalent.
This allows the application of security proofs for GMCS pro-
tocols to thermal protocols. An important distinction to note is
that coherent states are superpositions of Fock states, whereas
thermal states are a mixture. This allows a Monte Carlo sim-
ulation to be used as an appropriate method to model the
protocol, through random sampling of Fock states. Here, we
will compare the outputs of such a simulation to mutual
information values predicted through two separate analytic
methods.

Figure 1. Protocol schematic. A beam produced by a thermal source
provides the initial state ρ. A series of beam splitters are used to
direct the beam to Alice and Bob, with Eve performing a beam
splitter attack on the channel leading to Bob. Eve’s beam splitter has
unknown transmittance and reflectance, τ and μ, while each other
beam splitter is 50:50.

3. The QKD protocol

In the QKD protocol to be analysed, as shown in figure 1, we
use a central broadcast system in which light from a thermal
source is incident on a 50:50 beam splitter. The output beams
from this splitter are sent to Alice and Bob. An eavesdropper,
Eve, uses a beam splitter attack, intercepting the beam sent
to Bob using their own beam splitter of unknown transmit-
tance. The part of the beam transmitted by Eve’s beam splitter
continues to Bob.

Alice is considered to be in control of the initial source, the
first beam splitter, and the channels between the source and her
measurement apparatus, while Bob is in control of their beam
splitter and its output channels. The channel between the ini-
tial beam splitter and Bob is not under Alice or Bob’s control,
giving a point in the protocol where Eve may interfere with the
system.

When each person receives their beam, they use a 50:50
beam splitter to divide the incoming signal into two outputs.
Double homodyne detection is employed in order to mea-
sure the X quadrature of one beam, and the P quadrature of
the second beam as shown in figure 2. Each person cannot
simply measure the X and P quadratures of the single beam
they receive as the quadrature operators do not commute. This
replaces the common method of measurement in QKD, in
which the variable to measure [14] (or the measurement basis
[2]) is randomly switched in order to ensure security. This
method of performing measurements in QKD without ran-
dom basis switching has been previously used with success
for continuous variable QKD protocols [15].

Repeated measurements yield an array of X and P quadra-
ture measurements for each person. For each pair of quadra-
ture measurement outcomes {xi, pi}, Alice, Bob and Eve each
calculate zi =

√
x2

i + p2
i , producing a distribution of z mea-

surements for each person. This is converted into a bit string
by having Alice, Bob, and Eve each find the median value of
their distribution, and recording a 0 or a 1 for each z value
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Figure 2. Heterodyne detection. Heterodyne; or double homodyne,
detection. As initially shown in figure 1, the measurer splits the
incoming signal at a 50:50 beam splitter, and combines the outputs
with local oscillators. The X and P quadratures can then be
measured separately using two pairs of detectors.

depending on if it above or below the median. Due to the corre-
lations in the outputs of the beam splitters with a thermal input,
this produces a string of correlated bits for each person. At
this point, if the protocol has been successfully executed, a key
may be distilled from the bit strings, allowing Alice and Bob
to communicate securely. Comparing Alice and Bob’s results
for a subset of measurements allows them to calculate correla-
tion coefficients, to verify that a thermal source was used and
correlated bits have been transmitted.

We performed a Monte Carlo simulation of this protocol
in Python with QuTiP [16, 17]. The initial beam is created by
randomly sampling Fock state values from the thermal state
distribution, with the beam splitters randomly splitting an input
beam into a pair of outputs. With a Fock state input, the possi-
ble output Fock states of one arm of a beam splitter is described
by a binomial distribution. One of these possible outputs is
selected at random. This describes a portion of the incident
photons being transmitted through the beam splitter, with the
remaining portion being reflected. Once all the beam split-
ters are applied, each person receives a string of randomly
distributed Fock state measurements. Due to thermal states
being a statistical mixture of Fock states, this is an appropriate
method of modelling the system.

