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Spatial representability of neuronal 
activity
D. Akhtiamov1, A. G. Cohn2,3,4,5,6 & Y. Dabaghian7*

A common approach to interpreting spiking activity is based on identifying the firing fields—regions 
in physical or configuration spaces that elicit responses of neurons. Common examples include 
hippocampal place cells that fire at preferred locations in the navigated environment, head direction 
cells that fire at preferred orientations of the animal’s head, view cells that respond to preferred 
spots in the visual field, etc. In all these cases, firing fields were discovered empirically, by trial and 
error. We argue that the existence and a number of properties of the firing fields can be established 
theoretically, through topological analyses of the neuronal spiking activity. In particular, we use Leray 
criterion powered by persistent homology theory, Eckhoff conditions and Region Connection Calculus 
to verify consistency of neuronal responses with a single coherent representation of space.

Physiological mechanisms underlying the brain’s ability to process spatial information are discovered by relating 
parameters of neuronal spiking with characteristics of the external world. In many cases, it is possible to link 
neuronal activity to geometric or topological aspects of a certain space—either physical or auxiliary. For example, 
a key insight into neuronal computations implemented by the mammalian hippocampus is due to O’Keefe and 
Dostrovsky’s discovery of a correlation between the firing rate of principal neurons in rodents’ hippocampi and 
the animals’ spatial  location1–3. This discovery allowed interpreting these neurons’ spiking activity, henceforth 
called place cells, as representations of spatial domains—their respective place fields (Fig. 1A4) (Throughout 
the text, terminological definitions are given in italics.). It then became possible to use place field layout in the 
navigated environment E—the place field map ME—to decode the animal’s ongoing  location5–8, and even to 
interpret the place cells’ off-line activity during quiescent stages of behavior or in  sleep9–14, which define our 
current understanding of the hippocampus’ contribution to spatial  awareness15–18.

In the 90s, a similar line of arguments was applied to cells discovered in rat’s postsubiculum and in other 
parts of the  brain19–21, which fire at a particular orientation of the animal’s head. The angular domains where 
such head direction cells become active can be viewed as one-dimensional (1D) head direction fields in the cir-
cular space of planar directions, S1—in direct analogy with the hippocampal place fields in the navigated space 
(Fig. 1B). The corresponding  head direction map, MS1 , defines the order in which the head direction cells spike 
during the rat’s movements and the role of these cells in spatial  orientation20–22. Recently, place cells and head 
directions cells were discovered in bats’ hippocampi; in contrast with rodents who navigate two-dimensional 
(2D) surfaces (see  however23–26), bat’s voluminous place fields cover three-dimensional (3D) environments and 
their head direction fields cover 2D  tori27,28.

The spatial view cells, discovered in the late 90s, activate when a primate is looking at their preferred spots in 
the environment (Fig. 1C), regardless of the head direction or  location29–31. Correlating these cells’ spike tim-
ing with the positions of the view fields helped understanding mechanisms of storing and retrieving episodic 
memories, remembering object locations, etc.32,33. The principles of information processing in sensory and 
somatosensory cortices were also deciphered in terms of receptive fields—domains in sensory spaces, whose 
stimulation elicits in spiking responses of the corresponding  neurons34–39.

In all these cases, referencing an individual neuron’s activity to a particular domain in a suitable representing 
space X40 is key for understanding its contribution and for reasoning about functions of neuronal ensembles 
in terms of the corresponding “maps”16–18. This raises a natural question: when is a “spatial” interpretation of 
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neuronal activity at all possible, i.e., when there might exist a correspondence between the patterns of neuronal 
activity and regions in low-dimensional space?

Approach
A mathematical perspective. On this question is suggested by the simplicial topology  framework41,42. 
Specifically, if a combination of coactive cells, ci0 , ci1 , . . . , cik is represented by an abstract coactivity simplex (for 
definitions see “Methods” section)

then the net pool of coactivities observed by the time t forms a simplicial complex

On the other  hand42–45, a similar construction can be carried out for a space X covered by a set of regions υi,

If each nonempty overlap between these regions,

is formally represented by an abstract simplex,

then the cover (3) generates another simplicial complex, known as its Čech or nerve complex

which is a spatial analogue of the coactivity complex (2). The idea is hence the following: if there is a correspond-
ence between neurons’ spiking and spatial regions, then multi-cell coactivities can be viewed as representations 
of their firing fields’  overlaps46–48. Thus, the question whether a given pool of neuronal activity corresponds to 
a spatial map can be answered by verifying representability of the corresponding coactivity complex T (t) , i.e., 
testing whether the latter has a structure of a nerve NX of some cover in a low-dimensional representing space X.

Implementation. As it turns out, representable simplicial complexes exhibit several characteristic proper-
ties that distinguish them among generic simplicial  complexes49,50. Verifying these properties over biologically 
relevant 1D, 2D and 3D representing spaces is a tractable  problem49,51, although exact algorithms for performing 
such a verification are not known—only in 1D are some methods  available53–57. Nevertheless, there exist explicit 
criteria that allow limiting the dimensionality of the representing space X and eliminating manifestly non-rep-
resentable complexes based on their homologies, combinatorics of simplexes and other intrinsic topological 
properties, which will be used below.

Specifically, according to the Leray criterion, a complex � representable in D dimensions should not contain 
non-contractible gaps, cavities or other topological defects in dimensionalities higher than (D − 1)58. Formally, 
it is required that the homological groups of � and hence its Betti numbers should vanish in these dimen-
sions, bi≥D(�) = 0 . Moreover, the Betti numbers of all the subcomplexes �x of � , induced by a fraction x of 

(1)σi = [ci0 , ci1 , . . . , cik ],

(2)T (t) = ∪iσi .

(3)X = ∪iυi .

(4)υσi ≡ υi0 ∩ υi1 ∩ . . . ∩ υik �= ∅,

(5)νσi = [υi0 , υi1 , . . . ,υik ],

(6)NX = ∪iνσi ,

Figure 1.  Spatial maps. (A) A simulated place field map of a small ( 1m× 1m ) environment E , similar to the 
arenas used in typical electrophysiological  experiments66,67. Dots represent spikes produced by the individual 
cells (color-coded); their locations mark the rat’s position at the time of spiking. The pool of place cell 
coactivities is schematically represented by a coactivity complex TPC (top right). The navigated trajectory r(t) 
induces a sequence of activated simplexes—a simplicial path Ŵ ∈ TPC . (B) The head direction cell combinations 
ignited during navigation induce a coactivity complex THD (top). The corresponding head direction fields cover 
a unit circle—the space of directions (bottom). (C) Spatial view cells activate when the primate gazes at their 
respective preferred domains in the visual field (left). The curves r1(t) and r2(t) traced by the monkey’s gaze 
induce simplicial paths Ŵ1 and Ŵ2 running through the corresponding coactivity complex TVC (right).
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its vertexes should also vanish, bi≥D(�x) = 0 . In the case of coactivity complexes, such subcomplexes Tx ⊆ T  
have a particularly transparent interpretation: they are the ones generated by x% of the active cells. According 
to the second criterion, the number of simplexes in all dimensions of � must obey Eckhoff ’s inequalities—a set 
of combinatorial relationships discussed  in59–62 and listed in the Methods” section, where we also briefly detail 
the Leray  criterion49,58,62–64.

