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1 Introduction

The measurement of the νµ → νe (and ν̄µ → ν̄e) oscillations — which is the main goal

of the T2K experiment [1] — is affected by two main background sources. The first is

the intrinsic νe and ν̄e beam contaminations and the second is the neutral current (NC)

π0 production, where the π0 can mimic an electron from a charged-current (CC) νe or ν̄e
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interaction at the far detector, Super-Kamiokande. In addition, the νµ → νe (ν̄µ → ν̄e)

appearance signal is predicted by using a predominantly νµ (ν̄µ) sample, which relies on the

knowledge of the νe (ν̄e) cross-section relative to the νµ (ν̄µ). The modelling of signal and

backgrounds is strongly depending on the neutrino cross-sections and the near detector is

crucial for measuring them.

The electron (anti-)neutrino flux arises from the decay of kaons, muons and pions

produced when the proton beam impinges upon a graphite target. Kaons can decay to

electron (anti-)neutrinos through the decay channels, K± → π0 + e± + νe(ν̄e) and K0
e3 →

π± + e∓ + ν̄e(νe). Muons, mainly produced from pion decay, can also decay to electron

(anti-)neutrinos through µ± → e± + ν̄µ(νµ) + νe(ν̄e). The direct contribution of the pion

decays to the electron (anti-)neutrino flux is tiny. Together these combinations provide the

νe and ν̄e flux at the near detector. In general, the electron (anti-)neutrinos from kaon

decays are more energetic than those from muon decays and populate the high energy tail

of the neutrino energy spectrum.

The CC electron (anti-)neutrino selection at the near detector is challenging for two

reasons. Firstly, there is a small number of electrons (positrons) produced from CC νe (ν̄e)

interactions, compared to the much larger number of muons, pions and protons produced

in the final states of CC and NC νµ and ν̄µ interactions. The particle identification (PID)

must work extremely well to obtain a pure electron selection. The second reason is the

large number of background electrons from sources such as π0, which can be produced

either inside or outside the target detectors. Rejection of background electrons (positrons)

is vital for the measurement of the CC νe (ν̄e) interactions.

Electron (anti-)neutrino cross-section measurements in the GeV region are rare since

the (anti-)neutrino beams primarily produce muon (anti-)neutrinos. The first CC-νe inclu-

sive cross-section measurement and the only CC-ν̄e inclusive cross-section measurement so

far were made by the Gargamelle bubble chamber experiment in 1978 [2]. Thirty-six years

later, in 2014, T2K measured the CC-νe inclusive cross-section [3] and in 2016 MINERvA

performed the first CC-νe cross-section measurement without pions in the final state [4].

Measurements of the electron (anti-)neutrino cross-sections will have a pivotal role for

the precision measurements of neutrino oscillations for the current and next generation of

long-baseline neutrino oscillation experiments [5, 6].

Compared to the 2014 results, the work in this paper follows a different approach to

measure the CC-νe and CC-ν̄e cross-sections. Following the developments in the T2K muon

neutrino cross-sections measurements [7–9], the differential cross-sections are measured in

a model independent way as a function of electron and positron kinematics (momentum

and scattering angle), the quantities which are measured in the near detector. Although

cross-section results were calculated in Q2 in the 2014 work, such measurements could

introduce model dependencies and are not included in this work. Each Q2 bin contains

contributions from events with different electron kinematics leading to model dependencies

when correcting for the efficiencies since our acceptance for backward and high angle events

is very poor. Similarly, cross-section measurements in momentum, scattering angle and

neutrino energy which are extrapolated to regions with no or very little acceptance are also

model dependent since they depend on the underlying model for the efficiency corrections.

– 2 –
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Such results are not produced in this paper. For the differential cross-section extraction,

following the experience from T2K muon neutrino cross-section measurements [7–9], this

work uses a binned likelihood fit with control samples to tune the backgrounds instead

of an iterative matrix inversion method [10]. The likelihood fit method is preferred as

the correction of detector smearing effects is independent of the signal model used in the

simulation and it allows in-depth validation of the background tuning and of the extracted

results. Finally, events with momentum below 200 MeV/c were not considered in the 2014

results. This background enriched region can be used for fit validation studies and it is

used in the current work.

Since the CC-νe inclusive cross-section measurement in 2014, T2K has doubled the

neutrino data and collected a significant amount of anti-neutrino data. With these new

datasets, T2K performs new measurements of the CC-νe inclusive cross-sections in neu-

trino and anti-neutrino modes. In addition, the first CC-ν̄e inclusive cross-section in anti-

neutrino mode, since Gargamelle, is measured.

2 Experimental setup

2.1 T2K beam

The T2K neutrino beam is produced at the Japan Proton Accelerator Research Complex (J-

PARC) by colliding 30 GeV protons with a graphite target. The pions and kaons produced

in the target are focused by three magnetic horns and decay in flight to produce neutrinos.

T2K can run with either forward horn current (FHC) or with reverse horn current (RHC)

producing beams in neutrino or anti-neutrino enhanced mode, respectively.

The T2K beamline [11] is simulated using FLUKA2011 [12, 13], GEANT3 [14]

and GCALOR [15]. The simulated yields of hadronic particles are tuned using the

NA61/SHINE [16–18] thin target measurements. The neutrino fluxes at the off-axis near

detector ND280 in FHC and RHC are shown in figure 1. The off-axis position of the near

detector, from the neutrino beam direction, results in a narrow-band νµ or ν̄µ beam, how-

ever, the same does not occur with νe and ν̄e fluxes due to their production via three-body

decays, resulting in broader νe and ν̄e spectra. The mean of the νe energy spectrum at

ND280 is 1.28 GeV in FHC and 1.98 GeV in RHC. The mean of the ν̄e energy spectrum in

RHC is 0.99 GeV. The total integrated νe flux at ND280 in FHC is ΦFHC
νe

= (2.67 ± 0.24)×

1011 neutrinos/cm2 and in RHC is ΦRHC
νe

= (2.65 ± 0.21) × 1010 neutrinos/cm2. The total

integrated ν̄e flux at ND280 in RHC is ΦRHC
ν̄e

= (1.00 ± 0.10) × 1011 anti-neutrinos/cm2.

2.2 T2K off-axis near detector ND280

The 2.5◦ off-axis near detector, ND280, is located 280 metres from the proton target. The

main goal of ND280 is to constrain the neutrino flux and the interaction cross-sections. It

is composed of several sub-detectors located inside a 0.2 T magnet, as depicted in figure 2.

The front part is the π0 detector (P0D) [19] and is optimised to measure neutrino inter-

actions with π0 production. The rear part is the tracker and it is optimised to measure

charged particles produced in neutrino interactions. It consists of two Fine-Grained De-
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Figure 1. The neutrino and anti-neutrino fluxes at ND280 in neutrino (FHC) mode (left) and in

anti-neutrino (RHC) mode (right).

Figure 2. An exploded view of the T2K near detector, ND280. The neutrino beam enters ND280

from the left.

tectors [20], the first of which is composed of layers of plastic scintillator (FGD1) and the

second has alternating layers of plastic scintillators and water (FGD2).

The P0D, FGD1 and FGD2 provide the target mass for neutrino interactions and each

is followed by a Time Projection Chamber (TPC1, TPC2 and TPC3) [21]. The TPCs

– 4 –
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Figure 3. TPC energy loss for tracks in data originating in FGD1. Left: negatively charged tracks.

