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Abstract. A stochastic SIR (Susceptible - Infected - Recovered) type
model, with external source of infection, is considered for the spread
of a disease in a finite population of constant size. Our interest is in
studying this process in the situation where some individuals have been
vaccinated prior to the start of the epidemic, but where the efficacy of
the vaccine to prevent infection is not perfect. The evolution of the epi-
demic is represented by an absorbing three-dimensional continuous-time
Markov chain. We focus on analysing the time for a threshold number of
individuals to become infected, and carry out a global sensitivity analysis
for the impact of varying model parameters on this summary statistic of
interest.

Keywords: Stochastic epidemic model · Markov chain · Time to ab-
sorption · Imperfect vaccine

1 Introduction

Infectious diseases have been a serious threat to society throughout history.
Plague, cholera and smallpox are examples of epidemics in the past that killed
many people. This is a problem that we still suffer today, with emerging diseases
such as Ebola, SARS and COVID-19 that continue to claim lives every day.

Understanding epidemic processes is vitally important to forecast the in-
cidence of a disease and to establish mitigation strategies, and mathematical
modelling has proven to be a robust tool in this area. Deterministic models have
been widely used due to their mathematical tractability [1, 2], and are especially
relevant when considering large populations or when stochastic effects can be
neglected. On the other hand, when considering small populations or if extinc-
tion events play a relevant role, stochastic models need to be considered instead
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Universities; European Commision project: PGC2018-097704-B-I00 and Banco San-
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of classic ones due to the influence on the impact of the disease of random differ-
ences in infectiousness and susceptibility among individuals, while these random
effects tend to cancel out each other as population size increases [3, 4].

The Kermack and McKendrick model [5] has probably been the most in-
fluential in representing the spread of an epidemic in the last decades. It is a
compartmental deterministic model that classifies individuals according to their
“state” with respect to the disease over time: susceptible (S), infected (I) and
recovered (R). This SIR model is appropriate for describing a disease for which
individuals develop permanent immunity after infection. The SIR model, and a
number of different variations, has been widely analysed both for homogeneous
[6, 7] and heterogeneous populations [8]. In these systems, of particular interest
can be specific summary statistics that characterize an outbreak, such as the
size of the outbreak [9], its length [10, 11] or the reproduction number [12].

Vaccination is an effective preventive measure to limit or avoid an outbreak,
where the presence of a high percentage of vaccinated individuals in a given
population can prevent transmission, reducing the size and impact of epidemic
outbreaks, or the probability of these outbreaks happening at all. A number of
mathematical models have considered vaccinated individuals as an extra com-
partment in the model [13], and some studies have added vaccination strategies
into these mathematical models [14–17]. In some cases, vaccines do not provide
permanent immunity, and boosters are required [18]. In other occasions, a vac-
cine might not be fully effective in preventing disease [19], and a proportion of
vaccinated individuals might still be partially susceptible against infection. In
this situation of an imperfect vaccine, the population runs the risk of losing or
not achieving herd immunity [20].

In the literature we can find examples of studies assuming either fully pro-
tective [21] or imperfect [22, 23] vaccines. In [24, 25], authors quantify disease
transmission in a stochastic SIS model with external source of infection and im-
perfect vaccine and study preventive measures surrounding vaccination. Under
the assumption of imperfect vaccine, authors in [26] study the stationary distri-
bution of the system for a closed population in a stochastic SVIR-type model.
On the other hand, in [27] the time to extinction is studied for a non-linear
incidence rate model.

In this paper, we consider a SVIR model with imperfect vaccine and external
source of infection for a finite homogeneous population of fixed size. Our interest
is in analysing the time until a threshold number of individuals get infected, as a
way of quantifying the timescales for disease spread. We do this by representing
the epidemic process in terms of a multidimensional continuous-time Markov
chain (CTMC), and studying a time to absorption in this process. We show
how a particular organization of states in this CTMC leads to the study of a
level-dependent quasi birth-and-death process (LD-QBD) [28], and propose an
efficient scheme to analyse the summary statistic of interest. Our methodology
is based on the analysis of Laplace-Stieltjes transforms and the implementation
of first-step arguments, adapting techniques in [24, 25].
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This paper is organized as follows. In Section 2 we introduce the SVIR
stochastic model with imperfect vaccine and external source of infection. In
Section 3 we define the summary statistic of interest, and provide an efficient
algorithm to compute any of its moments. In Section 4 we illustrate our method-
ology by carrying out a global sensitivity analysis on model parameters. Finally,
we present our conclusions in Section 5, and discuss possible future lines of re-
search.