Previous topological studies of the coactivity data were motivated by the Alexandrov-Čech  theorem42–45, 
which posits that the homologies of the nerve complexes produced by the “good” covers (i.e., the ones with 
contractible overlaps (4),  see65), should match the homologies of the underlying space X, H∗(N ) = H∗(X) , 
i.e., have the same number of pieces, holes, tunnels, etc. Specifically, this construction was applied to the place 
cell coactivity complexes, whose representability was  presumed46–48. Persistent homology  theory68–73 was used 
to trace the dynamics of the Betti numbers bi≤D(T ) in physical dimensionalities D ≤ 274–79 and D ≤ 379,80, to 
detect whether and when these numbers match the Betti numbers of the environment, bi≤D(E) , and how this 
dynamics depends on spiking parameters. It was demonstrated, e.g., that for a wide range of the firing rates and 
place field sizes referred to as the Learning Region, L(E) , the low-dimensional Betti numbers of T (t) converge 
to their physical values after a certain period Tmin , neurobiologically interpreted as the minimal time required 
to “learn” the topology of the environment ( bi≤D(T (t)) = bi≤D(E) , t ≥ Tmin

48).
Moreover, it became possible to asses the contribution of various physiological parameters—from brain waves 

to synapses—to producing and sustaining the topological shape of T 74–80. In addition, the coactivity complexes 
were used for contextualizing the ongoing spiking activity and linking its structure to the animal’s behavior. 
For example, it was shown that a trajectory γ (t) tracing through a sequence of firing domains υσi , produces a 
“simplicial path” Ŵ —a succession of active simplexes that captures the shape of γ (t) and allows interpreting the 
animal’s active  behavior5–8 and its “off-line” memory  explorations9–14,20,32 (Fig. 1).

Together, these arguments suggest that experimentally discovered representing spaces and firing fields 
serve as explicit models of the cognitive maps emerging from neuronal activity—a perspective that is currently 
widely accepted in neuroscience. However, this view requires verification, since the empirically identified firing 
fields may be contextual offshoots or projections from some higher-dimensional constructs—in the words of 
H. Eichenbaum, “hippocampal representations are maps of cognition, not maps of physical space”81. The way of 
addressing this question is straightforward: if the spiking activity is intrinsically spatial, i.e., if neurons represent 
spatial domains, then the coactivity complexes generated by the corresponding neuronal ensembles should be 
representable—an explicit property that can be confirmed or refuted using Leray, Eckhoff and other criteria. In 
the following, we apply these criteria to several types of neuronal activity, both simulated and experimentally 
recorded, and discuss the results.

Results
Simplicial topology approach. The conventional theory of representability addresses properties of 
“static” simplicial  complexes49–65. In contrast, the coactivity complexes are dynamic structures that can be viewed 
as time-ordered agglomerates of simplexes, restructuring at the moments t1 < t2 < t3 . . .,

The exact organization of each complex in the sequence (7) depends on the specifics of the underlying spiking 
activity, e.g., the initial state of the network, its subsequent dynamics, spiking mechanisms and so forth (in case 
of the place fields, think of the starting point of navigation, shape of the trajectory, speed, etc.). Thus, verifying 
representability of these complexes requires testing whether Eckhoff, Leray and other criteria are valid at each 
moment t.

We constructed coactivity complexes by simulating the rat’s navigation through a planar environment E 
commonly used in electrophysiological experiments (Fig. 1A, see  also66,67). The neuronal spikings in this case 
are generated as responses to the rat’s appearances within preconstructed, convex firing domains, e.g., stepping 
into randomly scattered place fields or facing towards head direction fields centered around randomly chosen 
preferred angles (see Methods” section and Methods  in48,74,82). While the resulting nerve complexes (6) are 
2D-representable by design, we inquired whether the corresponding coactivity complexes are also representable, 
i.e., whether the activity of individual neurons intrinsically represents regions and whether connectivity between 
these regions is similar to the connectivity between the underlying auxiliary firing fields.

Simulations show that persistent Leray dimensionality D̄L (above which the spurious loops in T (t) vanish, 
D̄L = min({D : bi>D(T (t)) = 0, t ≥ TL}) , see  also83) eventually settles at D̄L = 1 for most complexes, implying 
that neuronal activity defines a proper planar map. However, this mapping requires time—a Leray period TL—
which, for the maps populating the learning region L(E) , is typically similar to the learning time Tmin (Fig. 2A,B).

Whether a particular value of TL is shorter or longer than the corresponding Tmin depends on how exactly 
the coactivity complex is constructed, e.g., whether the simplexes (1) correspond to simultaneously igniting 
cells groups or assembled from lower-order combinations over an extended period ̟84. Physiologically, the 
former corresponds to the case when spiking outputs are processed by “coincidence-detector” neurons in the 
downstream networks and the latter to the case when lower-order coactivities are collected over a certain “spike 
integration window” ̟ —longer than the simultaneity detection timescale w85–87. Different readout neurons or 
networks may have different integration periods; to simplify the model, we started by extending the parameter 
̟ to the entire navigation period for all cells and cell groups.

The lowest order of coactivity involves spiking cell  pairs88, which together define a coactivity graph G89,90. The 
cliques ς of this graph produce a clique coactivity complex Tς that generalizes the simplicial coactivity complex 
Tσ , built from simultaneously detected  simplexes75–80. As it turns out, the “coincidence detecting” and the “spike 
integrating” complexes have different topological dynamics: the former are more likely to start off with a higher 

(7)T (t1) ⊆ T (t2) ⊆ T (t3) . . . .
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Leray dimensionality, D̄L ≥ 3 , that then reduces to D̄L ≤ 2 (Fig. 2A), whereas the latter tend to be more stable, 
lower-dimensional and have shorter Leray and learning times (Fig. 2B).

To test the induced subcomplexes of each T  , we selected random subcollections of cells containing x = 50% , 
x = 33% , x = 25% and x = 20% of the original neuronal ensemble, and found that if the original complex 
T ≡ Tx=1 is representable, then its subcomplexes, Tx<1 ⊆ T  , typically require less time to pass the Leray crite-
rion, TL(Tx<1) ≤ TL(T ) , and that for x > 50% the Leray times saturate, TL(Tx>0.5) ≈ TL(T ) . Thus, the Leray time 
of the full complex, TL(T ) , can be used as a general estimate of the timescale required to establish representability.

To control the sizes of the coactivity complexes, we used only those periods of each neuron’s activity when 
it fired at least m spikes per coactivity window (i.e., time intervals defining simultaneity of neuronal activity, 
w ≈ 1/4 secs; for justification of this value  see74,92). Additionally, we used only those groups of coactive cells in 
which pairwise coactivity exceeded a threshold µ (Methods” section). Biologically, these selections correspond 
to using only the most robustly firing cells and cell assemblies for constructing the coactivity  complexes77. The 
results demonstrate that majority of the coactivity complexes T  computed for smallest possible m and µ exhibit 
low persistent Leray dimensionality, D̄L = 1 , which points at 2D representability of the underlying neuronal 
activity, with the Leray times TL similar to the corresponding learning times Tmin (Fig. 2C). We also found that 
Eckhoff inequalities are typically satisfied throughout the navigation period, i.e., that the Eckhoff criterion does 
not significantly limit the scope of representable spiking in this case (Fig. 2D).

Region connection calculus (RCC). An independent perspective on spatial representability is provided 
by Qualitative Space Representation approach (QSR93,94), which sheds a new light on the dynamics of neuronal 
maps. From QSR’s perspective, a population of cells C = {c1, c2, . . . , cN } may represent a set of abstract, or for-
mal spatial regions R = {r1, r2, . . . , rN } , if the relationships between them, as defined by the cells’ coactivity, can 
be consistently actualized in a topological space X by a set of explicit regions, ϒ = {υ1, υ2, . . . υN }.