Right: positively charged tracks. The expected energy loss curves for electrons, muons, pions and

protons are also shown.

are filled with a gas mixture based on argon and provide excellent track reconstruction

with a momentum resolution of roughly 8% for 1 GeV/c tracks. This can be combined

with energy loss (dE/dx) measurements in order to perform PID of tracks crossing the

TPCs. The measured and the expected dE/dx are used to define the “pull” (the difference

between the measured mean ionization and the expected one divided by the resolution) of

each particle species. The TPC energy loss for negatively and positively charged tracks

originating in FGD1 is shown in figure 3. Notice the region below 200 MeV/c where the

electron dE/dx curve crosses with the muon and pion dE/dx curves, and the region around

1 GeV/c where the proton dE/dx curve crosses with the electron dE/dx curve.

The P0D and the tracker are surrounded by the lead-scintillator Electromagnetic

Calorimeter (ECal) [22] and a Side Muon Range Detector (SMRD) [23]. The ECal measures

the energy of photon and electrons (EM energy) and provides additional PID for minimum

ionizing particles (MIP), electromagnetic showers (EM) and highly ionizing stopping par-

ticles (HIP) like protons.

The ECal EM energy is reconstructed under the hypothesis that the energy deposit

is due to an electromagnetic shower. Comparing the TPC momentum with the ECal

EM energy, electrons can be separated from muons and protons. The ratio of the TPC

momentum over the ECal EM energy peaks at unity for electrons and at lower values for

muons and protons. The ECal EM energy resolution is approximately 10% at 1 GeV.

The ECal PID is based on the longitudinal and lateral profile of ECal clusters to

generate probability density functions (PDFs). These are combined for each particle type

and PID variable to form a likelihood from the products of the PDFs, see [24] for details.

RMIP/EM is the log-likelihood ratio of the MIP and electron hypothesis and REM/HIP is

the log-likelihood ratio of the electron and proton hypothesis. The RMIP/EM for high purity

control samples (90% or better) is shown in figure 4, where the muon sample comprises

cosmic muons and muons produced by neutrino interactions outside ND280 that cross the
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Figure 4. Performance of the ECal PID using high purity control samples of cosmic and through-

going muons, electrons and positrons from gamma conversions and protons from neutrino interac-

tions. Left: Log-likelihood ratio of the ECal track-shower (RMIP/EM) PID. Right: Log-likelihood

ratio of the ECal electron-proton (REM/HIP) PID for showers with RMIP/EM > 0 and p > 600 MeV/c.

Plots are normalised to unity.

detector (through-going muons), the electron sample is formed from electron-positron pairs

from photon conversions and the protons are from neutrino interactions. The ECal can

provide supplementary PID to the TPC, especially in the region around 1 GeV/c where the

TPC energy loss curves of electrons and protons cross. Figure 4 also shows the REM/HIP

for showers (classified by RMIP/EM > 0) with p > 600 MeV/c only. Although there are

some shape differences in data and simulation for RMIP/EM and REM/HIP, the data and

simulation efficiencies to select electron (or positrons) and reject muons and protons are

similar. The PID efficiencies in the simulation are corrected using the data control samples.

3 Data samples and MC simulation

For FHC, 11.92 × 1020 protons-on-target (POT) are analysed corresponding to data col-

lected in the periods 2010–2013 and 2016–2017. For RHC, 6.29 × 1020 POT are analysed

corresponding to data collected from 2014 to 2016.

The ND280 flux is simulated as described in section 2.1. The (anti-)neutrino inter-

actions with the ND280 detector materials, including nuclear effects, are simulated using

NEUT 5.3.2 [25] and GENIE 2.8.0 [26] Monte Carlo (MC) generators. The neutrino gen-

erators account for differences in the lepton mass for the muon and electron neutrino

cross-section computations. However, other effects like radiative corrections, modifications

of the pseudoscalar form factors and the effect of form factors to second class vector and

axial currents are not considered [27].

NEUT 5.3.2 uses the Llewellyn-Smith formalism [28] to describe the CC quasi-elastic

neutrino-nucleon cross sections. The spectral function is used as the nuclear model [29].

The axial mass used for the CC quasi-elastic process is set to 1.21 GeV/c2. The simulation of

multi-nucleon interactions, where the neutrino interacts with a correlated pair of nucleons,

is described using the Nieves et al. model [30]. The resonant pion production process

with an invariant mass W ≤ 2 GeV/c2 is described by the Rein-Sehgal model [31]. The

– 6 –
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resonant axial mass set to 0.95 GeV/c2. The deep inelastic scattering (DIS) is calculated

for W > 1.3 GeV/c2 and is modeled using the GRV98 parton distribution function [32]

including the Bodek and Yang corrections [33]. Single pion production with W ≤ 2 GeV/c2

is suppressed to avoid double counting with resonant production. Final state interactions

describe the transportation of the hadrons produced from neutrino interaction through the

nucleus and are simulated using a semi-classical intra-nuclear cascade model.

GENIE 2.8.0 uses a different value for the axial mass for quasi-elastic process of

0.99 GeV/c2. It relies on a different nuclear model using a relativistic Fermi gas with Bodek

and Ritchie modifications [34]. Resonant production is based on Rein-Sehgal model, same

as NEUT. In GENIE the resonant model is not restricted to the single pion decay channel.

To avoid double counting with the DIS model, the resonant model is switched off when

W > 1.7 GeV/c2. The resonant axial mass is set to 1.12 GeV/c2. DIS is simulated similar

to NEUT but using slightly different Bodek-Yang corrections [35]. A parametrized model

of final state interactions (GENIE “hA” model) is used.

Detail description of the NEUT and GENIE models can be found in previous T2K

publications [8, 36].

GEANT 4.9.4 [37] is used to transport the final state particles through the ND280

detector. Nominal MC is produced by simulating approximately 10 times the data POT

for both NEUT and GENIE.

Data-driven reconstruction efficiency corrections are applied to the nominal MC. These

corrections are estimated using high-purity (> 90%) control samples of cosmic and through-

going muons, electrons and positrons from photon conversions and protons from neutrino

interactions.

The nominal ND280 MC simulates only the neutrino interactions that occur within the

ND280 detector. In reality, neutrino interactions also occur in the surrounding material

(sand interactions) and these produce particles that enter ND280. These particles can then

affect the event selection by triggering one of the three veto cuts1 during a beam bunch

time window (i.e. an ND280 event) and hence causing an ND280 event to fail the selection

cut. This is the sand pile-up effect, which is inherently present in the data, but not in the

nominal ND280 MC. To simulate the effect, a second MC simulation is generated (sand

MC) to estimate the rate at which sand interactions trigger these veto cuts in coincidence

with an ND280 event. To propagate this effect to the nominal ND280 MC there is a pile-up

correction, which is a weight that is applied to all ND280 events, for each of the veto cuts.

If sand interactions are estimated to trigger a given veto for X% of ND280 events, then a

weight of (1 − X/100) is applied to all ND280 events. Since the pile-up rate depends on

the beam intensity and on the beam mode (FHC or RHC), the corrections are computed

separately for each data period. For the high intensity neutrino beam in 2017, the total

pile-up correction is approximately 5%.

4 Selection of electron (anti-)neutrino interactions at ND280

The selection of electron (anti-)neutrinos in FGD1 closely follows the steps described in

the 2014 FHC CC-νe analysis [24] and is summarised below. There are several reconstruc-

1Section 4.2 describes the event selection and the veto cuts in the TPC, ECal and P0D sub-detectors.
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tion improvements since the 2014 analysis and additional selection criteria are applied to

improve purities. The RHC CC-νe selection is identical to the FHC selection, but for the

CC-ν̄e additional selection criteria are applied to remove the proton background. Details

are described in section 4.2.

4.1 Signal and background definitions

A MC event is defined as signal if the selected primary track is an electron (positron) from

a CC-νe (CC-ν̄e) interaction with the vertex inside the FGD1 fiducial volume, which has

a total mass of 919.5 kg, corresponding to (5.54 ± 0.04) × 1029 nucleons. Backgrounds are

separated into four categories: photon, muon, proton and other backgrounds. The photon

background category considers events where the selected primary track is an electron or

positron from a photon conversion and the true conversion point is inside the FGD1 fidu-

cial volume. Events where the selected primary track is a muon (proton), but misidentified

as electron enter the muon (proton) background category. Any other backgrounds includ-

ing misidentified pions, electrons from photons converting outside of the fiducial volume

but reconstructed inside the fiducial volume, electrons from π0 Dalitz decay and Michel

electrons go into the other background category.