2 Model description

We model the spread of an infectious disease across a population of constant
size N , where a percentage of individuals are vaccinated at time t = 0 as a pro-
phylactic device to control disease spread. We assume that vaccine is not perfect
so that vaccinated individuals can get the infection with probability h ∈ (0, 1),
which we refer to as the vaccine failure probability. Vaccine protection lasts for
at least the length of an outbreak, hence further vaccination during the outbreak
is not considered. We consider SIR-type dynamics, so that infected individuals
become recovered after their infectious period, and denote the recovery rate by
γ. Transmission can occur through direct contact, with rate β, or due to an
external source of infection, with rate ξ.

We represent this epidemic process in terms of a three-dimensional continuous-
time Markov chain (CTMC) X = {(V (t), S(t), I(t)) : t ≥ 0}, where V (t), S(t)
and I(t) represent the number of vaccinated, susceptible and infected individ-
uals in the population at time t ≥ 0. Given that the population size remains
constant, it is clear that R(t) = N − V (t) − S(t) − I(t) represents the number
of recovered individual at time t. If one assumes that there are no recovered
individuals at the beginning of the epidemic process, the initial state is given by
(V (0), S(0), I(0)) = (v0, s0, N − v0 − s0), for some v0, s0 ≥ 0, with v0 + s0 ≤ N .
The state space of the Markov chain is then given by

S = {(v, s, i) : 0 ≤ v ≤ v0, 0 ≤ s ≤ s0, 0 ≤ v + s+ i ≤ N}, (1)

which is finite and contains (v0+1)(s0+1)(N +1− s0+v0
2 ) states, with a unique

absorbing state (0, 0, 0).
We assume that recoveries and contacts between individuals happen inde-

pendently of each other, with exponentially distributed inter-event times. The
evolution of the epidemic process over time is represented by transitions be-
tween states in S, where the possible events/transitions are outlined in Table 1.
In particular, given the current state (v, s, i) ∈ S, possible events are:

(E1) A susceptible individual gets infected, which occurs with rate

λs,i = s

(

βi

N
+ ξ

)

.

(E2) Considering imperfect vaccination with vaccine failure probability h, a vac-
cinated individual can still become infected at rate

ηv,i = vh

(

βi

N
+ ξ

)

.
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(E3) An infectious individual recovers with rate

γi = γi.

Table 1. Possible events and their transition rates.

Effective Outgoing Event Transition Rate

Infection of susceptible individual (v, s, i) → (v, s− 1, i+ 1) λs,i

Infection of vaccinated individual (v, s, i) → (v − 1, s, i+ 1) ηv,i
Recovery (v, s, i) → (v, s, i− 1) γi

Times spent at each state (v, s, i) ∈ S are independent and exponentially
distributed random variables, with rate qv,s,i = λs,i + ηv,i + γi. The dynamics
of X is determined by its infinitesimal generator, Q, which one can efficiently
construct by organising first the space of states S in terms of levels and sub-levels.
In particular, for a particular initial state (v0, s0, N − s0 − v0),

S = ∪v0
v=0l(v),

l(v) = ∪s0
s=0l(v, s), 0 ≤ v ≤ v0,

l(v, s) = {(v, s, i) ∈ S : 0 ≤ i ≤ N − v − s}, 0 ≤ s ≤ s0, 0 ≤ v ≤ v0.

We note that the number of states in each sub-level is #l(v, s) = N − v− s+ 1,

while the number of states in each level is #l(v) = (s0+1)(N −v+1)− s0(s0+1)
2 .

By ordering states within each sub-level as

(v, s, 0) ≺ (v, s, 1) ≺ · · · ≺ (v, s,N − v − s),

and ordering then states by sub-levels and levels, the infinitesimal generator of
X , Q, is given by

Q =















Q0,0

Q1,0 Q1,1

Q2,1 Q2,2

. . .
. . .