Specifically, regions ri and rj encoded by the cells ci and cj can be: 

1. disconnected, DR(ri , rj) , if ci and cj never cofire;
2. equal, EQ(ri , rj) , if ci and cj are always active and inactive together;
3. proper part of one another, if cj is active whenever ci is, PP(ri , rj) , or vice versa, PPi(ri , rj);
4. partially overlapping, PO(ri , rj) , if ci and cj are sometimes (but not always) coactive.

These five relations fully capture mereological configurations of regions in a first-order logical calculus known as 
RCC5 (Fig. 3A95). Using mereological (i.e., parthood-based  see96 and Methods” section), rather than topological, 
distinctions reflects softness of the firing fields’ boundaries: the probabilistic nature of neuronal spiking does not 
warrant determining whether two regions actually abut each other or not.

Figure 2.  Persistent Leray dimension. (A) The Leray dimensionality of the coincidence-detector complex 
Tσ (t) constructed for an ensemble of Nc = 300 place cells can rise to D(Tσ ) = 4 (here the mean maximal firing 
rate is f = 12 Hz, mean place field size s = 22 cm; environment E same as on Fig. 1A). In about 17 min—the 
corresponding Leray period TL—the dimensionality drops to D(Tσ ) = D̄L(Tσ ) = 1 , after which the spiking 
patterns can be intrinsically interpreted in terms of planar firing fields. Note that the Leray period in this case 
is longer than the minimal learning time evaluated based on the lower-dimensional Betti numbers b0,1(Tσ ) , 
TL > Tσ

min . Shown are all the non-zero Betti numbers of Tσ (t) . (B) Timelines of the topological loops in a 
spike-integrating coactivity complex, evaluated for the same cell population in the same environment yields 
the persistent Leray dimensionality D̄L(Tς ) = 1 from the onset. The disappearance of spurious 0D loops in 
about 11 minutes marks the end of the learning period Tς

min(t) . Note that the number of spurious loops in 
Tς (t) is significantly lower than in Tσ (t) . (C) Maximal dimensionality of the topological loops in Tσ ,ς (t) . (D) 
The Eckhoff conditions are satisfied for nearly all coincidence-detecting complexes Tσ (t) (left panel, occasional 
exceptions are shown by red dots) and for all spike integrating complexes Tς (t) (right panel).
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A key property of a RCC5-framework defined by spiking neurons—a R5 schema—is its internal  consistency40. 
It may turn out, e.g., that some pairs of cells encode relationships that are impossible to reconcile, e.g., PP(ri , rj) , 
DR(rj , rk) and PO(ri , rk) . Indeed, if an actual region υi is contained in υj then it cannot possibly overlap with a 
region υk that is disconnected from υj . Correspondingly, the neuronal activity that produces such inconsistencies 
(for the full list see Table 1 in Methods” section) is not representable—not even interpretable in spatial terms. 
On the other hand, it can be shown that if all triples of relationships are consistent, then R5(t) does possess a 
spatial model, i.e., there exists a set of regions υi (with no prespecified properties such as convexity, connectivity 
or dimensionality) that relate to each other as the ri s relate in R5

93–99.
To verify whether spiking activity is representable in this QSR sense, we constructed an inflating R5(t)

-schema (an RCC5-framework growing as spiking data accumulates, similar to (2)) for each neuronal ensemble 
and counted the inconsistent triples of relationships at each moment t. The results show that all R5(t)-schemas 
start off with numerous inconsistencies, which tend to disappear after a certain period TRCC5 that is typically 
smaller than the Leray time TL (Fig. 3B,C).

The net dynamics of RCC5 relationships is illustrated on Fig. 3C. Note that some of these changes may 
be attributed to the regions’ continuous reshapings or displacements, e.g., two overlapping regions may 
become disconnected, PO(ri , rj) → DR(ri , rj) , is ri moves away from rj , or ri may move into rj , inducing 
PO(ri , rj) → PP(ri , rj) . In contrast, a jump from a disconnect to a containment, without an intermediate partial 
overlap, e.g., DR(ri , rj) → PP(ri , rj) rather than DR(ri , rj) → PO(ri , rj) → PP(ri , rj) , would be a discontinuous, 
abrupt change. As shown on Fig. 3C, discontinuous transitions are common at the initial stages of navigation, 
but shortly before TRCC5 they disappear, indicating that the relationships between regions encoded within a 
sufficiently well-developed R5(t) schema evolve in a continuous manner.

These outcomes not only provide an alternative lower-bound estimate for the time required to accumulate 
data for producing low-dimensional spatial representations, but also help understanding the nature of processes 
taking place prior to Leray time. In particular, the exuberant initial dynamics, homologically manifested through 

Figure 3.  RCC5 analyses. (A) Two regions with soft boundaries, e.g. two firing fields υi and υj , can overlap, 
PO(υi , υj) , be proper parts of each other, PP(υi , υj) or PPi(υi , υj) , be disconnected DR(υi , υj) or coincide 
EQ(υi , υj) . (B) Number Nx(t) of inconsistent triples of RCC5 relationships appearing in the R5(t) relational 
framework constructed for the same neuronal ensemble as illustrated in Fig. 2. The barcode diagram for 
the corresponding integrating coactivity complex (Fig. 2B) is shown in the background, to illustrate the 
correspondence between the RCC5 and the homological dynamics. TRCC5 (dotted line) marks the time when 
inconsistencies in the R5(t) schema disappear. Results averaged over 10 repetitions, error margins shown by 
the dashed lines. (C) The net number of changes of RCC5-relationships between two subsequent moments 
of time, Nc(t) , shown by the blue line, and the number Nd(t) of changes that violate the RCC5 continuity 
order (top right panel), shown by the orange line. For better illustration, Nd(t) is scaled up by a factor of 10. 
Initially, discontinuous events are frequent but shortly before TRCC5 they disappear entirely, leaving the stage to 
qualitatively continuous sequences. The same barcodes are added in the background, error margins shown by 
dashed lines.

Table 1.  RCC5 compositions. Given three regions, x, y and z, and two relationships R1(x, y) and R2(y, z) , the 
relationship R3(x, z) is not arbitrary. A map is consistent, if every triple of relationships is RCC5–consistent.

◦ DR(y, z) PO(y, z) PP(y, z) PPi(y, z) EQ(y, z)

DR(x, y) any DR,PO,PP DR,PO,PP DR DR

PO(x, y) DR,PO,PPi any PO,PP DR,PO,PPi PO

PP(x, y) DR DR,PO,PP PP any PP

PPi(x, y) DR,PO,PPi PO,PPi PO,EQ,PP,PPi PPi PPi

EQ(x, y) DR PO PP PPi EQ
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an incipient outburst of spurious loops in the coactivity complexes (Fig. 2A,B, t < Tmin ), cannot be interpreted as 
a mere “settling” of topological fluctuations in the cognitive map—according to Fig. 3B, the RCC5-schema does 
not form a coherent topological stratum for t < TRCC5 . Rather, the initial disorderly period should be viewed 
as the time of transition from a nonspatial to a spatial phase, followed by spatial dynamics (for t > TRCC5 ) that 
involves, inter alia, dimensionality reduction and other restructurings (Fig. 3C).

