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Abstract A continuum model of piezomagnetic material with strain, magnetic and piezomagnetic coupling
gradient effects is proposed using a variational principle in this work. This model is employed to an anti-plane
problem, and a general solution is constructed in polar coordinates. Special attention is paid to microstructural
effects on the magnetic and mechanical response in an infinite piezomagnetic medium with a void. It is found
that the microstructural length scales have a significant influence on the mechanic and magnetic fields. The
three length scales (corresponding to strain, magnetic and piezomagnetic coupling gradients) are indispensable
to describe the nonlocal effects of piezomagnetism. Additionally, controlling the direction and magnitude of
the magnetic field at the edge of the void can be achieved by adjusting the microstructural length scales of the
piezomagnetic medium.

Keywords Piezomagnetic material · Microstructure · Strain gradient · Magnetic field gradient · Anti-plane
problem

1 Introduction

Piezomagnetic components have important applications in many areas, including sensors, head recorders,
micro-electro-mechanical systems (MEMS), ultrasonic generators, magneto-mechanical transducers, active
vibration damping system, high-precision linear motors, micro-valves and micro-positioning devices [1, 2, 3].
With increasing levels of miniaturisation of structures and systems, the underlying microstructure of the material
needs to be accounted for in modelling approaches for accurate and reliable descriptions and predictions of
the mechanic and magnetic behaviour of these structures and systems. An effective modelling approach is to
enrich the governing piezomagnetic continuum equations with additional terms that are envisaged to capture
the microstructural effects. Such efforts may be inspired by gradient-enriched elasticity theories, in which
the length scale parameters that accompany these higher-order gradient terms can typically be linked to the
microstructural properties [4].

In this way, magneto-mechanical coupling has been combined with couple stress theory in [5, 6], with
strain gradient theory in [7], with Eringen’s stress-gradient theory in [8, 9], with Eringen’s gradient theory
adding inertia gradients in [10, 11] and with both strain and stress gradients in [12, 13]. However, in these

M. Xu · X. Shang
Department of Applied Mechanics, School of Mathematics and Physics, University of Science and Technology Beijing, Bei-
jing 100083, China

H. Askes (B)
Department of Civil and Structural Engineering, The University of Sheffield, Sheffield S1 3JD, UK
e-mail: h.askes@sheffield.ac.uk

I. M. Gitman
Department of Mechanical Engineering, The University of Sheffield, Sheffield S1 3JD, UK

http://orcid.org/0000-0002-4900-1376
http://crossmark.crossref.org/dialog/?doi=10.1007/s00707-021-03071-9&domain=pdf


4610 M. Xu et al.

applications, the length scales included in the model appear in the mechanical contributions only. Because
the magnetic contributions have been shown to be equally sensitive to the microstructure of the material [14],
microstructural terms in the magnetic parameters should be added for a more accurate description of magnetic
parameters. Gradient enrichment of the magnetic induction is considered in [15, 16] and higher-order gradients
of the magnetic field are added in [17, 18, 19, 20] based on Eringen’s gradient theory, using the same scale
parameters as those of the mechanical field.

For a more versatile description of magneto-mechanical coupling behaviour, a general piezomagnetic
continuum model with gradients of strain, magnetic field and piezomagnetic coupling terms is used here, and
the individual effects of three length scales on the removal of singularities from magnetic field and mechanical
field and the prediction of size-dependent piezomagnetic response are discussed in detail using the finite
element method [21]. In this paper, we will analyse the influence of the three length scales on the nonlocal
effects of mechanic field and magnetic field in the context of the anti-plane boundary value problem using an
analytical solution method.

2 Formulation of the piezomagnetic continuum model with gradients of strain, magnetic field
and piezomagnetic coupling

2.1 Variational principle for a piezomagnetic medium

Consider a piezomagnetic body occupying a domain � with boundary Ŵ. The total energy functional I of the
body in statics can be written as

I � ∫
�

W
(

εi j , εi j,k, Hi , Hi, j

)

d� − V

� ∫
�

W
(

εi j , εi j,k, Hi , Hi, j

)

d� − ∫
�

f i ui d� −
∮

Ŵ

(

t i ui + pi Dui + ρϕ + πDϕ
)

dS (1)

where V is the work done, W is the internal energy density function, εi j is the strain, Hi is the magnetic

field, ui is the displacement field, ϕ is the magnetic potential and f i is the body force [21].
The internal energy density includes the standard piezomagnetic contributions in terms of strain and

magnetic field, but also non-standard contributions in terms of the spatial derivatives of strain and magnetic
field (each of which will be discussed in specific detail below). In the same spirit, and motivated by the work
of Sladek et al. on the work done by external “force” [7], the surface integral in V contains the external loading
terms with t i , pi , ρ and π denoting the traction, the double traction, the magnetic traction and the magnetic
double traction, respectively. Furthermore, we use the normal surface gradient operator Dui � nlui,l and
Dϕ � nlϕ,l , with nl being the component of outward unit normal vector on Ŵ.