4.2 Event selection

The event selection for CC-νe and CC-ν̄e events is described in the following:

(i) Only events during periods of good beam and detector quality are used. The event

time has to be reconstructed within one of the eight distinct beam bunches.

(ii) The highest momentum negatively charged (leading negatively charged) FGD1-TPC

track, for the CC-νe selection, or the highest momentum positively charged (leading

positively charged) FGD1-TPC track, for CC-ν̄e selection, with a vertex in the FGD1

fiducial volume is selected. The leading positively charged track in the CC-ν̄e selection

must also be the highest momentum track (from all negatively and positively charged

tracks).

(iii) To ensure reliable PID and momentum measurements, the selected leading track is

required to have at least 18 TPC hits if it enters the ECal or 36 TPC hits if it

does not enter the ECal. The momentum spectra of the selected leading negatively

charged and leading positively charged tracks with the minimum number of TPC hits

are shown in figure 5. Notice the large number of protons selected as the leading

positively charged track in the RHC CC-ν̄e selection. Some data-MC discrepancies

are visible in the low momentum region which contains the poorly modelled photon

and other backgrounds.

(iv) TPC PID is applied to select electrons and remove minimum-ionizing tracks. Using

the electron TPC pull, the leading track must agree with the electron TPC dE/dx

hypothesis. If the leading track does not enter the ECal, then additional cuts on the

TPC PID are applied using the muon and pion TPC pulls. The event is rejected
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Figure 5. Momentum distribution of the selected leading negatively charged track with a vertex

in the FGD1 fiducial volume for (a) FHC CC-νe, (b) RHC CC-νe and (c) leading positively charged

track for RHC CC-ν̄e. The number of MC events is normalized to the data POT. The last bin is

the overflow bin.

if the leading track agrees with the muon or pion TPC hypothesis; events around

150 MeV/c, including electrons, are rejected where the only information (TPC) is

unable to distinguish them.

(v) Additional PID is applied using either the ECal EM energy or the ECal PID depending

on the momentum of the leading track as it enters the ECal. To maximize the

efficiency, if the leading track has p > 1 GeV/c and is fully contained in the ECal,

the reconstructed ECal EM energy is used to separate EM showers from MIPs and

it is required to be larger than 1 GeV. Otherwise the ECal MIP/EM shower PID

discriminator RMIP/EM has to agree with the EM shower PID hypothesis. Events

that pass the TPC and ECal PID are shown in figure 6. For the CC-ν̄e selection a

complication arises since the TPC energy loss curves for positrons and protons cross

around 1 GeV/c (see figure 3) leaving a significant amount of proton background.

(vi) Search for the paired FGD1-TPC electron or positron track from a potential photon

conversion. The paired track must have opposite charge than the leading track, start
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Figure 6. Momentum distribution after the TPC and ECal PID cuts for (a) FHC CC-νe, (b)

RHC CC-νe and (c) RHC CC-ν̄e candidates. The number of MC events is normalized to the data

POT. Notice the significant proton background around 1 GeV/c in the CC-ν̄e selection due to the

weakness of the TPC PID to separate positrons from protons, see the text and figure 3 for details.

Additional PID is applied to remove this proton background, see the text for more details. The last

bin is the overflow bin.

within 5 cm from the leading track and agree with the electron TPC dE/dx hypothesis.

If several paired tracks are found, the pair with the lowest invariant mass is considered

since it is more likely to come from a photon conversion. Pairs with invariant mass

less than 110 MeV/c2 are removed.

(vii) Veto P0D, TPC and ECal activity upstream of the vertex and remove events with

additional vertices in FGD1. Events with multiple vertices more likely to come from

a νµ interaction with one or more π0 in the final state.

(viii) For the CC-ν̄e selection, additional selection criteria are applied if the leading pos-

itively charged track has p > 600 MeV/c, the region which is contaminated by the

proton background. If the leading positively charged track produce shower activity

in FGD2 then it is selected. If the leading positively charged track enters the ECal,

– 10 –



J
H
E
P
1
0
(
2
0
2
0
)
1
1
4

Good data quality
Find the leading track 
with a vertex inside 

FGD1 fiducial volume

Leading track has at 
least 18 TPC hits

Leading track does not 
enter the ECal: Cut 

harder on the TPC PID

Leading track enters the 
ECal: Apply TPC + ECal

PID

Search for the paired 
electron/positron track 
and remove events with 
low invariant mass that 
most likely come from a 

gamma conversion

Apply veto cuts to 
remove external 

backgrounds

FGD2 PID and additional ECal
PID to remove proton 

background
(Applied only to CC-ν ̄e selection)

Check the FGD1-ECal 
time stamps to remove 

external background

Remove events if the 
leading track is broken 

inside FGD1

Figure 7. Summary of the CC-νe and CC-ν̄e selections in FGD1. See the text for the details of

each cut.

the proton background can be removed by comparing the ECal EM energy (E) and

the TPC momentum (p) using a cut E/p > 0.65. In addition, the REM/HIP shower

PID discriminator has to agree with the EM shower hypothesis.

(ix) For the CC-ν̄e selection, if the leading positively charged track stops in FGD2, the

FGD2 energy loss must not agree with the proton hypothesis.

(x) Remove external background by comparing the time stamps of the leading track

between FGD1 and ECal. This cut aims to remove tracks originating in the ECal

and stop in FGD1 but are mis-reconstructed with the wrong direction.

(xi) Check if the leading track is broken inside FGD1. A track is broken if it originates

in FGD1 and is not reconstructed as a single track, but is broken into two or more

components. In such pathological cases the leading track could originate outside

the fiducial volume but mis-reconstructed within it. If the leading track follows an

isolated FGD1 track then the event is removed.

Figure 7 summarises the CC-νe and CC-ν̄e selections.

4.3 Final selection

The momentum and angular (with respect to the neutrino direction) distributions of all

selected CC-νe and CC-ν̄e candidates are shown in figures 8 and 9, respectively. These

plots also show the total systematic uncertainty on the MC event yields, which is discussed

in section 6. A significant data deficit is observed at low momentum (p < 600 MeV/c)

in the FHC CC-νe channel. In this region the photon background is dominant which
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has significant systematic uncertainties associated with the π0 production. Roughly a

third of the photon background comes from neutrino interactions outside of FGD1. These

external backgrounds could originate from neutrino interactions on heavy targets, like iron,

copper or lead with significant final state interaction systematic uncertainties. In addition,

roughly another third of the photon background come from NC interactions which are

poorly measured. The final third of the photon background come from CC-νµ and CC-

ν̄µ interactions, usually when the muon is emitted in high angles and it is lost. In such

occasions the most energetic of the other tracks is selected as the leading track. A similar

data deficit is also observed in the statistically poorer RHC CC-ν̄e channel. In addition, an

excess of events has been observed in the RHC channels at high momenta (more visible in

the RHC CC-ν̄e channel). For the photon background produced from νµ and ν̄µ interactions

in FGD1, roughly 10% is coming from NC DIS interactions in all three selections. The

relevant fraction of FGD1 CC DIS events entering the photon background is approximately

4% in CC-ν̄e selection, 16% in RHC CC-νe selection and 20% in FHC CC-νe selection. The

differences are due to the additional selection criteria applied to CC-ν̄e and the presence

of protons which can be selected as the leading track instead of the primary muon or

background positron.

Most of the efficiency loss is observed at low momentum since the electron and

muon/pion dE/dx energy loss curves cross around 150 MeV/c (see figure 3). In addi-

tion, high angle tracks that do not enter the TPC are not selected and the events are lost.