Current summary. Taken together, these results show that even in the simplest “reactive” model, in which 
neuronal firings are simulated as responses to regular domains covering a compact space, the low-dimensional 
representability is not an inherent, but an emergent property. In particular, RCC5-analyses suggest that spatial 
interpretation of neuronal spiking becomes possible after a finite period. During the times that exceed both 
TRCC5 and TL , the spiking data can be interpreted in terms of firing fields in a space X of dimensionality higher 
than the persistent Leray dimensionality of the corresponding coactivity complex, dim(X) > D̄L(T ).

Physiologically, this implies that the outputs of place cells, head direction cells, view cells, etc., may not be 
immediately interpretable by the downstream networks as representations of spatial regions—the informa-
tion required for such inference appears only after a certain “evidence integration.” Correspondingly, the firing 
field maps constructed according to the standard experimental  procedures1,19,30 also cannot be considered as 
automatic “proxies” of cognitive maps: such interpretations are appropriate only after the representability of the 
corresponding coactivity complexes is established. Another principal conclusion is that representability of the 
spiking activity depends not only on the spiking outputs, but also on how the information carried by these spikes 
is detected and processed. In particular, spikes integrated over extended periods are likelier to permit a consistent 
firing field interpretation than spikes counted via coactivity detection. On the technical side, these results imply 
that an accurate description of the firing fields’ plasticity should include possible dimensionality  changes101–103.

Multiply connected place fields. A key simplification used in the simulations described above is that 
firing fields were modeled as convex regions. While this assumption is valid in some  cases100, multiply con-
nected firing fields are also commonly observed (Fig. 4A104,105). From our current perspective, the issue is that 
multiple connectivity of the cover elements (3) may increase the Leray dimensionality of the corresponding 
nerve  complex49,106 and thus bring additional ambiguity into the analyses. Identification of the firing fields’ con-

Figure 4.  Topological dynamics in maps with multiple firing fields. (A) Left panel shows three examples of 
convex place fields used to obtain the results illustrated in Fig. 2. Allowing a cell to spike in several ( 2− 3 ) 
locations produces multiply connected place fields (middle panel; clusters of dots of a given color correspond 
to spikes produced by a single simulated neuron). Right panel shows a ̟ = 50 second long fragment of the 
trajectory γ̟ covering a segment χ̟ of the environment (reddened area). (B) The Leray dimensionality of 
the detector-complex, evaluated for the same place cell population as in Fig. 2A, can reach D(Tσ ) = 4 if we 
allow 30% of multiply connected place fields ( 2− 3 components each). (C) In a clique coactivity complex, the 
spurious loops in dimensions D = 2 and lower may persist indefinitely, implying either that the firing fields 
are 3D-representable or that they may be multiply connected. Note that the number of spurious loops in both 
Tσ and in Tς is higher than in the case with convex firing fields (Fig. 2A,B). (D) The persistence bars computed 
for the flickering complex F̟ with spike integration window ̟ = 1 minute, indicate stable mean Leray 
dimensionality �D(F̟ )� = 1 , implying that the local charts χ̟ are planar and hence that the firing fields are 
two-dimensional.
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nectivity from the spiking data is an elaborate task that requires tedious analyses of the spike trains produced by 
individual cells or cell groups over periods comparable to the Leray and the learning  times83,109. To circumvent 
these difficulties, we reasoned as follows.

Suppose that the spiking activity used to produce a coactivity complex T (t) is generated as a moving 
agent (animal’s body, its head, its gaze) follows a trajectory γ (t) over a space X, covered with stable firing 
fields υi , i = 1, . . . ,N  . Consider a navigation period ̟ that spans over a smaller segment of this trajectory, 
γ̟ = {γ (t) : t ∈ ̟ } . If ̟  is sufficiently short, then one would expect γ̟ to cross at most one component of a 
typical firing field υi ; even if γ̟ meets more than one component of a multiply connected υi , this property may 
not manifest itself in the resulting spike trains, i.e., υi should be effectively simply connected (Fig. 4A). Cor-
respondingly, the Leray dimensionality of the coactivity complex acquired during that period should reflect 
the dimensionality of a small underlying fragment of X—a local chart χ̟—that contains γ̟ (topologically, 
χ̟ (γ ) ∼= {∪jυj|γ̟ ∩ υj �= ∅} ). The dimensionality of χ̟ can then be ascribed to all the contributing υj s, 
dim(υj) = dim(χ̟ ).

Further, if the ̟ -period is allowed to shift in time, then the segment γ̟ will also slide along the trajectory 
γ (t) ; the spikes fired within each t-centered window, ̟t = [t −̟/2, t +̟/2] , will then produce a ̟t-spe-
cific flickering coactivity complex F̟ (t) ⊆ T (t) , whose topological properties may change with  time78,110,111. 
Since F̟ (t) contains a finite number of elements, it will reconfigure at discrete moments, t1, t2, . . . , and remain 
unchanged in-between, F̟ (t) = F̟ (tk) , t ∈ [tk , tk+1) . If a given instantaneous configuration F̟ (tk) is rep-
resentable, then its vertexes correspond to the regions comprising the local chart χ̟ (tk) , with dimensionality 
dim(χ̟ (tk)) ≥ D̄L(F̟ (tk)) . If two such complexes overlap, F̟ (tk) ∩ F̟ (tl) �= ∅ (i.e., their vertex sets over-
lap), then their respective charts also overlap χ̟ (tk) ∩ χ̟ (tk+1) �= ∅ , which allows relating their topological 
properties, including properties of the representing regions.

Clearly, the outcome may depend on how each γ̟ is embedded into X, the spiking parameters, etc. Moreover, 
since the Leray dimensionality of the instantaneous complexes can change, so can the dimensionalities of the 
corresponding local charts: D̄L(F̟ (tk)) �= D̄L(F̟ (tl)) may entail dim(χ̟ (tk))  = dim(χ̟ (tl)) . This may seem 
as a contradiction since the representing space is naturally assumed to be a topological manifold, i.e., all of its 
local charts, arbitrarily selected, should have the same dimensionality dim(χ̟ (t)) = dim(X) = D . On the other 
hand, the deviations of the local dimensionality estimates from a fixed D can be viewed as mere fluctuations 
caused by occasional contribution of multiply connected firing fields or by other noise sources, e.g., by stochas-
ticity of neuronal  spiking112. One can hence attempt to discover the true dimensionality of X by evaluating the 
mean Leray dimensionality of the instantaneous complexes,

which physiologically alludes to learning the physical structure of the underlying space from the recurrent 
information.

Numerical verification of the viability of the proposed approaches can be achieved by simulating multiply 
connected firing fields and computing homological dynamics of the resulting coactivity complexes. To that end, 
we randomly added 2− 3 additional convex components to ∼ 30% of the place fields (Fig. 4A) and simulated 
the topological dynamics of the corresponding complexes.

The results show that multiple connectivity of the firing fields does indeed increase Leray dimensionality 
in both the detector and the integrator complexes, Tσ (t) and Tς (t) . Moreover, in contrast with the complexes 
generated off the maps with convex fields, the maps with multiply connected fields tend to produce persistent 
higher-dimensional loops, notably in the coactivity detecting complexes Tσ (t) (compare Figs. 2A and  4B). In the 
spike integrating clique complex Tς (t) , the Leray dimensionality remains low and may in some cases retain the 
physical value DL(Tς ) = 1 , although topological loops in dimensions D = 2 and even higher may also appear 
(Fig. 4C). Thus, multiple firing field connectivity significantly increases the number of spurious 1D holes (by 
200–300% ), precluding both types of complexes from assuming the physically expected topological shapes.