Finally, the kinematic relationships relate the strain and magnetic field to the primary unknowns, that is
the displacements ui and the magnetic potential ϕ, according to

{

εi j � 1
2

(

ui, j + u j,i

)

Hi � −ϕ,i
. (2)

According to the Helmholtz principle of minimum energy dissipation, the total energy functional I should
satisfy the variational equation

δ I � ∫
�

δW
(

εi j , εi j,k, Hi , Hi, j

)

d� − ∫
�

f iδui d�

−
∮

Ŵ

(

t iδui + pi Dδui + ρδϕ + πDδϕ
)

dS � 0 (3)

Applying the Gauss formula, the following result is obtained:

δ I � −
∫

�

[

(

∂W

∂ǫi j

)

, j

−
(

∂W

∂ǫi j,k

)

, jk

+ f̄i

]

δui d� +

∫

�

[

(

∂W

∂ Hi

)

,i

−
(

∂W

∂ Hi, j

)

,i j

]

δϕd�
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+

∮

Ŵ

[

(

∂W

∂ǫi j

−
∂W

∂ǫi j,k

)

,k

n j −
(

∂W

∂ǫi j,k

nk

)

, j

+

(

∂W

∂ǫi j,k

nknl

)

,l

n j − t̄i

]

δui d S

+

∮

Ŵ

[

−

(

∂W

∂ Hi

−
(

∂W

∂ Hi, j

)

, j

)

ni +

(

n j

∂W

∂ Hi, j

)

,i

−
[(

n j

∂W

∂ Hi, j

)

nl

]

,l

ni − ρ

]

δϕdS

+

∮

Ŵ

(

∂W

∂εi j,k

nkn j − pi

)

(δui ),lnldS −
∮

Ŵ

(

ni n j

∂W

∂ Hi, j

− π

)

(δϕ),lnldS � 0 (4)

2.2 Constitutive relations and boundary conditions

We introduce the standard stress tensor ti j , double stress tensor si jk , dipole magnetic flux density bi and
quadrupole magnetic flux density πi j through the following relations:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ti j � ∂W
∂εi j

si jk � ∂W
∂εi j,k

bi � − ∂W
∂ Hi

πi j � − ∂W
∂ Hi, j

(5)

With the above definitions, the total stress σi j and total magnetic flux density Bi are
{

σi j � ti j − si jk,k

Bi � bi − πi j, j
(6)

Taking into account that the variations of δui and δϕ are arbitrary, we can extract the following equilibrium
equations in �,

{

σi j, j + f i � 0
Bi,i � 0

(7)

and the following boundary conditions on Ŵ
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

ti j − si jk,k

)

n j −
(

si jknk

)

, j
+
(

si jknknl

)

,l
n j � t i or ui � ui

si jknkn j � pi or ui,lnl �
∂ui

∂n
(

bi − πi j, j

)

ni +
[(

πi j n j + πi

)

nl

]

,l
ni −
(

πi j n j + πi

)

,i
� ρ or ϕ � ϕ

πi j n j ni � π or nlϕ,l �
∂ϕ

∂n

(8)

The internal energy density function W includes gradients of strain, magnetic field and coupling terms, as
shown in [21]:

W
(

εi j , εi j,k, Hi , Hi, j

)

�
1

2
εi j Ci jklεkl +

1

2
εi j,ml2

1Ci jklεkl,m − εi j qi jk Hk

− εi j,ml2
2qi jk Hk,m −

1

2
Hiμi j H j −

1

2
Hi,ml2

3μi j H j,m (9)

In the above equations, Ci jkl , qi jk and μi j are, respectively, elastic, piezomagnetic and magnetic perme-
ability coefficients, whereas l1, l2 and l3 are material length scale parameters reflecting microscale size effects,
owing to the introduction of strain gradient, piezomagnetic coupling gradient and magnetic field gradient,
respectively, in the energy function.