Using a sample measurement set produced through sim-
ulation, we can verify that Alice and Bob are receiving
correlated measurements by calculating the correlation coef-
ficient as Alice’s data is offset relative to Bob. We can see
from figure 3 that the correlations survive beam splitters as
expected of thermal sources [10]. Offsetting Alice and Bob’s
data streams shows a clear difference between the correla-
tion coefficients for synchronised measurements and random
noise, which would not be observed if a coherent source were
used.

Given that we have observed correlations between Alice
and Bob’s data strings, we now derive bit strings from the Fock

state measurements and proceed to calculate Shannon mutual
information’s to test if a secure key can be produced.

4. Key rates

After performing Python simulations, the Shannon mutual
information; IS (A; B), is calculated using the bit strings
produced by each person. This is a measurement of the infor-
mation gained about one of the involved systems from mea-
surement of the other system.

We begin with the definition for the Shannon entropy for a
single system, H (A) = −

∑n−1
i=0 pi log2 (pi). This describes the

uncertainty in predicting the outcome should a measurement
be performed on the system where there are n possible mea-
surement outcomes, with outcome i having a probability pi of
occurring. For a binary bit string with 0 and 1 being the only
possible values, this can be simplified to:

H (A) = −p0 log2 (p0) − (1 − p0) log2 (1 − p0) . (1)

Here, p0 is the probability of measuring the 0 out-
come. From this, the mutual information IS (A; B) = H (A) +
H (B) − H (AB) can be defined, where H (AB) is calculated by
iterating over the four possible outcomes of two people mea-
suring separate bit strings. Once the Shannon entropy is cal-
culated for each bit string, and the mutual information values
between the bit strings for each person is measured, we can
see if key distribution can be performed. Two classical options
for producing usable keys are considered, direct reconciliation
and reverse reconciliation.

In direct reconciliation, Alice openly shares additional
information in order for corrections to be made to Bob’s bit
string. For this to produce a secure key, it is required [18]
that entropy calculations from the produced bit strings satisfy
KDR = IS (A; B) − IS (A; E) > 0.

Alternatively, reverse reconciliation is the opposite method,
where Bob provides the information in order for Alice
to make corrections. In this case, successfully creating
a secure key requires [18] KRR = IS (A; B) − IS (B; E) > 0.
Therefore, if one of these inequalities are satisfied, a secret
key can be produced. The secret key rate K in this case
is bounded such that [19] max{KDR, KRR} � K

(
A; B|E

)
�

min{IS (A; B) , IS

(
A; B|E

)
}.

Here, H(X|Y) = H (XY) − H (Y) describes the conditional
mutual information, the uncertainty in a system, X, given
a measurement performed in a second system. So far,
the Shannon mutual information values have been used, which
can verify security in the case of an individual attack by Eve
[20], in which they perform measurements on each pulse sent
by Alice before any error correction occurs between Alice and
Bob.

If neither of the above reconciliation methods are available,
advantage distillation through protocols such as cascade will
allow keys to be produced from the bit strings provided any
secrecy is present [8]. As measurements have already taken
place by this point, this is purely classical error correction.
Sharing a random subset of the bit strings allows Alice and
Bob to estimate the error rate for use in such algorithms.
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Figure 3. Correlation coefficients. Changes in the correlation coefficient as a sample set of Alice and Bob’s measurement results
(n ≈ 100 000) are offset with respect to each other. Correlated measurements are observed in the thermal protocol when time delays are taken
into account. Also shown are sample scatter graphs comparing Alice and Bob’s measurements, with and without offsetting the data streams.

While the Shannon entropy calculated through simula-
tion is interesting, it is more useful to analyse the protocol
through the von Neumann entropy. Here, we will compare
the results of two different methods of calculating von Neu-
mann entropy to sample Shannon entropies produced by the
simulation.