Tighter dimensionality estimates can be produced by using shorter spike integration windows ̟ � Tmin and 
constructing flickering coactivity complexes F̟ (t) from pairwise coactivities detected over ̟ -periods shifting 
by discrete steps �̟ and yielding an array of windows ̟1,̟2,̟3, . . . centered at tk = ̟/2+ (k − 1)�̟ . 
The specific ̟-values were chosen comparable to the characteristic time required by the rat to run through a 
small segment of the environment: ̟ ≈ 25–65 s for the arena shown on Figs. 1A and 4A. The Betti numbers 
for this case were evaluated using zigzag homology theory—a generalization of the persistent homology theory 
that applies to complexes that can not only grow, but also shrink, break apart, fuse back again, etc.113,114. In par-
ticular, this approach allows studying how the topological fluctuations in F̟ (t) affect its Leray dimensionality 
D̄L(F̟ (t)) from moment to moment.

Typical results illustrated on Fig. 4D show that there appears a large number of spurious 0D loops—discon-
nected pieces—with lifetimes nearly exponentially distributed about the learning periods Tς

min , which suggests 
that fragments of F̟ (t) appear and disappear at random over such periods. The transient 1D loops also form 
and decay at ̟ -timescale. However, the most important outcome is that the topological dynamics in dimensions 
D > 1 trivializes—the higher dimensional loops in F̟ occur very rarely, if ever. These properties are qualitatively 
unaffected by varying the discretization step �̟ ( ̟ /20 � �̟ � ̟/10 ) or changing the window width ̟ , 
i.e., the estimates of the mean Leray dimensionality �D̄L(F̟ )� = 1 are stable and reveal physical planarity of 
the representing space.

Verification of the RCC5-consistency of the spiking data produces the same qualitative results as in the 
case with simply connected firing domains: the R5(t)-schemas become consistent after a learning period 
TRCC5 < T

ς
min , upon which neuronal activity becomes spatially interpretable, and, by the Leray and Eckhoff 

arguments, representable in dimensions D ≥ �D̄L(F̟ )�.

dim(X) = �D̄L(F̟ (tk))�k ,
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Electrophysiological data. We applied the analyses described above to spiking activity recorded in the 
hippocampus (CA1 area) of rats navigating a linear environment shown on Fig. 5A (for more data description 
and experimental specifications  see115). A typical running session, during which the animal performed 45− 70 
laps between the tips of the track, provided Nc � 25 simultaneously recorded neurons, allowing to construct 
small coactivity complexes that quickly become RCC5-consistent, comply with the Eckhoff conditions, and 
exhibit persistent Leray dimensionality, D̄L = 0 , with typical persistent Leray time TL ≈ 10 mins (Fig.5B).

The vanishing D̄L indicates that a linear track illustrated in Fig. 5A is contractible and implies 1D-represent-
ability. The latter can also be tested independently via RCC5 analyses, which in this case allows identifying the 
track’s linear  structure116.

Since some of the hippocampal place fields are multiply connected, we also applied sliding window analy-
ses, adjusting the spike integration period ̟ i to match the duration of the animal’s ith run from one end of the 
track to the other (typically 2 ≤ ̟i ≤ 10 secs). Computations reveal that the resulting complexes F̟i (t) exhibit 
the same mean Leray dimensionality �D̄L(F)� = 0 , which is consistent with the persistent D̄L estimates above. 
Combining these results produces convergent evidence that in this case the hippocampus does indeed map out 
a 1D spatial domain (rather than 2D,  see115).

The latter conclusion can, in fact, be verified by yet another representability test, which applies only to 1D cases 
and presumes firing field convexity. The Golumbic-Fishburn (GF)  algorithm53–57 is based on computing a binary 
index p: the 1D-representable simplicial complexes � yield p(�) = +1 , and the non-representable complexes 
produce p(�) = −1 . For the inflating or flickering coactivity complexes this index becomes time-dependent, 
p = p(t) , marking the evolution of 1D representability (Methods” section). Applying the GF-algorithm to the 
inflating coactivity complexes constructed for cells with convex place fields only, we found that 1D represent-
ability, p(t) = +1 , appears in about T+ ≈ 10 mins, close to the Leray time (Fig. 5B,C), demonstrating consistency 
with the previously obtained results.

Lastly, we addressed a particular property of the place cell’s spiking activity in linear environments—the place 
fields’ directionality: a given place cell may fire during the outbound, but not inbound directions, or vice  versa117. 
We verified that the topological dynamics exhibited by the coactivity complexes built using only the outbound or 
only the inbound activity are very similar to the dynamics of the full (bidirectional) complex Tς (t) (Fig. 5B,C), 
implying that place cell directionality does not necessarily compromise 1D representability of spiking activity.

Discussion
Topological analyses of the spiking data allow testing whether a given type neuronal activity may arise from a 
“spatial map,” i.e., whether each neuron’s spiking marks a domain similar to a place field, a head direction field, 
a view field, etc., in a certain low-dimensional space. Thus far, establishing correspondences between neurons 
and firing fields was based on matching the spike trains with spatial domains empirically, through trial and 
 error1,19,30. Here we attempt to address this question in a principled way, through intrinsic analyses of the spik-
ing data, without presuming or referencing ad hoc constructions. A set of hands-off algorithms discussed above 
allows objective estimates for the dimensionality of a space needed to model the patterns of neuronal firing—a 
method that is unaffected by technical limitations, experimental ingenuity or complexity (e.g., nonlinearity) of 
the required firing field arrangements.

To follow the dynamics of the coactivity complexes we extend the conventional approaches of representability 
theory into the temporal domain, obtaining several complementary time-dependent markers of representability. 
In particular, we use persistent homologies to extend Leray’s theory to the case of inflating simplicial complexes 

Figure 5.  Multiple firing fields. (A) Spikes produced by five place cells (dots of different color) recorded 
in hippocampal CA1 area of a rat navigating a solid U-shaped groove with hard walls (speed v ≥ 3 cm/
sec). Since the rat could move from place to place in strict sequence, this environment is topologically one-
dimensional. The underlying gray line shows a fragment of the rat’s trajectory (for more details  see115). (B) 
Spurious topological loops in the corresponding coactivity complex disappear in TL ≈ 12 minutes, revealing 
persistent Leray dimensionalities D̄ = 0 . The blue background highlights the period during which the coactivity 
complex computed using only cells with convex place fields is not 1D representable ( p = −1 ). The transition to 
p(t) = +1 , marking the onset of 1D representability occurs at a time close to TL . (C) Topological dynamics of 
the coactivity complex constructed using the data recorded during the outbound moves only shows qualitatively 
similar behavior.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20957  | https://doi.org/10.1038/s41598-021-00281-y

www.nature.com/scientificreports/

and zigzag homologies in the case of flickering simplicial complexes. The latter approach is especially valuable 
as it allows extracting stable topological information from spiking data that may be generated from the maps 
with multiply connected firing fields or encumbered by other inherent irregularities, in spirit with the general 
ideas of topological  persistence68–73. It should also be mentioned that mathematical discussions of the persistent 
nerve theorem, alternative to ours and more formal, have began to  appear118,119; however at this point our stud-
ies are independent.