Substituting Eqs. (9) and (5) into Eq. (6), the following gradient-enriched constitutive equations can be
obtained

{

σi j � Ci jkl

(

εkl − l2
1∇2εkl

)

− qi jk

(

Hk − l2
2∇2 Hk

)

Bi � qi jk

(

ε jk − l2
2∇2ε jk

)

+ μi j

(

H j − l2
3∇2 H j

) (10)
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where ∇2 ≡ ∇T.∇ is the Laplace operator.
Combining the kinematic equation Eq. (2), equilibrium equation Eq. (7) and constitutive equation Eq. (10)

yields the following gradient-enriched governing equations in terms of the primary unknowns ui and ϕ:
{

Ci jkl

(

uk, jl − l2
1∇2uk, jl

)

+ qi jk

(

ϕ, jk − l2
2∇2ϕ, jk

)

+ f i � 0

qi jk

(

ui, jk − l2
2∇2ui, jk

)

− μi j

(

ϕ,i j − l2
3∇2ϕ,i j

)

� 0
(11)

3 Analytical solution of anti-plane problems of piezomagnetic medium

3.1 Construction of the solution via superposition

Consider a transversely isotropic piezomagnetic material polarized along the z-direction and with the xy-plane
as the plane of isotropy. Let the material be subjected to anti-plane shear strain and in-plane magnetic field Hx

at infinity. Thus, the anti-plane displacements are described by

ux � u y � 0, uz � w(x, y), ϕ � ϕ(x, y) (12)

The non-vanishing strain and magnetic field components are
{

εzx

εzy

}

� ∇w,

{

Hx

Hy

}

� −∇ϕ (13)

Substituting them into the gradient-enriched constitutive Eq. (10), where C �
[

c44

c44

]

, Q �
[

q15

q15

]

,

P �
[

μ11

μ11

]

, the total stress and total magnetic flux density can be obtained as
{

σzx

σzy

}

� c44

[

∇w − l2
1∇
(

∇2w
)]

+ q15

[

∇ϕ − l2
2∇
(

∇2ϕ
)]

(14a)

{

Bx

By

}

� q15

[

∇w − l2
2∇
(

∇2w
)]

− μ11

[

∇ϕ − l2
3∇
(

∇2ϕ
)]

(14b)

In the absence of body forces, substitution of Eqs. (12) and (13) into Eq. (11) leads to the following
gradient-enriched governing equations:

{

c44

(

∇2w − l2
1∇2∇2w

)

+ q15

(

∇2ϕ − l2
2∇2∇2ϕ

)

� 0

q15

(

∇2w − l2
2∇2∇2w

)

− μ11

(

∇2ϕ − l2
3∇2∇2ϕ

)

� 0
(15)

Equation (15) can be rewritten by factorizing the various derivatives as
{

c44

(

1 − l2
1∇2
)

∇2w + q15

(

1 − l2
2∇2
)

∇2ϕ � 0

q15

(

1 − l2
2∇2
)

∇2w − μ11

(

1 − l2
3∇2
)

∇2ϕ � 0
(16)

with the first solution set satisfying
{

∇2w � 0

∇2ϕ � 0
(17)

or rewritten as
{

∇2
{

c44

(

w − l2
1∇2w
)

+ q15

(

ϕ − l2
2∇2ϕ
)}

� 0

∇2
{

q15

(

w − l2
2∇2w
)

− μ11

(

ϕ − l2
3∇2ϕ
)}

� 0
(18)

and the second solution set satisfying
{

c44

(

w − l2
1∇2w
)

+ q15

(

ϕ − l2
2∇2ϕ
)

� 0

q15

(

w − l2
2∇2w
)

− μ11

(

ϕ − l2
3∇2ϕ
)

� 0
(19)

The total solution of Eq. (15) is the combination of the first solution set obtained from Eq. (17) and the
second solution set obtained from Eq. (19).
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3.2 Solution in polar coordinates

The two solutions sets are solved in polar coordinates with ∇2 � ∂2

∂r2 + 1
r

∂
∂r

+ 1
r2

∂2

∂θ2 , assuming w � f (r) cos

(nθ), ϕ � g(r) cos(nθ). The solution of Eq. (17) is
⎧

⎪

⎪

⎨

⎪

⎪

⎩

w1 � a0 + h0lnr +
∞
∑

n�1

(

anrn + hnr−n
)

cosnθ

ϕ1 � c0 + d0lnr +
∞
∑

n�1

(

cnrn + dnr−n
)

cosnθ

(20)

where an , hn , cn and dn are undetermined constants. Substituting w � f (r )cos(nθ ), ϕ � g(r )cos(nθ ) into
Eq. (19) and dividing by cosnθ , the following equations are obtained:

⎧

⎨

⎩

c44

[

1 − l2
1

(

d2

dr2 + 1
r

d
dr

− n2

r2

)]

f (r) + q15

[

1 − l2
2

(

d2

dr2 + 1
r

d
dr

− n2

r2

)]

g(r) � 0

q15

[

1 − l2
2

(

d2

dr2 + 1
r

d
dr

− n2

r2

)]

f (r) − μ11

[

1 − l2
3

(

d2

dr2 + 1
r

d
dr

− n2

r2

)]

g(r) � 0
(21)