Another important source of efficiency loss is due to electron shower or bremsstrahlung in

FGD1. As a result the primary electron track does not enter the TPC or another track is

selected as the leading track. As estimated from the MC, 35–45% of the signal electrons or

positrons are lost because the primary electron track does not enter the TPC. The efficiency

loss is larger in the FHC CC-νe channel since the electron momentum spectrum is softer

and at higher angles. The true vs. reconstructed momentum and angular distributions in

the MC for the selected signal electrons and positrons are shown in figure 10. The effect

of bremsstrahlung is visible as the reconstructed momentum spectrum is biased towards

lower momenta. A summary of efficiencies and purities is shown in table 1.

The muon mis-identification probability (probability of a muon to be mis-identified as

an electron after applying the PID) was studied in previous T2K publications [24] with very

good agreement between data and MC. Similarly, the proton mis-identification probability

is important for the CC-ν̄e selection. A high-purity independent sample of protons has the

same PID criteria as the CC-ν̄e selection applied and the number of protons that survive

is checked. An independent control sample that can be used is the FHC CC-ν̄e selection.

This channel has a tiny signal contribution and a much larger proton background and it

is not used in the cross-section measurements. Before applying the proton rejection cuts

(viii) and (ix), approximately 94% of the leading tracks selected with p > 600 MeV/c and

not entering the ECal are protons. The measured proton mis-identification probability is

the fraction of protons that survive from these independent proton enriched samples and

is (4.6 ± 0.8)% for the data compared to (5.0 ± 0.3)% in the MC. The errors are statistical

only. The proton purity is lower in the case where the leading track enters the ECal and is

approximately 70% with the rest to be mostly positrons. Due to the relatively low proton
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Figure 8. Momentum distribution of the selected electron and positron candidates for (a) FHC

CC-νe, (b) RHC CC-νe and (c) RHC CC-ν̄e. The number of MC events is normalized to the data

POT. The effect of the total systematic uncertainty on the MC event yields (see section 6 for details)

is also shown on these plots. The last bin is the overflow bin.

purity of this sample, only an approximate proton mis-identification probability can be

measured in this case, (9.4 ± 0.1)% in the data compared to (11.9 ± 0.05)% in the MC.

4.4 Event selection using alternative MC

The CC-νe and CC-ν̄e selections in the MC are repeated using GENIE (2.8.0) instead

of NEUT (5.3.2) MC. There are some differences between these two neutrino generators,

see section 3 and for more details the description in [8]. One of the most important is

that the neutrino multi-nucleon interaction simulations are turned-off in this version of

GENIE. Efficiencies and purities for NEUT and GENIE agree quite well. Compared to the

selected events, both NEUT and GENIE predictions disagree with data at low momenta

with the FHC CC-νe. The prediction of the photon background in particular is similar in

both neutrino generators. Tables 1 and 2 summarize the event selections using NEUT and

GENIE.
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Figure 9. Angular distribution of the selected electron and positron candidates for (a) FHC CC-νe,

(b) RHC CC-νe and (c) RHC CC-ν̄e. The number of MC events is normalized to the data POT.

The effect of the total systematic uncertainty on the MC event yields (see section 6 for details) is

also shown on these plots. The last bin includes all backward-going candidates.

Channel Efficiency Purity MC Events Data events

NEUT FHC CC-νe 0.26 0.54 797.07 697

GENIE FHC CC-νe 0.27 0.53 769.17 697

NEUT RHC CC-νe 0.33 0.48 175.92 176

GENIE RHC CC-νe 0.33 0.44 168.10 176

NEUT RHC CC-ν̄e 0.31 0.54 99.99 95

GENIE RHC CC-ν̄e 0.30 0.51 99.21 95

Table 1. Summary of efficiency, purity and number of MC events normalised to the 11.92 ×

1020 POT in the FHC beam and 6.29 × 1020 POT in the RHC beam for the CC-νe and CC-ν̄e

channels using NEUT (5.3.2) and GENIE (2.8.0) MC, in addition to the number of data events

that survive all cuts in each channel.
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Figure 10. Distribution of the true vs. reconstructed values of momentum (left) and angle (right)

for signal electrons and positrons that passed all cuts in the MC. The effect of bremsstrahlung is

visible on the left plot, see the text for details.

Channel Signal (%) In-FGD γ (%) OO-FGD γ (%) µ± (%) Proton (%) Other (%)

NEUT FHC CC-νe 429.16 (53.9) 162.23 (20.4) 78.09 (9.8) 35.67 (4.5) — 91.92 (11.4)

GENIE FHC CC−νe 409.23 (53.5) 152.56 (20.0) 78.00 (10.2) 33.29 (4.4) — 96.10 (12.0)

NEUT RHC CC-νe 83.62 (47.5) 42.41 (24.1) 20.23 (11.5) 6.38 (3.6) — 23.28 (13.2)

GENIE RHC CC-νe 73.28 (43.6) 43.46 (25.9) 21.67 (12.9) 6.33 (3.8) — 23.35 (13.9)

NEUT RHC CC-ν̄e 53.85 (53.9) 18.76 (18.8) 12.47 (12.5) 1.22 (1.2) 6.52 (6.5) 7.17 (7.2)

GENIE RHC CC-ν̄e 50.49 (51.2) 21.28 (21.5) 11.43 (11.5) 1.74 (1.7) 7.20 (7.3) 7.07 (7.1)

Table 2. Breakdown of the number of CC-νe and CC-ν̄e events selected in FGD1 according to

their category for NEUT (5.3.2) and GENIE (2.8.0) MC. The number of events is normalized to

data POT. The photon background is separated to events with a true vertex in FGD1 (In-FGD)

and to events with a true vertex out of FGD1 (OO-FGD).

5 Photon background control samples

Since the photon background is the most important in the electron (anti-)neutrino selec-

tions, a dedicated photon control sample of electrons and positrons from photon conversions

is selected to constrain this background. Photon candidates are selected from two nearby

electron-like FGD1-TPC tracks of opposite charge with low invariant mass that start in

the FGD1 fiducial volume.

5.1 Selection of photon candidates

The steps to select photon candidates are:

(i) Only events during periods of good beam and detector quality are used. The event

time has to be reconstructed within one of the eight distinct beam bunches.

(ii) The highest momentum negatively charged or highest momentum positively charged

FGD1-TPC track (leading track) with a vertex in the FGD1 fiducial volume is se-

lected.
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Figure 11. Invariant mass of electron-like FGD1-TPC pairs with opposite charge for (a) FHC

selecting electron as the leading track, (b) RHC selecting electron as the leading track and (c)

RHC selecting positron as the leading track. The number of MC events is normalized to the data

POT. Last bin is the overflow bin. The arrow at 55 MeV/c2 indicates the final photon to e−e+

conversion cut.

(iii) The leading track must be compatible with the electron TPC dE/dx hypothesis. If

the leading track enters the ECal, and has momentum p > 1 GeV/c and ECal energy

E, then E/p > 0.5 is required in order to clean up the high momentum tail.

(iv) Require a second track with opposite charge to the leading track, also compatible

with the electron TPC dE/dx hypothesis and with a starting position within 5 cm

from the primary track.

(v) The invariant mass calculated from the leading and paired tracks must be less than

55 MeV/c2. The distributions of the invariant mass of the selected e−e+ pairs are

shown in figure 11. The invariant mass cut is very effective to remove backgrounds

from misidentified muons, protons and electrons from CC-νe interactions.

(vi) Although the photon selection at this stage is very pure, it is contaminated by external

photons (photons from neutrino interactions outside FGD1). To remove external

photons the same veto cuts used in the CC-νe and CC-ν̄e selections are applied.
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Figure 12. Momentum distribution of the selected photon candidates for (a) FHC selecting electron

as the leading track, (b) RHC selecting electron as the leading track and (c) RHC selecting positron

as the leading track. The number of MC events is normalized to the data POT. The effect of the

total systematic uncertainty on the MC event yields (see section 6 for details) is also shown on

these plots. Last bin is the overflow bin.