A principal observation suggested by our analyses is that representability is a dynamic, emergent property 
that characterizes current information supplied by the neuronal activity. Moreover, representability depends not 
only on the amount and the quality of the spiking data itself, but also on the mechanisms used for processing 
and interpreting this data. Both aspects affect the time required to establish the existence of a representing space 
and its dimensionality. An implication of this observation is that experimentally constructed firing field maps 
(place field maps, head direction maps, etc.) cannot be automatically regarded as direct models of cognitive 
representations of ambient  spaces15–21 or more general spatial  frameworks120; correctness of such interpretations 
may require more nuanced considerations.

Methods
Physiological parameters and constructions. 

• Simulated trajectory r(t) = (x(t), y(t)) , used for generating coactivity complexes was obtained by modeling 
a rat’s non-preferential exploratory behavior—navigation without favoring of one segment of the environ-
ment E over another (Fig. 1A). The mean speed of about ∼ 20 cm/sec was selected to match experimen-
tally recorded speeds. The direction of the velocity v(t) = (vx(t), vy(t)) defines the “angular trajectory” 
ϕ(t) = arctan vy(t)/vx(t) that traverses the space of directions, S1 , allowing to simulate head direction cell 
activity as the rat explores E48,74,82. The simulated navigation period, T = 25 minutes, was selected to match 
the duration of a typical “running session” in electrophysiological  experiments100. A shorter spike integration 
window ̟ ≪ T was used to limit the pool of spiking data for time-localized computations.

• Poisson spiking rate of a place cell p depends on the animal’s location r(t), 

where fp is the cell’s maximal firing rate and sp defines the size of its place  field101. A similar formula defines 
the firing rate of a head direction cell h, �h(ϕ) , as a function of the animal’s ongoing orientation ϕ , the cell’s 
preferred orientation angle ϕh , its maximal rate fh and the size of its preferred angular domain sh . In all 
simulations the firing fields were stable, i.e., the parameters of �c and �h remained constant.

• Neuronal ensembles produce lognormal distributions of the maximal firing rate amplitudes, fc , and of the 
firing field sizes, sc48,121. We tested about 17, 000 different ensembles, in which the ensemble mean maximal 
rate f ranged between 4 and 40 Hz for the place cells and between 5 to 35 Hz for the head direction cells. 
The ensemble mean firing field sizes varied between 10 to 90 cm for the place fields and between 12◦ and 36◦ 
degrees for the angular fields. For all ensembles, the firing field centers were randomly scattered over their 
respective representing spaces.

• Multiple Firing Fields were generated by adding two or three randomly scattered auxiliary spiking centers rc′ , 
rc′′ , etc., 

The maximal firing rates at the auxiliary locations are smaller than the rate at the main location, fc > fc′ > . . . , 
as suggested by the  experiments104,105.

• The activity vector of a cell, mc = [mc,1, . . . ,mc,n], is constructed by binning its spike trains into w = 1/4 
seconds long “coactivity windows”74,92. Each mc,k specifies how many spikes were fired by c into the kth time 
bin, n is defined by the duration of navigation, n = ⌊T/w⌋ . High activity periods can be identified by selecting 
time bins in which the number of fired spikes exceeds an activity threshold m.

• Coactivity. Two cells, ci and cj , are coactive over a time period T, if the formal dot product of their activity 
vectors does not vanish, mij(T) = mci (T) ·mcj (T) �= 0 . The set of all pairwise coactivities forms the coactivity 
matrix M(T) = �mij(T)� . Highly coactive pairs of cells are the ones whose coactivity exceeds a threshold µ.

Topological propaedeutics. Graphs. 

• A graph G is defined by its vertices, V = {v1, v2, . . . , vn} , and a set of edges E that link certain pairs of vertexes. 
A formal description of a graph is given by its connectivity matrix C(G), with the elements 

• A coactivity Graph G is built by establishing functional links between cells that exhibit high activity and 
coactivity ( mc,k ≥ m , mij ≥ µ see above)89,90.

• A clique of order d, ς(d) in a graph is a fully interconnected subset of (d + 1) vertexes vi0 , vi1 , . . . , vid (Fig. 6A).

�p(r) = fpe
−

|r−rp |
2

2s2p ,

�c(r) = fce
−

|r−rc |
2

s2c + fc′e
−

|r−rc′ |
2

s2
c′ + . . . .

Cij(G) =

{

1, if vi and vj are connected by edge eij ,
0 if vi and vj are disconnected.
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• Given a graph G, its complement graph G̃ is produced by flipping 0s and 1s in the connectivity matrix C(G), 
i.e., joining the disconnected vertexes of G and removing the existing edges.

Simplicial complexes. 

• Geometric simplexes are points (0-simplexes, κ(0) ), line segments (1-simplexes, κ(1) ), triangles (2-simplexes, 
κ(2) ), tetrahedra (3D-simplexes, κ(3) ), as well as their d > 3-dimensional generalizations (Fig. 6A). Note that 
the set of vertexes opposite to a given vertex in a d-simplex κ(d) spans a (d − 1)-simplex—a face of κ(d) . The 
boundary of a d-simplex then consists of (d + 1) faces κ(d−1)

1 , κ
(d−1)
2 , . . . , κ

(d−1)
d+1  (Fig. 6B).

• Geometric simplicial complexes are combinations of geometric simplexes that match each other vertex-to-
vertex, so that a non-empty intersection of any two simplexes in K yields another K-simplex: if κ1, κ2 ∈ K , 
then κ1 ∩ κ2 = κ3 ∈ K.

• The collection of all simplexes of dimensionality d and less forms the d-skeleton of K, skd(K).
• Topological analyses of simplicial complexes do not address simplexes’ shapes and are based entirely on the 

combinatorics of the vertexes shared by the simplexes. This motivates using abstract simplexes and abstract 
simplicial complexes that capture the combinatorial structure of κ(d) s without making references to their 
geometry. Specifically, an abstract 0-simplex is a vertex σ (0)

i ≡ vi , an abstract 1-simplex is a pair of vertexes, 
σ
(1)
ij = [vi , vj] ; an abstract 2-simplex is a triple of vertexes, σ (2)

ijk = [vi , vj , vk] , and so forth (Fig. 6C). Thus, 
abstract complexes may be viewed as multidimensional generalizations of graphs or as abstractions derived 
from the geometric simplicial complexes.

A d-element subset of an abstract d-simplex σ (d) forms its (d − 1)-face. The“face-matching” of the abstract 
simplexes in � means simply that a nonempty overlap of two simplexes σ1, σ2 ∈ � is a simplex of the same 
complex, σ1 ∩ σ2 = σ3 ∈ � . The latter property is commonly used to define abstract simplicial complexes for 
arbitrary sets, using families of their subsets that are closed under the “ ∩ ”  operation41.

Figure 6.  Cliques and simplexes. (A) Pairwise interlinked subsets of vertexes in graph G form its cliques. 
Shown is a vertex ς(0) (0-clique), a link ς(1) (1-clique), a three-vertex ς(2) and a four-vertex ς(3) cliques. (B) 
Geometric simplexes are actual geometric figures: a 0D dot ( κ(0) ), a 1D link ( κ(1) ), a 2D triangle ( κ(2) ) and a 3D 
tetrahedron ( κ(3) ). (C) The corresponding abstract simplexes are simply ordered sets of vertexes: σ (0) (single 
vertex), σ (1) (pairs of vertexes), σ (2) (triples) and σ (3) (quadruples).