Introduce the modified Bessel function
(

d2

dx2 + 1
x

d
dx

− n2

x2

)

y(x) � y(x) and let x � r
√

λ, then the modified

Bessel function is
(

d2

dr2
+

1

r

d

dr
−

n2

r2

)

y
(

r
√

λ
)

� λy
(

r
√

λ
)

(22)

Based on Eq. (22), substitute f (r) � α1 In

(

r
√

λ

)

, g(r) � α2 In

(

r
√

λ

)

into Eq. (21a), by which the

following equation is obtained

c44

(

1 − l2
1λ
)

α1 + q15

(

1 − l2
2λ
)

α2 � 0 (23a)

Next, substituting f (r) � α1Kn

(

r
√

λ
)

, g(r) � α2 Kn

(

r
√

λ
)

into Eq. (21b) leads to

q15

(

1 − l2
2λ
)

α1 − μ11

(

1 − l2
3λ
)

α2 � 0 (23b)

where In and Kn are modified Bessel functions of order n of the first and second kind, with α1 and α2

undetermined constants.
In order to obtain a non-trivial solution [α1, α2], λ should satisfy

det

∣

∣

∣

∣

c44

(

1 − l2
1λ
)

q15

(

1 − l2
2λ
)

q15

(

1 − l2
2λ
)

−μ11

(

1 − l2
3λ
)

∣

∣

∣

∣

� 0 (24)

Letting β1 � q2
15

C44μ11
and β2 � l2

1l2
3 + l4

2

q2
15

C44μ11
leads to the following inequalities

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

l2
1 − l2

3

)2
+ 4β1

(

l2
1l2

2 + l2
2l2

3 − l2
1l2

3 − l4
2

)

> 0
(

l2
1 +l2

3

)

+2l2
2β1

β2
> 0

1+β1

β2
> 0

(25)

There are two positive eigenvalues λ1 and λ2, and two sets of [α1, α2] corresponding to λ1 and λ2,
respectively:

λ1,2 �

(

l2
1 + l2

3

)

+ 2l2
2β1 ±
√

(

l2
1 − l2

3

)2
+ 4β1

(

l2
1l2

2 + l2
2l2

3 − l2
1l2

3 − l4
2

)

2β2
(26)

⎧

⎨

⎩

α
(1)
1 � β1

α
(1)
2 � β1q15

(

1−l2
2λ1

)

μ11

(

1−l2
3λ1

)

(27a)

⎧

⎨

⎩

α
(2)
1 � β1

α
(2)
2 � β1q15

(

1−l2
2λ2

)

μ11

(

1−l2
3λ2

)

(27b)
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Thus, the solutions f(r) and g(r) in Eq. (21) are

[

fn(r)

gn(r)

]

� G1n

[

α
(1)
1

α
(1)
2

]

In

(

√

λ1r
)

+ G2n

[

α
(2)
1

α
(2)
2

]

In

(

√

λ2r
)

+G3n

[

α
(1)
1

α
(1)
2

]

Kn

(

√

λ1r
)

+ G4n

[

α
(2)
1

α
(2)
2

]

Kn

(

√

λ2r
)

(28)

where G1n , G2n , G3n and G4n are undetermined constants. Therefore, the solution of Eq. (19) reads
⎧

⎪

⎪

⎨

⎪

⎪

⎩

w2 �
∞
∑

n�0

[

G1nα
(1)
1 In

(√
λ1r
)

+ G2nα
(2)
1 In

(√
λ2r
)

+ G3nα
(1)
1 Kn

(√
λ1r
)

+ G4nα
(2)
1 Kn

(√
λ2r
)

]

cosnθ

ϕ2 �
∞
∑

n�0

[

G1nα
(1)
2 In

(√
λ1r
)

+ G2nα
(2)
2 In

(√
λ2r
)

+ G3nα
(1)
2 Kn

(√
λ1r
)

+ G4nα
(2)
2 Kn

(√
λ2r
)

]

cosnθ

(29)

The expressions of displacements w and ϕ are

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

w � w1 + w2 � a0 + h0lnr +

∞
∑

n�1

(

anrn + hnr−n
)

cosnθ

+

∞
∑

n�0

[

G1nα
(1)
1 In

(

√

λ1r
)

+ G2nα
(2)
1 In

(

√

λ2r
)

+ G3nα
(1)
1 Kn

(

√

λ1r
)