5. Mutual information and state variance

Performing an analysis similar to that done by Qi et al 2017 [6]
we can calculate von Neumann mutual informations, IN (A; B).
Using Alice’s quadrature measurements, Bob’s corresponding
measurements are estimated, along with Alice’s uncertainty on
Bob’s measurements. Eve’s interception is done with a beam
splitter of transmittance τ and reflectance μ. This gives:

AX

nA
=

B̂
τnB

, (2)

where AX is one of Alice’s measured X quadrature values,
and B̂ is Alice’s estimate of the corresponding quadrature val-
ues of the modes at Bob detector. The detector efficiency for
Alice, Bob and Eve are given by nA, nB, and nE respectively. By

considering asymmetric beam splitters, continuing the analy-
sis shows the quadrature values of the modes received by each
person’s detectors, XA, XB, and XE are found:

XA =
nA

2
xin +

√
1 −

(nA

2

)2
vA + NA, (3)

XB =
τnB

2
xin +

√
1 −

(τnB

2

)2
vB + NB, (4)

XE =
μnE

2
xin +

√
1 −

(μnE

2

)2
vE + NE, (5)

where xin is the quadrature output from the source, vA, vB, and
vE describe the noise introduced at the beam splitters between
the source and each person, and loss at their detector. NA,
NB, and NE describes Gaussian noise added at each person’s
detector.

Taking the introduced noise to be described by a Gaussian
distribution with mean zero and variance one, we can calculate
the uncertainty Alice has on Bob’s measurements, then we can
perform a similar analysis for Bob and Eve:

4
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Figure 4. Mutual information calculations using uncertainty. The von Neumann mutual informations IN (A; B), IN (B; E) as the variance of
the input thermal state, 〈n〉

(
〈n〉+ 1

)
is changed. This is calculated through uncertainty in Alice and Eve’s estimates of Bob’s measurements.

ΔAB =
〈(

B̂ − XB

)2
〉
=

(
τnB

nA

)2

×
(

1 − nA

2
+
〈
N2

A

〉)
+ 1 +

〈
N2

B

〉
, (6)

ΔBE =

(
μnE

τnB

)2 (
1 − (τnB)2

2
+
〈
N2

B

〉)
+ 1 +

〈
N2

E

〉
. (7)

The mutual information for Gaussian states can be shown
to be [6]:

IN (A : B) =
1
2

log2

(
V + χ

1 + χ

)
, (8)

where V is the variance of the input thermal state and χ is
the added noise. If χline is the noise added in the channels, and
χhom is the detection noise, the total added noise in a channel
with transmittance T is given by [6]:

χ = χline +
χhom

T
, (9)

χline =
1
T
− 2 +Δ, (10)

χhom =
1 +

〈
N2

〉
nB

− 1, (11)

where we have taken T = 1 and assumed equal detec-
tor noise for each person, such that

〈
N2

A

〉
=

〈
N2

B

〉
=〈

N2
E

〉
=

〈
N2

〉
= 1. This simplified setup gives χ = Δ.

Figure 4 shows the plots of various mutual information values
as variance is adjusted. Eve’s beam splitter is assumed to be
50:50.

6. Covariance matrix description

To verify this behaviour, we can use a second method to calcu-
late von Neumann entropies, also extending section 4 to allow
for entropy calculations using the quantum state of the system,
rather than Shannon entropies of measurements. As the states
involved in this protocol are Gaussian, they can be completely
described with covariance matrices. For an N-mode state ρ, the
covariance matrix γ is defined as [21]:

γi j = Tr

[
ρ

1
2

{
(r̂i − di) ,

(
r̂ j − d j

)}]
. (12)

Here, r =
(
X̂1, P̂1, . . . , X̂N , P̂N

)
consists of a pair of quadra-

ture operators for each mode, X̂i and P̂i, with di = 〈r̂i〉 denoting
their expectation values. For the inputs into the initial splitter,
the covariance matrix γ12 is given by:

γ12 =

⎡
⎢⎢⎣

V 0 0 0
0 V 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , (13)

where V is the variance of the quadratures of the beam output
by the thermal source. This fully describes the thermal and vac-
uum modes input into the initial beam splitter. Through apply-
ing the beam splitter transformations to the relevant modes, the
covariance matrix of the final state is calculated. The trans-
formation, S, for a beam splitter with transmittance τ and
reflectance μ is given by [21]:

S (τ ,μ) =

[
τ μ
−μ τ

]
⊗ I. (14)

5
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Figure 5. Mutual information calculations using covariance. Von Neumann mutual information calculations plotted against thermal state
variance, found using the covariance matrix of the final state. Here, Eve performs interception using a 50:50 beam splitter.

By applying the beam splitters to the appropriate modes,
the final covariance matrix can be found:

γA1A2B1B2E1E2 =

⎡
⎣γA1A2 CAB CAE

CT
AB γB1B2 CBE

CT
AE CT

BE γE1E2

⎤
⎦ . (15)

The sub-matrices are given by:

γA1A2 =

⎡
⎢⎣

1
4

(V + 3) −1
4

(V − 1)

−1
4

(V − 1)
1
4

(V + 3)

⎤
⎥⎦⊗ I, (16)

γB1B2 =

⎡
⎢⎣

τ 2

4
(V + 1) +

1 + μ2

2
− τ 2

4
(V + 1) +

1 − μ2

2

− τ 2

4
(V + 1) +

1 − μ2

2
τ 2

4
(V + 1) +

1 + μ2

2

⎤
⎥⎦⊗ I,

(17)

γE1E2 =

⎡
⎢⎣

μ2

4
(V + 1) +

1 + τ 2

2
−μ2

4
(V + 1) +

1 − τ 2

2

−μ2

4
(V + 1) +

1 − τ 2

2
μ2

4
(V + 1) +

1 + τ 2

2

⎤
⎥⎦⊗ I,

(18)

CAB =

⎡
⎢⎣

τ

4
(1 − V) −τ

4
(1 − V)

−τ

4
(1 − V)

τ

4
(1 − V)

⎤
⎥⎦⊗ I, (19)

CAE =

⎡
⎢⎣
−μ

4
(1 − V)

μ

4
(1 − V)

μ

4
(1 − V) −μ

4
(1 − V)

⎤
⎥⎦⊗ I, (20)

CBE =

⎡
⎣−

τμ

4
(V − 1)

τμ

4
(V − 1)

τμ

4
(V − 1) −τμ

4
(V − 1)

⎤
⎦⊗ I. (21)

Here, γA1A2 is the covariance matrix describing the two
modes Alice receives at their pair of detectors, with CAB

describing covariance between Alice’s modes and Bob’s.
The remaining sub-matrices are similarly defined. From this,
von Neumann entropy values are calculated using symplec-
tic eigenvalues. For a covariance matrix γ, the von Neumann
entropy is given by [21]:

SN (γ) =
∑

i

G

(
λi − 1

2

)
, (22)

where G (x) = (x + 1) log2 (x + 1) − x log2 x, and λi are the
symplectic eigenvalues of γ. For the covariance matrix for
a single mode system, γ1, this is given by λ2 = |γ1|. For
a two-mode state with the covariance matrix γ12, taking
Δ = |γ1|+ |γ2| − 2 |C| allows the two symplectic eigenval-
ues, λ+ and λ− to be calculated:

(λ±)2 =
1
2

(
Δ±

[
Δ2 − 4 |γ12|

] 1
2

)
. (23)

Mutual informations calculated in this way can be plot-
ted against variance, this is displayed in figure 5. Upper and
lower bounds can be placed on the mutual information values
in the same manner as when Shannon entropies were used.
However, requiring KRR = IN (A; B) − IN (B; E) > 0, where
IN (A; B) = SN (γA) + SN (γB) − SN (γAB), allows for security
against a stronger set of attacks. In the case of these ‘collective
attacks’, Eve does not perform measurements until after clas-
sical communication between Alice and Bob has occurred. In