Figure 7.  Cliques and simplexes. (A) Pairwise interlinked place fields produce cliques of the coactivity graph 
G . Shown is a vertex ς(0) (0-clique), a link ς(1) (1-clique), a three-vertex ς(2) and a four-vertex ς(3) clique. (B) 
Geometric simplexes: a 0D dot ( κ(0) ), a 1D link ( κ(1) ), a 2D triangle ( κ(2) ) and a 3D tetrahedron ( κ(3) ). (C) 
The corresponding complexes: a simplicial coactivity complex Tσ whose simplexes (1) are detected as singular 
coactivity events (left) may topologically differ from the clique coactivity complexes Tς , assembled from the 
cliques of a coactivity graph G (right) over a spike integration period ̟  . A simplicial complex K is a combination 
of matching simplexes. The set of vertexes and black lines highlight the 1D-skeleton of sk1(K).
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• Example 1: The set of overlapping regions (4) define abstract simplexes (5) of the nerve complex (6) (Fig. 7A).
• Example 2: The combinations of coactive cells define coactivity simplexes (1), which together form a coactivity 

complex (Fig. 7B).
• Example 3. Vertexes of geometric simplexes that form a geometric simplicial complex K define abstract 

simplexes that form the corresponding abstract simplicial complex � (Fig. 7C).
• The set of d-dimensional simplexes of a complex � forms its (abstract) d-skeleton, skd(�).
• A clique complex of an undirected graph G is an abstract simplicial complex formed by the cliques (fully 

interconnected subgraphs) of G91, Fig. 6A. Combinatorial properties of cliques are the same as simplexes’: a 
subset of a clique’s vertexes form a clique, overlap of two G-cliques is also a clique, ς1 ∩ ς2 = ς3 ∈ G (Fig. 6). 
Thus, any graph G defines a unique clique complex �̃(G) . Note, that the 1-skeleton of a clique complex yields 
its underlying graph, sk 1(�̃(G)) = G , but if � is not a clique complex, then the clique complex built over its 
1-skeleton does not reproduce �.

• Coactivity complexes used in this study are of two kinds. The first kind is formed by the abstract complexes 
Tσ built from simultaneously coactive cell groups (1). The second kind is formed as the clique complexes 
of the coactivity graphs G77,80. The graph (co)activity thresholds m and µ are used to control the size of the 
complex Tm,µ = T (Gm,µ) : selecting m ≥ 2 , µ = 1 for small maps (i.e., counting cells that produce at least 
two spikes per time bin w) and m ≥ 2 , µ ≥ 5 for larger maps allows computing the full simplicial complex 
with dimensionality dim(Tm,µ) ≤ 10 , for which we can numerically apply the Javaplex  software122.

Mereology. Mereology is the theory of parthood—relations between whole and part, as well as relations 
between parts within a  whole96,123. Mereological level of describing spatial regions is cruder than topological, 
which also includes contact relationships. Since the latter is generally not captured by spiking  data40,116, we use 
mereological RCC5  theory95.

Topological invariants. 

• Homological groups are designed to “count pieces” in a space X with suitable coefficients. The key property of 
these groups is that they remain unchanged—invariant—as X is continuously deformed  (see41,42 for a gentle 
introduction to the subject). If the coefficients form an algebraic field F, then the homological groups, com-
monly referred to as the “homologies” of X are simply vector spaces H0(X, F),H1(X, F), . . . , associated with 
X (one per dimension). Homologies can be easily computed for spaces whose “pieces” are explicitly defined, 
e.g., for the simplicial complexes, thus providing a way of identifying their topological structures. In practice, 
it is easier to use just the dimensionalities of H∗s—the Betti numbers bk = dim(Hk(X, F)) , to count numbers 
of connectivity components, cavities, tunnels and other topological features of X in different  dimensions41,42. 
For example, if X is the boundary of a hollow triangle (or another noncontractible 1D loop), then β1(X) = 1 . 
If X is 1-dimensional complex, i.e., a graph, then β1(X) equals to the number of cycles in X, counted up to 
topological equivalence. If the triangle is “filled”, then it can be continuously contracted into a 0D point; since 
the latter has no topological structure in dimensions d > 0 , the corresponding Betti numbers also vanish. By 
the same argument a “filled” tetrahedron has βk>0 = 0 , but if the tetrahedron is hollow, then its boundary, 
being a 2D noncontractible loop (topologically—a 2D sphere) produces β2 = 1 , βk>2 = 0 . Similarly, for any 
d-simplex βk>0(σ

(d)) = 0 , whereas for its hollow boundary, ∂σ (d) , the Betti numbers are βd−1(∂σ
(d)) = 1 , 

βk  =0,d−1(∂σ
(d)) = 0 (Fig. 6). Same results apply to the “abstract” counterparts of all these complexes. Note 

also that continuous deformations of a 0D point x (a 0D topological loop) amount to “sliding” x inside of 
a space X that contains x; thus β0(X) simply counts such “sliding domains”, i.e., the number of connected 
components in X. As a result, all simplexes and simplicial complexes that consist of one piece have β0(X) = 1
.

• Persistent homology theory allows tracing the topological structure in a filtered family of simplicial complexes, 
e.g., describing the topological dynamics of the inflating family (2)70–73. The Betti numbers plotted as func-
tion of the filtration parameter (in our case it is time, t) form the barcode, b(T , t) = (b0(T , t), b1(T , t), . . .) , 
which provides the exact mathematical meaning to the term “topological shape” used throughout the text. 
Each bar in b(T , t) can be viewed as the corresponding topological loop’s  timeline48,74–77,80.

• Zigzag Homology theory allows tracking the Betti numbers of the “flickering” complexes—the ones whose 
simplexes can not only appear, but also disappear  (see113,114 and Supplement  in110). In particular, Zigzag 
homology techniques allow capturing the times when individual loops appear in the flickering complex, 
how long they persist, when they disappear, reappear again, etc.

Representability. A generic algorithm for checking whether a given complex can be built as a nerve of a 
D-dimensional cover is known only for D = 1 (see below). However, there exist criteria that allow ruling out 
certain non–representable cases.

• The Leray criterion posits that if a complex � is a nerve of a D-dimensional cover with contractible overlaps 
(4), then its rational homologies in dimensions higher or equal than D should vanish, Hi≥D(�,Q) = 058. 
Moreover, homologies of all the subcomplexes �′ ⊆ � , induced by selecting vertex subsets of � should also 
vanish, Hi≥D(�

′,Q) = 0 . These properties can be verified by computing the Betti numbers and verifying that 
bi≥D(�,Q) = 0 . In practice, it is more convenient to carry out the computations over a finite field, such as Z2 . 
Although the bk(�,Q) numbers may in general differ from the bk(�,Z2) numbers, the latter also have to obey 
the Leray condition and produce the same Leray dimensionality. As an example, the Leray condition poses 
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that the boundary of the triangle is not 1-representable ( β1(∂σ (2),Z2) > 0 ), but the triangle itself may be 
( β1(σ (2),Z2) = β2(σ

(2),Z2) = 0 ); the boundary of a tetrahedron is not 2-representable ( β2(∂σ (3),Z2) > 0 ), 
but the tetrahedron may be.

• Amenta’s theorem connects the Leray dimensionality of a simplicial complex to its Helly number, defined as 
follows. Let ϒ = {υ1, υ2, . . . ,υn} be a finite family of regions (Fig. 8). The Helly number h = h(ϒ) of the 
family is defined to be the maximal number of non-overlapping regions, such that every h− 1 among them 
overlap. For the corresponding nerve complex N (ϒ) , h = h(N ) = h(ϒ) is the number of vertices of the 
largest simplicial hole in N  (i.e., the dimension of the hole plus  249). This observation can be used to attribute 
a Helly number to any simplicial complex � , h(�) . From the perspective of representability analyses, a key 
property of the Helly numbers is that they do not exceed d + 1 for a d-Leray  complex49. In particular, if the 
regions υi ∈ ϒ consist of up to k compact, convex domains in Rd , and any intersection υi1 ∩ · · · ∩ υit also 
satisfies this property, then h(ϒ) ≤ k(d + 1)49,106,107.