+ G4nα
(2)
1 Kn

(

√

λ2r
)]

cosnθ

ϕ � ϕ1 + ϕ2 � c0 + d0lnr +

∞
∑

n�1

(

cnrn + dnr−n
)

cosnθ

+

∞
∑

n�0

[

G1nα
(1)
2 In

(

√

λ1r
)

+ G2nα
(2)
2 In

(

√

λ2r
)

+ G3nα
(1)
2 Kn

(

√

λ1r
)

+ G4nα
(2)
2 Kn

(

√

λ2r
)]

cosnθ

(30)

The various stress and magnetic flux measures can be expressed in polar coordinates as follows

εzr �
∂w

∂r

εzθ �
1

r

∂w

∂θ

tzr � C44
∂w

∂r
+ q15

∂ϕ

∂r

tzθ �
C44

r

∂w

∂θ
+

q15

r

∂ϕ

∂θ

szrr � C44l2
1

(

∂2w

∂r2

)

+ q15l2
2

(

∂2ϕ

∂r2

)

szθθ � C44l2
1

1

r2

(

∂2w

∂θ2

)

+ q15l2
2

1

r2

(

∂2ϕ

∂θ2

)

σzr � C44

[

∂w

∂r
− l2

1

∂

∂r

(

∇2w
)

]

+ q15

[

∂ϕ

∂r
− l2

2

∂

∂r

(

∇2ϕ
)

]

σzθ � C44

[

1

r

∂w

∂θ
− l2

1

1

r

∂

∂θ

(

∇2w
)

]

+ q15

[

1

r

∂ϕ

∂θ
− l2

2

1

r

∂

∂θ

(

∇2ϕ
)

]

Hr � −
∂ϕ

∂r

Hθ � −
1

r

∂ϕ

∂θ
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br � −μ11
∂ϕ

∂r
+ q15

∂w

∂r

bθ � −
μ11

r

∂ϕ

∂θ
+

q15

r

∂w

∂θ

πrr � q15l2
2

(

∂2w

∂r2

)

− μ11l2
3

(

∂2ϕ

∂r2

)

πθθ � q15l2
2

1

r2

(

∂2w

∂θ2

)

− μ11l2
3

1

r2

(

∂2ϕ

∂θ2

)

Br � q15

[

∂w

∂r
− l2

2

∂

∂r

(

∇2w
)

]

− μ11

[

∂ϕ

∂r
− l2

3

∂

∂r

(

∇2ϕ
)

]

Bθ � q15

[

1

r

∂w

∂θ
− l2

2

1

r

∂

∂θ

(

∇2w
)

]

− μ11

[

1

r

∂ϕ

∂θ
− l2

3

1

r

∂

∂θ

(

∇2ϕ
)

]

(31)

3.3 Several special cases

Next, we will briefly discuss the nature of the solutions for several special cases that will be studied in detail
in the next Section.

Case 1: l1 � l2 � l3 � 0.
In this case, there is no solution for Eq. (19), and the expressions of displacements w and ϕ are

⎧

⎪

⎪

⎨

⎪

⎪

⎩

w � a0 + h0lnr +
∞
∑

n�1

(

anrn + hnr−n
)

cosnθ

ϕ � c0 + d0lnr +
∞
∑

n�1

(

cnrn + dnr−n
)

cosnθ

(32)

Case 2: l3 � l2 � 0, l1 �� 0.
In this case, there is only one real eigenvalue λ � (1 + β1)/ l2

1 , and one set of [α1, α2]:
{

α1 � 1/β1

α2 � C44/q15
(33)

Then, the solutions of f(r) and g(r) in Eq. (21) are
[

fn(r)

gn(r)

]

� G1n

[

α1

α2

]

In

(√
λr
)

+ G3n

[

α1

α2

]

Kn

(√
λr
)

(34)

by which the solution of Eq. (19) can be written as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

w2 �
∞
∑

n�0

[

G1nα1 In

(√
λr
)

+ G3nα1 Kn

(√
λr
)]

cosnθ

ϕ2 �
∞
∑

n�0

[

G1nα2 In

(√
λr
)

+ G3nα2 Kn

(√
λr
)]

cosnθ

(35)

where the expressions of displacements w and ϕ are
⎧

⎪

⎪

⎨

⎪

⎪

⎩

w � a0 + h0lnr +
∞
∑

n�1

(

anrn + hnr−n
)

cosnθ +
∞
∑

n�0

[

G1nα1 In

(√
λr
)

+ G3nα1Kn

(√
λr
)]

cosnθ

ϕ � c0 + d0lnr +
∞
∑

n�1

(

cnrn + dnr−n
)

cosnθ +
∞
∑

n�0

[

G1nα2 In

(√
λr
)

+ G3nα2 Kn

(√
λr
)]

cosnθ

(36)