Qv0,v0−1 Qv0,v0















,

with v0, s0 ≥ 0 and v0 + s0 ≤ N .
We note that sub-matrices Qv,v∗ are of dimensions #l(v) × #l(v∗). Sub-

matricesQv,v, for 0 ≤ v ≤ v0, contain rates corresponding to transitions between
states within the level l(v). These events, according to the definition of levels
and Table 1, correspond to susceptible individuals becoming infected, or infected
individuals recovering. On the other hand, sub-matrices Qv,v−1, for 1 ≤ v ≤ v0,
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correspond to transitions from states in level l(v) to states in level l(v − 1),
which occur due to vaccinated individuals becoming infected. More specifically,
sub-matrices Qv,v∗ are described as follows:

Qv,v−1 =











Av,v−1(0, 0)
Av,v−1(1, 1)

. . .

Av,v−1(s0, s0)











, 1 ≤ v ≤ v0,

Qv,v =















Av,v(0, 0)
Av,v(1, 0) Av,v(1, 1)

Av,v(2, 1) Av,v(2, 2)
. . .

. . .

Av,v(s0, s0 − 1) Av,v(s0, s0)















, 0 ≤ v ≤ v0.

Sub-matrices Av,v−1(s, s), for 1 ≤ v ≤ v0, 0 ≤ s ≤ s0, have dimensions
(N − v− s+1)× (N − v− s+2), and contain the transition rates from states in
sub-level l(v, s) to states in sub-level l(v − 1, s). These transitions represent in-
fections of vaccinated individuals. Sub-matrices Av,v(s, s) contain the transition
rates from states in sub-level l(v, s) to states within the same sub-level, and cor-
respond to recoveries of infected individuals. Sub-matrices Av,v(s, s−1) contain
transition rates from states in sub-level l(v, s) to states in sub-level l(v, s − 1),
corresponding to infections of susceptible individuals. In particular, these sub-
matrices are defined as follows:

• For 0 ≤ v ≤ v0, 0 ≤ s ≤ s0, Av,v(s, s) is a matrix of dimensions (N − v −
s+ 1)× (N − v − s+ 1), with

Av,v(s, s) =















−qv,s,0
γ −qv,s,1

2γ −qv,s,2
. . .

. . .

(N − v − s)γ −qv,s,N−v−s















.

• For 1 ≤ v ≤ v0, 0 ≤ s ≤ s0, Av,v−1(s, s) is a matrix of dimensions (N − v −
s+ 1)× (N − v − s+ 2), with

Av,v−1(s, s) =











0 ηv,0
0 ηv,1
. . .

. . .

0 ηv,N−v−s











.
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• For 0 ≤ v ≤ v0, 1 ≤ s ≤ s0, Av,v(s, s − 1) is a matrix of dimensions
(N − v − s+ 1)× (N − v − s+ 2), with

Av,v(s, s− 1) =











0 λs,0

0 λs,1

. . .
. . .

0 λs,N−v−s











.

3 Time until M individuals get infected

In this section, we analyse the speed of transmission by focusing on the time that
it takes for a threshold numberM of individuals to get infected,W (M).W (M) is
a non-negative continuous random variable that denotes the time elapsed until
a total of M individuals become infected. In order to analyse this summary
statistic, we redefine the CTMC as X ∗ = {(J(t), S(t), I(t)) : t ≥ 0} where S(t)
and I(t) denote the number of susceptible and infected individuals respectively
at time t, and J(t) = S(t)+V (t) represents the sum of vaccinated and susceptible
individuals at time t. For an initial state (j0, s0, i0) and a threshold value M of
interest, with 1 ≤ M ≤ N , W (M) can be defined as

Wj0,s0,i0(M) = inf{t ≥ 0 : J(t) = N −M | (J(0), S(0), I(0)) = (j0, s0, i0)}.

To analyse this random variable, one can study the evolution of the Markov chain
X ∗ in the set of states S∗ = {(j, s, i) : N−M ≤ j ≤ j0,max(0, j+s0−j0) ≤ s ≤
s0,max(0, N −M − j + 1) ≤ i ≤ N − j}, and where trivially Wj0,s0,i0(M) ≡ 0
if M ≤ N − j0. Then, the variable Wj0,s0,i0(M) can be studied as first-passage
time to the set of absorbing states S∗

M = {(N − M, s, i) ∈ S∗} of the Markov
chain X ∗.