The signal and background categories are the same as for the CC-νe and CC-ν̄e se-

lections. The momentum and angular distributions of the selected photon candidates are

shown in figures 12 and 13, respectively. The systematic uncertainties on the MC event

yields are also shown in these plots, see section 6 for details. A MC excess below 300 MeV/c

is visible. In the angular distributions a significant MC excess is observed at high angles

in the FHC CC-νe selection but not in the photon control selection (figures 9 and 13).

The purity of the photon control samples is approximately 80% when selecting elec-

trons and 85% when selecting positrons. A significant fraction of the selected photon

candidates is classified in the other background category where the photons are coming

from a true conversion point outside the FGD1 fiducial volume, but are mis-reconstructed

inside of it. Including these events in the photon category definition increases the purity

to approximately 90%. The rest of the other background contributes (5–6)% in the photon

control samples and comes from π0 Dalitz decay, general mis-reconstructions like broken
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Figure 13. Angular distribution of the selected photon candidates for (a) FHC selecting electron

as the leading track, (b) RHC selecting electron as the leading track and (c) RHC selecting positron

as the leading track. The number of MC events is normalized to the data POT. The effect of the

total systematic uncertainty on the MC event yields (see section 6 for details) is also shown on

these plots. The last bin includes all backward-going candidates.

tracks and accidental matching when at least one of the two tracks selected in the pair

is not electron or positron. The signal leakage (CC-νe or CC-ν̄e) in the photon control

samples is around (3–4)% when the selected leading track is an electron. The leakage is

otherwise negligible when the selected leading track is a positron. The muon background

entering the photon control samples is less than 1% in all of the cases.

When selecting electrons as the leading track in the photon control selections, approx-

imately 40% of the photon candidates come from external photons, approximately 30%

come from NC interactions in FGD1 and the other 30% come from CC interactions in

FGD1. When selecting positrons as the leading track in the photon control selections the

contributions are slightly different. Approximately 45% of the photon candidates come

from external photons, approximately 35% come from NC interactions in FGD1 and 20%

come from CC interactions in FGD1. Often the event is rejected if the selected highest

positively charged momentum track is a proton. However, since the protons are invisible
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when selecting negatively charged tracks the same event could be selected when searching

for the highest momentum negatively charged track. This explains the difference in the

number of photon candidates in RHC when the leading track selected is the electron or the

positron.

5.2 Comparisons with the photon background in the standard selections

Although the photon control samples are of high purity they have some differences com-

pared to the photon background entering the CC-νe and CC-ν̄e selections. The main reason

is that the photon control selection requires both the electron and positron to be recon-

structed in the TPC, while the photon background is mostly related to events where either

the electron or positron is lost, usually when it is not very energetic or emitted at high

angles. As a result, the photon background consists mostly of highly asymmetric events

where most of the energy of the photon goes into one of two electrons. For high angle

events it is predominantly due to one of the two electrons being lost, resulting in more high

angle photon background in the CC-νe and CC-ν̄e selections.

This angular dependence will introduce different external photons to the photon back-

ground and the photon control selection. Most of the external photons entering the photon

control samples come from neutrino interactions in the P0D or in the aluminium frame of

TPC1. For the photon background, however, a significant population of external photons

are also from neutrino interactions in the ECals. The photons mostly come from π0 decays

and table 3 shows the different contributions to the photon background and the photon

control selections from CC and NC interactions and from external photons. Despite the

differences discussed, the origin of the photon background entering the CC-νe and CC-

ν̄e selections and the photon control selections is similar. This provides confidence that

the photon control samples can be used to constrain the photon background in the signal

channels. Additional simulation studies are also performed to check for shape variations in

momentum and angle in the photon selections and in the photon background in the signal

selections. These studies include the variation of the relevant fraction of CC/NC photon

events by a factor of 2, weighting the nominal MC by varying the Delta resonance width by

±1σ and varying the external photon background between (40–75)% based on the target

material the neutrino interaction occurred. In all the cases the effect on the momentum

and angular shapes is found to be very small.

6 Systematic uncertainties

Systematic uncertainties affecting the MC prediction on event yields are separated into

five main categories: cross-section modelling, final state interactions, detector, external

backgrounds and flux.

Cross-section modelling. The cross-section interaction modelling in NEUT and GE-

NIE is briefly described in section 3 and in detail in previous T2K publications [8, 36].

In this section, the systematic uncertainties relevant to cross-section modelling parameters

will be briefly discussed. Neutrino cross-section parameters in NEUT relevant to charged-

current quasi-elastic interactions are the axial mass (MQEL
A = 1.21 ± 0.41 GeV/c2), binding
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Interaction Type FHC CC-νe (%) Photon Selection (%) RHC CC-νe Photon Selection (%) RHC CC-ν̄e Photon Selection (%)

CC 0π0 4.5 4.3 4.8 6.9 1.1 5.4

CC 1π0 15.7 14.6 14.7 12.8 6.7 11.8

CC > 1π0 6.1 4.7 5.4 4.5 1.9 3.8

NC 0π0 3.6 3.6 2.6 3.0 1.9 2.3

NC 1π0 24.8 28.5 26.7 30.5 35.1 31.1

NC > 1π0 4.3 5.1 4.7 4.2 2.8 3.6

OOFV (In-FGD) 8.5 7.4 8.8 7.8 10.7 8.9

OOFV (OO-FGD) 32.5 31.8 32.3 30.2 39.9 33.1

Table 3. Comparison of the photon background entering the CC electron (anti-)neutrino selections

and the photon control selections split down to different π0 contributions from CC and NC inter-

actions in FGD1 and to external photons. Out of fiducial volume (OOFV) photons are separated

into events where the true neutrino vertex is in FGD1 (In-FGD) and into events where the true

neutrino vertex is out of FGD1 (OO-FGD).

energy (EC
B = 25.0 ± 9.0 MeV) and Fermi momentum (pC

F = 223.0 ± 31.0 MeV/c). Binding

energy and Fermi momentum are target dependent, for this analysis only those relevant

to carbon are considered. For multi-nucleon interactions, a 100% normalization uncer-

tainty is assumed. The CC resonant production model has three parameters in NEUT:

the axial mass (MRES
A = 0.95 ± 0.15 GeV/c2), the normalization of the axial form factor

for resonant pion production (CARES
5 = 1.01 ± 0.12) and the normalisation of the isospin

non-resonant component (I 1
2

= 1.3 ± 0.2). For the CC DIS process an energy dependent

normalisation uncertainty (10% at 4 GeV) is considered. For CC coherent interactions a

100% normalisation uncertainty is considered. For neutral-current interactions, due to poor

constraints from external data, a 30% normalisation uncertainty is applied. The effect of

the cross-section uncertainties on the event yields is evaluated by shifting each cross-section

parameter by ±1σ and shifting the nominal MC.

Final state interactions. The pion final state interaction systematic uncertainties in-

clude the effects of absorption, inelastic scattering, charge exchange and quasi-elastic

scattering inside the nucleus. A full description can be found in previous T2K publi-

cations [8, 36]. Similarly with the cross-section uncertainties, the effect of final state inter-

action systematic uncertainties on the event yields is evaluated by varying simultaneously

the final state interaction effects by ±1σ and shifting the nominal MC.

Detector. Detector systematic uncertainties encapsulate the performance of each ND280

sub-detector (FGDs, TPCs and ECals). They are applied to simulated events and are sepa-

rated in three categories: normalization, selection efficiency and variation of the observable.

Normalization systematics are applied as a single weight to all events. Efficiency systemat-

ics are applied as a weight that depends on one or more observables. Variation systematics

are treated by varying the observables and redoing the event selections. Detector system-

atic uncertainties considered and their treatment are summarised in table 4.