Case 3: l1 � l2 � 0, l3 �� 0.
In this case, there is only one real eigenvalue λ � (1 + β1)/ l2

3 , and one set of [α1, α2]:
{

α1 � β1

α2 � − q15

μ11

(37)
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Fig.1 An infinite piezomagnetic medium with a circular microvoid

Table 1 Material parameters of MSCP and MEE [22]

Material name MSCP MEE

Elastic constant [GPa] C44 13.6 43
Piezomagnetic constant [N/Am] q15 -60.9 550

Magnetic permeability [10–4 Ns2/C2] µ11 0.054 0.05

The solution is the same as Case 2.
Case 4: l1 � l2 � l3 � l �� 0.
In this case, there is only one real eigenvalue λ � 1/ l2, and one set of [α1, α2]. And α1, α2 in Eq. (23)

have no correlation. The solution is the same as Case 2.
Thus, we have a consistent set of solutions for the above 4 special cases, consisting of the solution to

the standard equations of piezomagnetics given in Eq. (32) augmented with additional terms due to gradient
enrichment as given via the last terms in Eq. (36). It is therefore sufficient to assess the quantitative and
qualitative effects of the length scales from the investigation of Eq. (36). However, to show the additional
effect of l3 on magnetic field, another special case is considered too.

Case 5: l2 � 0, l3 � kl1 �� 0.

In this case, k should satisfy k ≥
√

1 +
√

4β1 or k ≤
√

1 −
√

4β1 according to Eq. (25), while the
expressions of displacements w and ϕ are shown in Eq. (30).

4 Analysis

4.1 Computational example

Consider a circular microvoid in an infinite piezomagnetic medium, as shown in Fig. 1 but see also [23].
The radius of the void is R � 2 mm. A transversely isotropic magneto-electro-elastic (MEE) material and a
(Terfenol-D)-epoxy mixed component (MSCP) have been chosen. Assuming the material is polarized along
the z(3)-direction and has the xy(12)-plane as its plane of isotropy, the relevant material parameters are listed
in Table 1. The specimen is subjected to a uniform anti-plane shear strain εxz � ε0 � 0.0005 and in-plane
magnetic field H0 � 200 A/m. Therefore, the far-field conditions are

{

ϕ(M) � −H0x � −H0rcosθ

w(M) � ε0.x � ε0.rcosθ
(r → ∞) (38)

Based on the results of Sect. 3.2 and the symmetry of loading, the displacement and magnetic potential in
the matrix are

w(M) �
(

a1r + h1r−1
)

cosθ +
[

G31α
(1)
1 K1

(

√

λ1r
)

+ G41α
(2)
1 K1

(

√

λ2r
)]

cosθ (39a)

ϕ(M) �
(

c1r + d1r−1
)

cosθ +
[

G31α
(1)
2 K1

(

√

λ1r
)

+ G41α
(2)
2 K1

(

√

λ2r
)]

cosθ (39b)

while the displacement and magnetic potential in the void are given by

w(V ) � 0 (40a)

ϕ(V ) � m1rcosθ (40b)
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The superscripts M and V indicate the matrix and the void, respectively, whereas a1, h1, c1, d1, G31, G41

and m1 are unknown coefficients.
The boundary conditions at the interface r � R can be obtained according to Eq. (8):

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ϕ
(

R−) � ϕ
(

R+
)

Br

(

R−) � Br

(

R+
)

σzr

(

R+
)

� 0

szrr

(

R+
)

� 0

πrr

(

R+
)

� 0

(41)

Combining with the far-field conditions, 7 unknown coefficients in Eq. (39) and (40) can be determined.
For several special cases, w(M), ϕ(M) and the boundary conditions are:
Case 1: l1 � l2 � l3 � 0

w(M) �
(

a1r + h1r−1
)

cosθ (42a)

ϕ(M) �
(

c1r + d1r−1
)

cosθ (42b)

The 5 unknown coefficients a1, h1, c1, d1, and m1 can be determined by the 2 far-field conditions and the
following 3 boundary conditions:

⎧

⎨

⎩

ϕ
(

R−) � ϕ
(

R+
)

Br

(

R−) � Br

(

R+
)

σzr

(

R+
)

� 0

(43)

Case 2: l3 � l2 � 0, l1 �� 0

w(M) �
[

a1r + h1r−1 + G31α1K1

(√
λr
)]

cosθ (44a)

ϕ(M) �
[

c1r + d1r−1 + G31α2 K1

(√
λr
)]

cosθ (44b)

where λ � (1 + β1)/ l2
1 , α1 � 1/β1, α2 � C44

q15
. The 6 unknown coefficients a1, h1, c1, d1, G31, and m1 can

be determined by the 2 far-field conditions and the following 4 boundary conditions:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϕ
(