6
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Figure 6. Information with varying interception strength. Calculations of von Neumann entropy using the covariance matrix and
measurements of Shannon entropy taken from the simulation [22] as the transmittance of Eve’s beam splitter is varied. The notable result is
that I (A; B) − I (B; E) > 0 holds in both cases provided Bob receives a nonzero proportion of the signal sent to him. This used an average
photon number of 200. Error bars describe one standard deviation. Due to discord in the system, von Neumann entropies have larger
magnitudes than Shannon entropies.

the example shown in figure 5, it can be seen that as the vari-
ance of the thermal state is increased, the protocol remains
secure in the case Eve uses a 50:50 beam splitter. In this case,
reverse reconciliation is used as KRR is positive. Additionally,
analysing either the covariance matrix or measurement uncer-
tainty both produce mutual information graphs which follow
similar patterns as variance is increased.

With two methods of calculating von Neumann entropy dis-
playing similar behaviour, we may now compare the outputs
to Shannon entropies calculated through the simulation.

7. Results

We performed calculations of the Shannon entropy for the
three bit strings and the mutual information between each pair
of strings. These strings were produced through the Python
simulation. Currently no loss or noise is considered, this
allows the simulation to be performed with a lossless Eve. The
transmittance of Eve’s splitter is varied to measure the effect
of Eve’s interception strength on the mutual information val-
ues. Also calculated was the von Neumann entropy of each

7
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mode and pair of modes, using equation (22) and the covari-
ance matrix describing the final state of the system. The
results of these calculations and measurements are shown in
figure 6.

Meeting the restrictions placed on von Neumann mutual
information which ensure secrecy in the case of a collective
attack, IN (A; B) − IN (B; E) > 0 or IN (A; B) − IN (A; E) > 0,
allow the protocol to be secure against a greater range of
attacks than the restrictions based on Shannon entropy. Both
are included here so that it can be seen that changes in von
Neumann entropies are reflected in the Shannon entropies of
the bit strings derived by each person after the protocol has
been carried out.

It can be seen from figure 6 that I (A; B) − I (A; E) crosses
zero in both cases when Eve’s beam splitter reflects half of
the beam sent to Bob. This is expected as Bob and Eve’s posi-
tions in the protocol are interchangeable in this special case, so
I (A; B) = I (A; E). If over half of Bob’s beam is reflected by
Eve, a key cannot be produced via direct reconciliation. How-
ever, the second possible requirement of I (A; B)− I (B; E)> 0
is always satisfied in the no-loss scenario provided Eve’s inter-
ception beam splitter has nonzero transmittance. This means
that reverse reconciliation may be used to produce a secret
key and establish secure communication during collective or
individual attacks. This would allow the thermal state cen-
tral broadcast protocol to be used as a method of QKD. It is
also clear that the von Neumann entropy has a higher mag-
nitude than Shannon, this is expected due to the presence of
discord in the system, which the Shannon entropy does not
consider.

8. Conclusions

When considering a system without loss and noise, the lower
bound placed on the key rate when reverse reconciliation is
considered is positive under a beam splitter attack even when
Eve has zero loss. This would allow for a secret key to be
produced between Alice and Bob, and therefore secure com-
munication could take place in the presence of an eavesdropper
performing collective or individual attacks. Additionally, two
separate methods of von Neumann mutual information anal-
ysis both showed that thermal sources with higher variance
than those that could be produced in the Monte Carlo simu-
lation allowed for a key to be produced with little change in
the lower bound of the key rate.

Future work in this area could focus on examining the
effects of adding noise and loss into different channels, check-
ing if a positive key rate could be maintained. This is especially
relevant for thermal states due to added noise being a large
barrier to successful QKD. Additionally, a practical setup fol-
lowing the diagram shown in Figure 1 would allow the protocol
to be performed experimentally. This allows real key rates to
be measured and would show if the protocol continues to be
functional when using thermal sources likely to be employed
in modern communication.
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