Detector systematics are evaluated using high purity (> 90%) control samples from

cosmic and through-going muons, electrons and positrons from photon conversions and

protons from neutrino interactions. ECal related uncertainties are evaluated using the
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Systematic Treatment Comment

TPC tracking efficiency efficiency

TPC charge mis-identification efficiency

TPC momentum resolution and scale variation

B-field distortions variation

TPC PID variation

FGD-TPC matching efficiency efficiency

TPC-ECal matching efficiency efficiency

FGD2 PID variation Only applied to CC-ν̄e

FGD2 shower efficiency efficiency Only applied to CC-ν̄e

FGD1 mass normalisation

TPC, P0D and ECal pile-up normalisation

ECal RMIP/EM PID efficiency

ECal REM/HIP PID efficiency Only applied to CC-ν̄e

ECal EM energy resolution and scale variation

Pion and proton secondary interactions efficiency

Sand interactions efficiency

FGD1-ECal time resolution variation

Table 4. List of detector systematic uncertainties and their treatment for simulated events. Nor-

malization systematics are applied as a single weight to all events. Efficiency systematics are applied

as a weight that depends on one or more observables. Variation systematics are treated by varying

the observables and redoing the event selection.

same methodology described in [24]. All other detector systematics, except FGD2 shower

efficiency, are evaluated in the same way as explained in [8, 24, 36].

The FGD2 shower efficiency describes the probability of electrons and protons origi-

nating in FGD1 to shower in FGD2. Since FGD2 is a thin detector and cannot contain

showers, a shower is defined when multiple FGD2-TPC3 tracks are produced when the

leading track passes through FGD2. Since this systematic is only relevant for the CC-ν̄e

channel, the uncertainty is evaluated using events with single electron or proton tracks in

the neutrino beam originating in FGD1, passing through FGD2 and comparing the FGD2

shower efficiencies for data and MC.

External backgrounds. These are related to the uncertainties associated with photons

(or other particles) produced outside of the FGD1, either in other sub-detectors or outside

of ND280, that propagate inside FGD1. A large number of these neutrino interactions

are on heavier nuclear targets (aluminium, iron and lead) with considerable cross-section

modelling uncertainties. A detailed study of the external photon propagation in ND280

was performed in [38] but only in limited angular regions. Outside these angular regions
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Figure 14. Flux systematic uncertainties for the FHC νe flux (top left), RHC νe flux (top right)

and RHC ν̄e flux (bottom).

there are large data/MC differences due to the poor simulation of inactive material. Since

the method developed in [38] is very sensitive to the material density and composition

(small changes can cause large variation in systematic uncertainties), conservatively a 100%

systematic uncertainty on the external photon production and propagation is assumed. The

effect on the momentum and angular shapes for both the photon background in the signal

selections and the photon selections is studied with additional simulations. The external

photon events in the simulation are varied between (40–75)% based on the target material

the neutrino interaction occurred. The effect on both momentum and angular shapes is

found to be negligible.

Flux. Flux systematic uncertainties are calculated as a function of the neutrino energy

and they are correlated between the neutrino flavours and between the neutrino and anti-

neutrino beams. Flux systematic uncertainties are larger at the high energy tail of the

neutrino spectrum and for the νµ and ν̄µ fluxes are in the range (7.0–14)%. The νe and ν̄e

flux systematic uncertainties are shown in figure 14 and are dominated by the systematic

uncertainties on hadron production. The evaluation of the flux systematic uncertainties

can be found in previous T2K publications [36, 39].

6.1 Effect of systematic uncertainties on the event yields

A summary of systematic uncertainties on signal and background MC event yields for

the CC-νe and CC-ν̄e selections is shown in table 5. The systematic uncertainties on sig-
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nal yields are dominated by the flux (8–10%) and cross-section modelling (13–14%). The

larger cross-section systematic uncertainties come from the large uncertainties considered

on the quasi-elastic axial mass MQEL
A and multi-nucleon interactions, each contributing

(6.5–8.5)% to the total cross-section systematic uncertainty. Detector systematic uncer-

tainties on signal yields are (2–4)% with the most important being the TPC PID and

TPC-ECal matching efficiencies. For CC-ν̄e, the ECal PID and FGD2 shower efficiency,

which are related to the proton background rejection, are also important. For an inclusive

CC selection, final state interaction systematic uncertainties on signal yields are small.

They are only considered if a charged pion, after final state interactions, becomes more or

less energetic than the primary electron or when there is a π0 involved as the secondary

electrons can be more or less energetic than the primary electron. The total systematic

uncertainty on the signal yields is approximately (16–17)% in all the channels.

The systematic uncertainties on the MC background event yields are separated into

photon background and all other backgrounds. The total systematic uncertainties on the

MC photon background event yields are approximately (23–26)% in all channels and are

dominated by the cross-section and external systematic uncertainties. Cross-section sys-

tematic uncertainties (16–19)% are dominated by the charged-current and neutral-current

resonant and DIS production models. The flux systematic uncertainties are around 8%

and the final state interaction systematic uncertainties are (1.5–3.0)%. Detector system-

atic uncertainties are (3–6)%, with TPC PID, FGD1 and ECal time resolutions, TPC-ECal

matching efficiency and pion secondary interactions being the most important. Approxi-

mately a third of the photon background comes from neutrino interactions outside FGD1,

either in other sub-detectors or outside the ND280 and the majority of these events popu-

late the low momentum and/or high angle regions.

The systematic uncertainties on the other backgrounds MC event yields vary from

(19–33)% since different sources of backgrounds contribute to each channel. The biggest

difference comes from the external background which dominates the systematic uncertain-

ties on the other background event yields and is different in each channel since the neutrino

flux is different. Flux systematic uncertainties are around 8% and the cross-section system-

atic uncertainties are around (11–12)%. Detector systematic uncertainties are (4.0–6.5)%,

which are larger than the corresponding detector systematic uncertainties for signal and

photon background event yields.

6.2 Effect of systematic uncertainties on the photon control samples

The systematic uncertainties on the photon control samples are roughly (20–23)% and are

summarised in table 6. The dominant sources are coming from the external background

and cross-section modelling.

7 Fit model

The flux integrated single differential cross-section as a function of the electron or positron

true momentum p or true scattering angle cos(θ) is expressed as

dσi

dki
=

Ni

ǫi
×

1

TΦ∆ki
, (7.1)
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Source of uncertainty Signal (%) γ background (%) Other backgrounds (%)

F
H

C
C

C
-ν

e

Detector 2.96 3.02 3.91

External background 0.00 17.25 29.07

Flux 8.92 7.61 7.60

Final State Interactions 0.52 2.78 3.72

Cross-section 13.60 16.54 11.18

Total 16.54 25.41 32.51

R
H

C
C

C
-ν

e

Detector 2.12 3.09 5.12

External background 0.00 12.71 17.56

Flux 8.11 8.28 8.23

Final State Interactions 0.98 1.48 4.97

Cross-section 13.45 17.71 10.67

Total 15.88 23.57 23.26

R
H

C
C

C
-ν̄

e

Detector 3.46 5.68 6.46

External background 0.00 14.90 7.20

Flux 9.95 8.33 8.01

Final State Interactions 0.39 1.95 7.94

Cross-section 12.98 18.88 12.01

Total 16.72 26.15 19.11

Table 5. Summary of systematic uncertainties on MC signal and background event yields. The

total systematic uncertainty is the quadratic sum of all the systematic sources. Possible correlations

between the different systematic sources are ignored.

Systematic uncertainty FHC γ-Elec. (%) RHC γ-Elec. (%) RHC γ-Posi. (%)

Detector 2.35 1.81 1.72

External background 14.24 9.57 11.10

Flux 7.62 8.29 8.26

Final State Interactions 2.62 1.49 1.93

Cross-section 16.49 15.28 15.67

Total 23.35 19.98 21.06

Table 6. Effect of the systematic uncertainties on the photon control sample MC event yields

selecting either electron as the leading track (γ-Elec.) or positron as the leading track (γ-Posi.).

The total systematic uncertainty is the quadratic sum of all the systematic sources. Possible

correlations between the different systematic sources are ignored.
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where k is either p or cos(θ), Ni is the number of signal events in bin i, ǫi is the efficiency

in bin i, Φ is the neutrino flux, T the number of target nucleons and ∆ki is the true

momentum or true scattering angle bin interval.