R−) � ϕ
(

R+
)

Br

(

R−) � Br

(

R+
)

σzr

(

R+
)

� 0

szrr

(

R+
)

� 0

(45)

Further, combining Eqs. (14) and (44), the expressions of br , bθ , πrr and πθθ in the matrix are:

br �
[

−μ11

(

c1 − d1r−2
)

+ q15

(

a1 − h1r−2
)]

cosθ (46a)

bθ �
[

μ11

(

c1 + d1r−2
)

− q15

(

a1 + h1r−2
)]

sinθ (46b)

πrr � 0 (46c)

πθθ � 0 (46d)

which show that the magnetic flux density (br , bθ ) and the quadrupole polarization (πrr , πθθ ) are inde-
pendent of l1.

Case 3: l1 � l2 � 0, l3 �� 0.
The expressions for w and ϕ are the same as in case 2, but with λ � (1 + β1)/ l2

3 , α1 � β1, α2 � − q15

μ11
.

Moreover, the 4 boundary conditions are:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϕ
(

R−) � ϕ
(

R+
)

Br

(

R−) � Br

(

R+
)

σzr

(

R+
)

� 0

πrr

(

R+
)

� 0

(47)
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Further, combining Eqs. (14) and (44), the expressions of tzr , tzθ , szrr and szθθ in the matrix are:

tzr �
[

c44

(

a1 − h1r−2
)

+ q15

(

c1 − d1r−2
)]

cosθ (48a)

tzθ � −
[

c44

(

a1 + h1r−2
)

+ q15

(

c1 + d1r−2
)]

sinθ (48b)

szrr � 0 (48c)

szθθ � 0 (48d)

which show that the standard stresses (tzr , tzθ ) and the double stress (szrr , szθθ ) are independent of l3.
Case 4: l1 � l2 � l3 � l �� 0

w(M) �
[

a1r + h1r−1 + G1 K1

(√
λr
)]

cosθ (49a)

ϕ(M) �
[

c1r + d1r−1 + G2 K1

(√
λr
)]

cosθ (49b)

where λ � 1/ l2, G1 � G31α1,G2 � G31α2. The 7 unknown coefficients a1, h1, c1, d1, G1, G2 and m1

can be determined by the 2 far-field conditions and the 5 boundary conditions of Eq. (41).
Case 5: l2 � 0, l3 � kl1 �� 0.
w(M),ϕ(M) and the boundary conditions are shown in Eqs. (39) and (41), and the only additional requirement

is that k ≥
√

1 +
√

4β1 or k ≤
√

1 −
√

4β1.

4.2 Results and discussion

The effects of the three length scales on the mechanic and magnetic fields will be discussed based on the
simulation results next. Because the results of MEE material and MSCP material show similar patterns,
principally, the results of MEE material are discussed in detail, while the results of MSCP material are given
afterwards for supplementary insight.

Figure 2 shows the effect of all three length scales on the distribution of the strain ε in and around the
void. Figure 2a1 and a2 show the case l1 �� 0 with l2 � l3 � 0, Fig. 2b1 and b2 show the case l3 �� 0 with
l1 � l2 � 0, Fig. 2c1 and c2 show the case l1 � l2 � l3 � l, and Fig. 2d1 and d2 show the case l2 � 0 with
l1 �� 0 and l3 �� 0.

An increase in value of l1 (while initially keeping l1 � 0) has a strong influence on the distribution of strain
near the void, particularly the radial component as demonstrated in Fig. 2a1. For low values of l1, the response
is governed by the boundary conditions of the classical (non-gradient enriched) problem which dictate a zero
radial shear strain on the edge of the void. For larger values of l1, the boundary conditions imposed on stresses
have less and less influence on the value of εzr . Conversely, the concentration of circumferential shear strain
εzθ near the void decreases as l1 increases, as Fig. 2a2 shows.

Figure 2b1 and b2 shows that, when l1=l2=0, the distribution of εzr and εzθ remain unchanged as l3 increases,
and in isolation l3 appears to have no influence on the strains. On the other hand, there is a modest effect of
l3 on the strains when l1 ��0: there is a minor perturbation of the distribution of εzr close to the edge with
increasing values of l3, as shown in Fig. 2d1. However, the overriding observation is that the effect of on l3
the strains is minimal.