For any initial state (j0, s0, i0), and threshold value of interest 1 ≤ M ≤ N ,
it is clear that P(Wj0,s0,i0(M) < +∞) = 1, since the external source of infection
ensures that all individuals will eventually become infected. On the other hand,
the definition of Wj0,s0,i0(M) for the initial state of interest (j0, s0, i0) can be
extended to any other state (j, s, i) ∈ S∗, and the random variable of interest
Wj0,s0,i0(M) can be studied by analysing as well the auxiliary ones Wj,s,i(M),
(j, s, i) ∈ S∗. In particular, we can introduce the Laplace-Stieltjes transforms for
any (j, s, i) ∈ S∗ as φj,s,i(z) = E

[

e−zWj,s,i

]

, z ∈ C, with Re(z) ≥ 0, and where
we omit M from notation from now on.

The Laplace-Stieltjes transforms φj,s,i(z) satisfy a set of linear equations,
which is obtained via first-step arguments by conditioning on the possible tran-
sitions out of state (j, s, i) ∈ S∗. In particular,

φj,s,i(z) = (1− δi,0)
γi

z + qj−s,s,i

φj,s,i−1(z)

+(1− δj,0)(1− δs,0)
λs,i

z + qj−s,s,i

φj−1,s−1,i+1(z)

+(1− δj,0)
ηj−s,i

z + qj−s,s,i

φj−1,s,i+1(z), (2)
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where δi,j represents the Kronecker’s delta function, defined as 1 when i = j, and
0 otherwise. This system of equations has boundary conditions φN−M,s,i(z) = 1
for those states at which the number M of infections is reached. We can also
note that, by definition, φj,s,i(0) = 1, for any (j, s, i) ∈ S∗.

These Laplace-Stieltjes transforms could be computed, at any point z ∈ C, by
solving system (2). Furthermore, with the help of numerical methods for Laplace
transforms inversion, it is possible to calculate the probability distribution func-
tion of W (M) [29, 30]. Although the numerical inversion is indeed possible, it is
many times computationally not feasible. However, our interest instead here is
in computing different order moments of these variables. In particular, moments
can be computed from direct differentiation of the transform, as

mk
j,s,i = E

[

W k
j,s,i

]

= (−1)k
dkφj,s,i(z)

dzk

∣

∣

∣

∣

z=0

, k ≥ 1. (3)

Thus, by differentiating Eq (2) with respect to z k times (k ≥ 1) and evaluating
at z = 1, we obtain the equations involving the moments as

qj,s,im
k
j,s,i = kmk−1

j,s,i + λs,im
k
j−1,s−1,i+1 + ηj−s,im

k
j−1,s,i+1 + γim

k
j,s,i−1, (4)

with boundary conditions m0
j,s,i = 1, mk

N−M,s,i = 0 for any k ≥ 1.

The loop-free structure of the transition rates of the CMTC X ∗ allows one
to compute moments in a recursive way from the system above, for increasing
values of k ≥ 1 and taking into account that moments of order 0 are trivially
equal to 1. Algorithm 1 outlines how to carry out this computation in an efficient
and ordered way, which is based on Theorem 1 below. Proof of Theorem 1 is
omitted here for the sake of brevity, since it consists of a recursive solution
scheme directly based on Eq (4).
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Algorithm 1 Computation of the kth-order moments of the random variable
Wj0,s0,i0(M), for 1 ≤ k ≤ kmax for some maximum desired order kmax

Input : j0, s0, i0, N,M, β, ξ, γ and kmax.
Step 1: Set j = N −M

Step 1a: Set s = max(0, j + s0 − j0)
Step 1b: Set k = 0 and setm0

N−M,s,i = 1 formax(0, N−M−j+1) ≤ i ≤ N−j.
Step 1c: Set k = k+1, set mk

N−M,s,i = 0 for max(0, N−M−j+1) ≤ i ≤ N−j.
Step 1d: If k < kmax, go to Step 1c.
Step 1e: Set s = s+ 1. If s ≤ s0, go to Step 1b.

Step 2: Set j = N −M + 1.
Step 2a: Set s = max(0, j + s0 − j0).
Step 2b: Set k = 0 and set m0

j,s,i = 1 for max(0, N −M − j+1) ≤ i ≤ N − j.
Step 2c: Set k = 1 and set mk

j,s,i for max(0, N − M − j + 1) ≤ i ≤ N − j,
from (6).