• Eckhoff ’s conjecture. The f-vector f = (f1, f2, . . . , fn) of a simplicial complex � is the list of numbers of its 
k-dimensional simplexes, fk = #{σi ∈ �| dim(σ ) = k} (“f” is a traditional notation that should not be con-
fused with the firing rates). The h-vector of � is defined as 

where parentheses denote the binomial coefficients. Given the combinatorial decomposition of l, 

where lk ≥ lk−1 ≥ . . . ≥ lj ≥ j ≥ 1108, define the set of numbers 

with 0(k) = 0 . Eckhoff ’s  conjecture59, proven  in60 holds that the h-numbers of a d-representable complex 
must satisfy the following inequalities: 

which can be verified not only for “static” complexes, but also for the “inflating” (2) and “flickering” com-
plexes, at each step of their evolution.

• Qualitative spatial consistency. It can be shown that if the RCC5 relationships among all triples of regions 
are consistent, then the entire schema R5 is  consistent93–99. The full set of consistent triples is given in the 
following table.

• Recognizing 1-representability algorithm follows the exposition  in56,57.

Let I = {I1 = [a1, b1], . . . , In = [an, bn]} be set of intervals of a Euclidean line R1.

Definition 1 G(I) is an interval graph, if each vertex vi ∈ G(I) corresponds to an interval Ii ∈ I  and a pair of 
vertexes (vi , vj) is connected by an edge iff Ii and Ij intersect.

hk =

{

fk , for k = 0, 1, . . . ,D − 1,
∑

j≥0(−1)j
(k+j−D

j

)

fk+1, for k = D,D + 1, . . . ,

(8)l =

(

lk

k

)

+

(

lk−1

k − 1

)

+ . . .+

(

lj

j

)

,

l(k) =

(

lk

k − 1

)

+

(

lk−1

k − 2

)

+ . . .+

(

lj

j − 1

)

,







hk ≥ 0 for k = 0, 1, . . . ;

h
(k+1)
k ≤ hk−1, for k = 1, 2, . . . ,D − 1;

h
(d)
k ≤ hk−1 − hk , for k = D,D + 1, . . . .

Figure 8.  Helly’s theorem. (A) Three regions may exhibit both pairwise (left) or triple overlap (right). (B) The 
Helly number of a family of convex regions in Rd does not exceed d + 1 . Thus, for convex planar regions having 
all triple overlaps implies having all the higher order (i.e., for this particular picture quadruple) overlaps. Hence, 
the intersection patterns of convex planar subspaces are completely determined by the intersection patterns of 
triples.
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Definition 2 A comparability graph G⊳ represents an abstract relationship “ ⊳ ”, if its vertexes vi represent ele-
ments of a set, and each link eij represents a ⊳-related pair, vi ⊳ vj.

An interval graph is hence 1-dimensional skeleton of the nerve of I  (Fig. 9A). It can also be verified that the 
complement of an interval graph is a directed comparability graph G̃⊳(I) , in which the relationship vi ⊳ vj is 
defined by the order of the overlapping intervals,

Definition 3 A directed graph satisfies �-property if there are no three vertices vi , vj , vk such that vi , vk are not 
adjacent, while vi is adjacent to vj and vj is adjacent to vk with the corresponding orientations being eij and ejk 
respectively.

Definition 4 A comparability graph satisfies ×-property if no four vertexes vi , vj , vk , vl produce disjoint pairs of 
intervals.

In other words, a situation when vi ⊳ vj and vk ⊳ vl (i.e., the pair of intervals (Ii , Ij) overlaps and the pair (Ik , Il) 
also overlaps), while the remaining pairs remain incompatible, e.g., vj ⋪ vk , vj ⋪ vl , (i.e., Ij does not overlap either 
Ik or Il ), etc., does not appear.

Theorem A graph is an interval graph iff its complement is a comparability graph with an order defined by (9), 
satisfying the ×-property.

This theorem and the definitions motivate the following algorithm for identifying 1D representability of a 
complex � (Fig. 9B):

1. Test whether � is a clique complex, i.e., verify whether all (k + 1)−tuples of vertexes vσ = [vi0 , vi1 , . . . , vik ] 
form a simplex in � if and only if each pair of vertexes [vip , viq ] ∈ vσ is an edge in its 1-skeleton G = sk1(�) . 
If at least one vσ fails this test, then � is not a clique complex and hence not representable.

2. Build the complement G̃ of sk 1(�) and verify its comparability as follows:

 i. Choose an edge between vi and vj and define an orientation on it (e.g., eij  = eji ). If eij was selected, 
then search for all vertexes vj′ that are connected to vj but not to vi (Fig. 9A). If the edge between j 
and j′ is not yet oriented, select ej′j . If it was already (j′j)-oriented, continue on; the opposite, (jj′)
-orientation implies that � is not representable.

   If the orientation for new edges cannot be selected, pause the algorithm and dispose of all the 
edges that have already been oriented. Then pick another unoriented edge and restart the �-rule: 
keep applying it until the process comes to a halt and the next set of edges needs to be removed. 
Do this until all the edges are serviced and hence oriented.

(9)vi ⊳ vj =⇒ bi < aj .

Figure 9.  An algorithm for recognizing 1-representable complexes. (A) Four intervals covering a linear 
segment (bottom) can be represented by a simplicial complex—the nerve of the cover (middle panel). The 
vertexes of the corresponding interval graph G(I)—the 1D skeleton of �—(color-coded) are connected if their 
respective intervals overlap, Ii ∩ Ij =⇒ vi ⊳ vj . The corresponding comparability graph, G̃⊳(I) is shown 
above, with the order indicated by arrows: vi ⊳ vj iff there is an arrow leading from vi to vj . (B) Given a simplicial 
complex � , first check whether it is the clique complex of its 1D-skeleton G := sk1(�) . If it is not, then � is not 
1-representable; if it is, then check whether the complement graph of G is a comparability graph. If it is not, then 
� is not 1-representable. If it is, then check the ×-property: if it holds, then � is 1-representable, otherwise it is 
not.



14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20957  | https://doi.org/10.1038/s41598-021-00281-y

www.nature.com/scientificreports/

 ii. Verify that no 3-tuple of vertexes (vi , vj , vk) forms an oriented 3-cycle. If such a cycle exists, � is 
non-representable in 1D.

 iii. Verify that no triple of vertexes (vi , vj , vk) is “disconnected,” i.e., given eij and ejk , there must exist 
an edge between i and k. If any triple violates this condition, � is not representable. Otherwise 
G̃ = sk 1(�) is a comparability graph with the order: vi ⊳ vj for each eij.

3. For every vertex vi , compute the set of lesser points, D(vi) = {vj ∈ V : vj ⊳ vi} . Then, for all pairs of vertexes 
(vi , vj) check whether D(vi) is a subset of D(vj) or vice-versa. If at least one of these conditions is not satisfied, 
� is not representable.

 If this sequence of conditions is satisfied, � is 1D-representable.

Received: 9 July 2021; Accepted: 8 October 2021
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