Next, we consider the case l1=l2=l3=l. Fig. 2c1 and c2 shows the two relevant components εzr and εzθ

for increasing value of the length scale. Compared to the case of only one non-zero length scale, i.e. l1 ��0
while l2=l3=0 as shown in Fig. 2a1 and a2, having multiple non-zero length scales leads to much more
pronounced smoothing of the strain profile—particularly for the radial shear strain component. Since we have
demonstrated above that the strains hardly depend on l3, we conclude that this increased smoothing of the
strains is the added effect of l2. It means that the piezomagnetic coupling length scale l2 has a similar effect on
the mechanical field as the mechanical field length scale l1. The piezomagnetic coupling length scale l2 has a
quantitative contribution to the nonlocal mechanical response, but it is not indispensable in the smoothing of
the mechanical field variables.

Figure 3 shows the effect of all three length scales on the distribution of the magnetic field in and around
the void. Figure 3a1 and a2 show the case l1 �� 0 with l2=l3=0, Figure 3b1 and b2 show the case l3 ��0 with
l1=l2=0, Fig. 3c1 and c2 show the case l1=l2=l3=l, while Fig. 3d1 and d2 show the case l2=0 with l1 ��0 and
l3 �� 0.
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(a1) (a2)

(b2)(b1)

(c1)

(d1) (d2)

(c2)

Fig. 2 The distribution of εzr and εzθ (MEE, unit of length scales: mm)
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(a1) (a2)

(b2)(b1)

(c1)

(d1) (d2)

(c2)

Fig. 3 The distribution of Hr and Hθ (MEE, unit of length scales: mm)
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Fig. 4 The distribution of Hr along θ=0° when l2=0 (MEE, unit of length scales: mm)

Taking only l1 ��0, both the magnetic field in the void and around the void depart from the far-field value
as l1 increases, as Fig. 3a1 and a2 show. This goes against the usual observation that nonlocal effects decrease
the concentration of the field variables near the void. On the other hand, taking l3 �� 0 as the only non-zero
length scale, the magnetic field in the void and around the void approach the far-field value as l3 increases, and
the concentration of magnetic field near the void is decreased as l3 increases, shown in Fig. 3b1, b2—a similar
trend is observed taking both l1 ��0 and l3 �� 0, as shown in Fig. 3d1, d2. Therefore, to describe the magnetic
field realistically, the magnetic field gradient l3 must be included.

Furthermore, the effect of l3 on decreasing the concentration of magnetic field near the void is less pro-
nounced than the combined effect l1, l2 and l3 shown in Fig. 3c1, c2. It means that the piezomagnetic coupling
length scale l2 has a similar effect on the magnetic field as the magnetic field length scale l3. Similar to its
effect on the mechanical field l2, has a quantitative contribution to the nonlocal magnetic response, but it is
not indispensable in the magnetic field description.

The effects of three length scales on the mechanic field and magnetic field are summarised as follows: the
strain gradient length scale l1 in Eq. (10) alone can describe the nonlocal effect on the mechanical field, while
the piezomagnetic coupling gradient l2 has a quantitative contribution to the nonlocal mechanic response.
However, the strain gradient l1 in Eq. (10) alone cannot describe the nonlocal effect on the magnetic field; the
magnetic field gradient l3 must be included. Therefore, to describe the nonlocal effect of piezomagnetism com-
prehensively, the length scales accompanying the strain gradient and magnetic field gradients are indispensable,
while the effect of the coupling length scale l2 is quantitative only and certainly not essential.

l1 and l3 have effects on magnetic field in the void and around the void. It also shows that we can control
the magnetic field in the void and around the void by adjusting the length scales (namely, designing the
microstructures). In Fig. 4, with the increase in l3/l1, the direction of Hr changes. When l3/l1 is equal to 4 and
8, the value of Hr is negative, while it turns positive when l3/l1 is over 16. So, it is speculated that, at the edge of
the void, Hr=0 can be obtained if l3/l1 takes certain value. Controlling the direction of magnetic field and zero
magnetic field has a lot of practical application, such as in weak magnetic detection [24], bioelectromagnetics
research [25] and low energy physics experiment research [26, 27]. So, it is meaningful for the study of these
phenomena.

5 Conclusions

In this investigation, a model for piezomagnetic material with gradient effects of strain, magnetic and piezo-
magnetic coupling field is developed. An analytical solution for the anti-plane problem is constructed based
on two sets of fundamental solutions that are superposed. In the analysis of an infinite piezomagnetic medium
with a circular microvoid, it is found that the scale of microstructure has a significant influence on the mechanic
field and magnetic field, and the length scales corresponding to strain and magnetic gradients are indispensable
in order to describe the nonlocal effects of piezomagnetism. Especially, controlling the direction and magni-
tude of the magnetic field at the interface of the void can be achieved by tuning the ratio of void radius to
microstructural length scales of the piezomagnetic medium.
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