Step 2d: Set k = k+1 and computemk
j,s,i formax(0, N−M−j+1) ≤ i ≤ N−j,

from (7)-(8).
Step 2e: If k < kmax, go to Step 2d.
Step 2f: If s < s0, set s = s+ 1 and go to Step 2b.

Step 3: If j = j0, stop.
Step 4: Set j = j + 1.

Step 4a: Set s = max(0, j + s0 − j0).
Step 4b: Set k = 0 and set m0

j,s,i = 1 from max(0, N−M−j+1) ≤ i ≤ N−j.
Step 4c: Set k = k+1 and computemk

j,s,i formax(0, N−M−j+1) ≤ i ≤ N−j,
from (7)-(8).

Step 4d: If k < kmax, go to Step 4c.
Step 4e: If s < s0, set s = s+ 1 and go to Step 4b.

Step 5: If j < j0, go to Step 4. If j = j0, stop.
Output: mk

j0,s0,i0
, for 0 ≤ k ≤ kmax.

Theorem 1. Given a number of initial vaccinated and susceptible individuals

v0 ≥ 0 and s0 ≥ 0, with 0 ≤ v0 + s0 ≤ N and an integer k, k ≥ 0, and

1 ≤ M ≤ N , the central moments or order k of the variable Wj0,s0,i0(M), are
obtained from the following expressions for all (j, s, i) ∈ S∗:

m0
j,s,i = 1, mk

N−M,s,i = 0, for k ≥ 1, (5)

m1
N−M+1,s,i =

i
∑

r=0

i!γ
i−r

r!
∏i

l=r qN−M−s+1,s,l

, (6)

mk
j,s,i =

i
∑

r=0

i!γ
i−r

r! T k
j,s,r

∏i

l=r qj−s,s,l

for k ≥ 1 (7)

with

T k
j,s,i = kmk−1

j,s,i + (1− δs,0)λs,im
k
j−1,s−1,i+1 + (1− δj,s)ηj−s,im

k
j−1,s,i+1. (8)
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4 Results

In this section, we illustrate our analysis in Section 3 by carrying out a global
sensitivity analysis on model parameters for the summary statistic of interest.
We set the recovery rate γ = 1.0 in all the numerical experiments, so that the
time unit is taken as the expected time that an infected individual takes to
recover. We consider a population of N = 100 individuals here, and assume that
50% of them are partially protected against the infection through the vaccine,
so that the initial state is (v0, s0, i0) = (50, 49, 1).

Fig. 1. Mean time E[W (M)] until M individuals get infected, for different values of
M , R0, h and ξ. Initial state (v0, s0, i0) = (50, 49, 1).

In Figure 1, we plot WM = E[W (M)] for different values of the Basic Re-
production Number, which for our model is taken as R0 = β/γ, ξ, h and M .
The average time to reach a total of M infections increases with increasing val-
ues of M , as one would expect. On the other hand, WM decreases with the
external source of infection rate, ξ, since these external infections can contribute
towards reaching the threshold M . An interplay can be observed between the
value of the reproduction number R0 and the vaccine failure probability h, so
that large values of WM can be due to small transmission rates (small R0) or
small probability of vaccine failure, h. We note that the value of M , together
with the proportion of individuals initially vaccinated, are directly relevant to
understand the dynamics in Figure 1. The relevance of h is observed to be
smaller for M = 50, since in this situation the outbreak can reach 50 infections
just by those infections suffered by susceptible individuals in this system. On
the other hand, increasing values of M require infections to happen among the
vaccinated sub-population, and thus small values of the vaccine failure proba-
bility lead to significantly increased times WM to reach M infections. We also
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note that, for small values of ξ (e.g. ξ = 0.01R0), the mean time WM to reach
M infections can span several orders of magnitude for different values of the
parameters (M,R0, h). This can be explained by the fact that, if the external
source of infection is small and the outbreak were to finish without the level M
of infections being reached, one would need to wait until a subsequent outbreak
to occur in the remaining susceptible/vaccinated population, which would take
long under small values of ξ. Larger values of ξ lead to “overlapping” outbreaks,
where external infections can constantly occur, facilitating smaller values of the
mean time WM .

Fig. 2. Mean time E[W (M)] (solid curves) plus and minus its standard deviation
σ[W (M)] (shaded area) versus M , for ξ = 0.01R0, N = 100, R0 ∈ {1.5, 5} and h ∈
{0.01, 0.1, 0.3}. Initial state (v0, s0, i0) = (50, 49, 1).