The number of signal events in each bin is calculated using an extended, binned max-

imum likelihood fit. The PDFs are constructed from histogram templates using ROOT’s

histogram-based HistFactory fit package [40], which is based on the RooStats [41] and

RooFit [42] packages. The fit is performed simultaneously on all the signal channels (FHC

and RHC CC-νe and RHC CC-ν̄e) and their corresponding photon control channel. Each

channel is broken down to angular regions and each angular region is broken down to

one dimensional templates in momentum for signal, photon background and other back-

grounds. For the photon control channels the small signal contribution is merged in the

other backgrounds.

A likelihood is constructed from all the signal and background templates, nuisance

parameters ~θ and their constraints C
(

θ0
κ, θκ

)

and a set of scaling parameters c and g

controlling the signal and photon background respectively, given the observed data ~N

L
(

~N |c, g, ~θ
)

=





Nregion
∏

i=1

Nbin
∏

j=1

[

cijSij

(

~θ
)

+ giB
γ
ij

(

~θ
)

+ Bother
ij

(

~θ
)]nij

nij !
e−[cijSij(~θ )+giBij(~θ )+Bother

ij (~θ )]





×





Nregion
∏

i=1

Nbin;PC
∏

l=1

[

giB
γ
il;PC

(

~θ
)

+ Bother
il;PC

(

~θ
)]mil

mil!
e−
[

giB
γ

il;PC(~θ )+Bother
il;PC(~θ )

]





×

Nsyst
∏

k=1

C
(

θ0
κ, θκ

)

,

(7.2)

where Nregion is the number of angular regions which is the same for signal and photon

control channels, Nbin (Nbin;PC) is the number of bins in signal (photon control) region,

Sij are the signal templates contributing to reconstructed bin j for region i, Bγ
ij (Bγ

il;PC) is

the number of photon events in reconstructed bin j (l) for signal (photon control) region

i, Bother
ij (Bother

il;PC) is the number of other background events in reconstructed bin j (l) for

signal (photon control) region i, nij (mil) are the number of entries in each bin in signal

(photon control) region and Nsyst is the number of nuisance parameters.

7.1 Propagation of systematic uncertainties

Systematic uncertainties are included in the fit as nuisance parameters and are calculated

as ±1σ variations of the nominal samples in the signal and photon control samples, Sij(~θ),

Bγ
ij(~θ), Bother

ij (~θ), Bγ
il;PC(~θ) and Bother

il;PC(~θ). These variations can either change the normali-

sation or produce bin-dependent shape differences or have a correlated effect on shape and

normalisation. For each variation (or set of variations) a nuisance parameter is used to

interpolate between the ±1σ uncertainties with a Gaussian constraint. Systematic uncer-

tainties that are common between samples or channels are fully correlated in the fit. A

summary of the nuisance parameters included in the fit is shown in table 7.
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Source of uncertainty Number of parameters Constraint Variation type

MC statistical 29 Poissonian One per bin

Pile-up 6 Gaussian Normalisation

External backgrounds 8 Gaussian Shape and normalisation

Detector and flux 15 Gaussian Shape and/or normalisation

Cross-section and final state interactions 13 Gaussian Shape and normalisation

Table 7. Summary of nuisance parameters related to systematic uncertainties considered in the fit.

Variations from the cross-section uncertainties are calculated by varying each cross-

section parameter by ±1σ and changing the nominal samples. Some of the cross-section

uncertainties may produce asymmetric variations and these are considered in the fit. Vari-

ations related to the final state interaction systematic uncertainties, including their corre-

lations, are estimated following the methodology described in [36].

Variations from the flux uncertainties are calculated using the full beam covariance

taking into account all the correlations between the neutrino beams, neutrino flavours and

energy bins.

Variations of the nominal samples arising from the detector, pile-up and external back-

ground systematics are evaluated using MC simulations varying the systematics to change

the number of events in each reconstructed bin. Three nuisance parameters are used for

the three pile-up systematics in each beam mode (FHC or RHC). Four nuisance parameters

in each beam mode are used to describe the external background systematic uncertainties.

The external backgrounds are separated based on their origin (ND280 or sand interac-

tions), their background category (photon or other backgrounds) and their beam mode

(FHC or RHC).

MC statistical uncertainties, describing the finite size of the simulated events in each

sample, are also included as nuisance parameters in the fit following the Barlow-Beeston [43]

approach considering one nuisance parameter per channel and bin.

7.2 Binning choice

The choice of the binning depends on a number of factors, some of the most important are:

sufficient number of signal events in each bin, isolation of the backgrounds in specific p − θ

regions, event migration due to bremsstrahlung and flat efficiency corrections.

The first criterion for the binning choice is to not consider high angle events (θ >

45◦) since the acceptance due to detector effects is almost zero. In addition, the photon

background is large and the statistics in the photon control channels is poor. The high

angle regions and the low momentum (p < 300 MeV/c) bins are background enriched and

are kept in the fit as background validation regions. Approximately 75% of the external

photon background is contained in the low momentum and high angle regions. The signal

contribution in the low momentum bins (p < 300 MeV/c) is tiny and, to help the fit

performance, it is kept constant in the fit. Two angular regions are considered to better

describe the middle and forward angular cases. The momentum bins are identical in each

angular region.
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The momentum bins are optimised to minimize the effect of bremsstrahlung. Since

bremsstrahlung is not a detector smearing effect, but a physics effect depending on the

initial electron kinematics and the material propagated, special requirements are considered

to minimize this effect.

The (anti-)correlations between the momentum bins introduced by bremsstrahlung are

studied with MC simulations requiring them to be less than 50%. If the chosen momentum

binning fails this requirement, the momentum bins are expanded to reduce the migration

of events due to bremsstrahlung and the MC simulations are repeated. Due to the large

momentum bins chosen in this analysis, the effect of bremsstrahlung can be efficiently

handled in the fit.

Signal efficiencies are also a significant factor for the binning choice as they should

be flat to avoid model dependencies. The efficiencies in the two angular regions in each

signal channel are shown in figure 15 and are relatively flat with some small fluctuations

observed between NEUT and GENIE and in the low statistics bins. Although the cross-

section measurements are calculated in one dimension, fitting in p − θ is important to

check for model dependencies due to the efficiency corrections. After the total statistical

and systematic uncertainties are applied on signal efficiencies, the efficiency errors are

artificially inflated to cover differences between NEUT and GENIE and variations between

momentum bins. The efficiencies with statistical, systematic and inflation uncertainties

are shown in figure 16.

The binning choice for each signal channel is shown in table 8. In total there are 9 free

parameters controlling the photon background (one for each angular region) and 17 free

parameters controlling the signal (one for each bin in the table, except for the six lowest

momentum bins which are kept constant in the fit since the number of signal events is

negligible).

8 Cross-section results

The fit is used to measure the number of signal events in all channels including all systematic

uncertainties as described in section 7. The best fit results and the fit covariance matrix are

used to measure the flux-integrated single differential cross-sections dσ/dp and dσ/d cos(θ)

using eq. (7.1).

Prior to fitting the data, the signal and background events are varied under different

model assumptions to create pseudo datasets generated from variations of nominal MC

(toy experiments). These pseudo datasets are used to check the fit performance, possible

biases, over-constraining the nuisance parameters and the impact of nuisance parameters

to the signal normalisation parameters and understand the dependencies on signal and

background models. In addition, the cross-sections are measured using two generators to

test different model assumptions. The results are in good agreement with all the tests

providing confidence that our measurements are free from model dependencies.