Some of the dynamics described above can be better understood by explor-
ing Figure 2, that shows the expected time elapsed until M infections have been
reached as a function of M , for a relatively small value of ξ = 0.01R0 and for
several values of h and two different values of R0. Shaded areas are obtained by
considering E[W (M)]±σ[W (M)]. As expected, increasing values of R0 or smaller
values of h lead to increasing times to reach M infections. On the other hand,
vaccines with higher probability of failure lead to situations where less time is
needed in order to reach M infections, and in consequence the expansion of the
disease is faster. This behaviour reveals the importance of the vaccine effective-
ness. Particularly interesting is the asymptotic behaviour of the curves, where the
time to reach M infections can significantly increase when approaching particu-
lar values of M in some situations. This is directly related to the vaccine failure
probability h, and the initial number of susceptible and vaccinated individuals
(s0, v0) = (49, 50). In particular, and when focusing for example on R0 = 1.5 and
h = 0.01, the small vaccine failure probability means that infections in order to
reach the threshold value M are likely to occur among susceptible individuals,
and unlikely to happen among vaccinated ones. Since 50% of the population is
vaccinated, and we start with 1 infected individual, up to M = 50 individuals
can become infected in relatively short periods of time (given that R0 = 1.5)
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by infections happening in the susceptible pool. However, as soon as M exceeds
the value 50 infections among the vaccinated pool are required to happen for
this threshold to be reached. These infections would be rare (h = 0.01), leading
to significant increases in the expected time E[W (M)]. These behaviours nicely
illustrate the protection that a nearly perfect vaccination confers to the pool of
vaccinated individuals, where a relatively fast outbreak (due to R0 = 1.5 > 1)
would decelerate when approaching M = s0+i0. For significantly small values of
h (e.g. h = 0.01), the dynamics described above are relatively similar regardless
of considering R0 = 5 instead of R0 = 1.5, although increasing values of R0

facilitate an overshoot effect, as can be observed when comparing the two plots
in Figure 2. For relatively larger vaccine failure probabilities (e.g. h = 0.1 or
h = 0.3), these asymptotic behaviours can be partially compensated by increas-
ing values of R0, where some infections in the vaccinated pool can be achieved
due to the large value of R0, facilitating the attainment of the threshold number
of infections M .

Numerical experiments show that the expected value of W (M) presents an
increasing behaviour, as a function of M . Moreover, when we increase the vac-
cination coverage v0 and keep fixed the remaining model parameters, the mean
time to achieve a number of M infections also increases. This is in accordance to
intuition because when an outbreak starts with a big proportion of vaccine pro-
tected individuals, infections are becoming less likely and the time to infect M
individuals is larger in comparison with outbreaks starting with a lesser number
of vaccinated individuals.

Computational times are very high and complexity increases when consid-
ering populations larger than 1000 individuals. For instance, when N = 1000
individuals the state space S∗ contains around 4.16 × 107 states, while for a
population of 10000 individuals the number of states increases to 4.16 × 1010.
The elapsed time to compute E[W (M)] takes around 4 minutes when N = 1000
and it lasts more than 5 hours when N = 10000, in a personal computer with 8
GB of RAM, M1 memory Chip with GPU of 7 Kernels.

5 Conclusions

In this paper, we have considered a stochastic SVIR model with imperfect vac-
cine and external source of infection. We have represented this in terms of a
multidimensional continuous-time Markov chain, and have showed that by ap-
propriately ordering its space of states in terms of levels and sub-levels, this leads
to the study of a LD-QBD. Our interest was in analysing the speed at which
the epidemic occurs, by studying the time to reach a threshold number M of
infections in the population. By means of first-step arguments, we have obtained
a system of linear equations which can be solved efficiently and recursively, as
outlined in Algorithm 1. In our results in Section 4, we have illustrated our
methodology by carrying out a wide sensitivity analysis on model parameters,
where an interplay can be observed between the reproduction number R0, the
threshold of interest M , the vaccine failure probability h, the external source of
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infection rate ξ, and the initial number of vaccinated individuals v0. Our tech-
niques can in principle be applied in order to study other summary statistics
of potential interest in this system, such as the exact reproduction number [24,
31] or the time until the end of the outbreak [8]. This remains the aim of future
work.
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