The differential cross-section results in electron and positron momentum, dσ/dp, using

NEUT (5.3.2) or GENIE (2.8.0) as input MC are shown in the top plot in figure 17 and

they are in agreement with the predictions. The CC-νe cross-sections are expected to be
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Figure 15. Signal efficiencies for NEUT and GENIE MC using a finer binning than used in the

cross-section measurements. Errors are statistical only.
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Figure 16. Signal efficiencies in different angular regions for the three samples for NEUT MC with

statistical, systematics and inflation uncertainties.
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Angular region (cos(θ)) Momentum bin (GeV/c) Comment

F
H

C
C

C
-ν

e

−1.00–0.7071 0–30 Validation bin

0.7071–0.88 0–0.3 Validation bin

0.7071–0.88 0.3–1.6

0.7071–0.88 1.6–3.2

0.7071–0.88 3.2–30

0.88–1.00 0–0.3 Validation bin

0.88–1.00 0.3–1.6

0.88–1.00 1.6–3.2

0.88–1.00 3.2–30

R
H

C
C

C
-ν

e

−1.00–0.7071 0–30 Validation bin

0.7071–0.95 0–0.3 Validation bin

0.7071–0.95 0.3–1.6

0.7071–0.95 1.6–30

0.95–1.00 0–0.3 Validation bin

0.95–1.00 0.3–1.6

0.95–1.00 1.6–30

R
H

C
C

C
-ν̄

e

−1.00–0.7071 0–30 Validation bin

0.7071–0.92 0–0.3 Validation bin

0.7071–0.92 0.3–1.6

0.7071–0.92 1.6–30

0.92–1.00 0–0.3 Validation bin

0.92–1.00 0.3–1.6

0.92–1.00 1.6–30

Table 8. Summary of the binning for CC-νe and CC-ν̄e inclusive channels included in the fit.

Validation bins are background enriched and are used as extra fit validation regions. These bins

are excluded from the cross-section measurements.

larger in RHC since the neutrino energy spectrum peaks at higher energy and it is much

broader with larger contribution from higher energy neutrinos. Differences between the

results using either NEUT or GENIE simulations are expected due to small differences in

the efficiency corrections (figure 15) and small differences in the muon, proton and other

backgrounds (table 2) which are kept constant in the fit. The cross-section results are

dominated by the statistical uncertainty, especially in RHC. The statistical uncertainty

is estimated by fixing all the nuisance parameters to their post-fit nominal values and

repeating the fit.
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The differential cross-sections are also calculated in electron and positron scattering

angles, dσ/d cos(θ), for both NEUT and GENIE. They are calculated in the same angular

regions defined in table 8 and for p > 300 MeV/c. The results are shown in the bottom

plot in figure 17 and they are in agreement with the NEUT and GENIE predictions.

The systematic uncertainties are propagated in the final cross-section measurements

using toy experiments. For each toy experiment the best-fit values and the post-fit covari-

ance are used to vary the number of signal events. Simultaneously, the flux, efficiency and

the number of targets are also varied for each toy resulting in a new measurement of the

cross-section using equation (7.1). For N toy experiments the covariance, in a fractional

form, is computed from

Vij =
1

N

N
∑

i=1

(

dσvariation
i

dki
−

dσmeas.
i

dki

)(

dσvariation
j

dkj
−

dσmeas.
j

dkj

)

dσmeas.
i

dki

dσmeas.
j

dkj

, (8.1)

where k is either p or cos(θ),
dσmeas.

i

dki
is the measured differential cross-section in bin i

and
dσvariation

i

dki
is the differential cross-section in bin i calculated from a toy experiment

variation. The single differential cross-sections in momentum and cos(θ) are calculated

using the same two dimensional fit and the covariance matrix should include the correlations

between dσ/dp and dσ/d cos(θ). The full fractional covariance matrix as calculated from

equation (8.1) and is shown in figure 18.

8.1 Total cross-sections in limited phase-space

The total cross-sections in the measured phase-space (p > 300 MeV/c and θ ≤ 45◦) using

NEUT and GENIE MC are shown in table 9. The results are compatible with the NEUT

and GENIE predictions, although larger cross-sections are measured in RHC, but with

large statistical uncertainties.

8.2 Comparisons to additional models

Using the NUISANCE framework [44], the fit results are compared to cross-section predic-

tions from recent neutrino generator models in NEUT (5.4.0), GENIE (2.12.10) and also

from NuWro (19.02) [45]. NEUT 5.4.0 uses a local Fermi gas (instead of spectral function).

Other interaction modelling and final state interactions are similar to NEUT 5.3.2 (detailed

in section 3). GENIE 2.12.10 interaction modelling is similar to 2.8.0 (detailed in section 3),

with the “empirical MEC” model for the description of multi-nucleon interactions enabled.

NuWro simulates the CC quasi-elastic process with the Llewellyn-Smith model with axial

mass value of 1.03 GeV/c2. The nuclear model is simulated using the relativistic Fermi

gas including random phase approximation corrections [46]. Multi-nucleon interactions

are simulated similar to NEUT using the model from [30]. For pion production a single

∆-model by Adler-Rarita-Schwinger [47] is used for the hadronic mass W < 1.6 GeV/c2

with axial mass value of 0.94 GeV/c2. A smooth transition to DIS processes is made for W

between 1.3 and 1.6 GeV/c2. The total cross section is based on the Bodek and Yang ap-

proach [33]. Similar to NEUT, final state interactions are simulated using a semi-classical

cascade model.
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Figure 17. CC-νe and CC-ν̄e inclusive cross-section results in dσ/dp (top) and dσ/d cos(θ) (bot-

tom) in a limited phase-space (p > 300 MeV/c and θ ≤ 45◦). The statistical uncertainty is computed

by fixing all the nuisance parameters to their post-fit nominal values and redoing the fit. The sys-

tematic uncertainty is computed by subtracting in quadrature the statistical uncertainty from the

total uncertainty.
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Figure 18. Cross-section fractional covariance matrix for dσ/dp (bottom left area) and dσ/d cos(θ)

(top right area) measurements for NEUT (5.3.2). The top left and bottom right areas show the

covariance between dσ/dp and dσ/d cos(θ) measurements.

Selection Measured σ Nominal σ < E >

[/10−39 cm2/nucleon] [/10−39 cm2/nucleon] GeV

FHC CC-νe NEUT 6.62 ± 1.32(stat) ± 1.30(syst) 7.18 1.28

GENIE 6.93 ± 1.40(stat) ± 1.33(syst) 6.87

RHC CC-νe NEUT 14.56 ± 4.90(stat) ± 2.31(syst) 12.96 1.98

GENIE 14.73 ± 5.06(stat) ± 2.01(syst) 11.44

RHC CC-ν̄e NEUT 3.01 ± 1.36(stat) ± 0.57(syst) 2.61 0.99

GENIE 3.10 ± 1.46(stat) ± 0.53(syst) 2.51

Table 9. Measurement of the flux integrated CC-νe and CC-ν̄e inclusive total cross-sections in a

limited phase-space (p > 300 MeV/c and θ ≤ 45◦) obtained using NEUT (5.3.2) and GENIE (2.8.0)

MC. The statistical uncertainty is computed by fixing all nuisance parameters to their post-fit

nominal and redoing the fit. The systematic uncertainty is computed by subtracting in quadrature

the statistical uncertainty from the total uncertainty. The mean of the neutrino energy, 〈E〉, in

each beam mode is also shown.
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Generator p − cos(θ) χ2 p-only χ2 cos(θ)-only χ2

(ndof = 13) (ndof = 7) (ndof = 6)

NEUT 5.4.0 14.63 5.82 5.34

GENIE 2.12.10 16.32 4.16 4.55

NuWro 19.02 32.08 4.52 5.08

Table 10. The χ2 comparing data with neutrino generator models. The χ2 is calculated using

equation (8.2). The full covariance, as shown in figure 18, is used for p − cos(θ) χ2 calculation. A

reduced covariance considering only the momentum and cos(θ) part of the full covariance is used

to calculate the p-only and cos(θ)-only χ2 respectively. The number of degrees of freedom (ndof)

for each χ2 is also shown.

The comparisons of the data to NEUT 5.4.0, GENIE 2.12.10 and NuWro 19.02 are

shown in figure 19. A χ2 between the data measurements and each neutrino generator

model predictions is defined as

χ2 =
∑

i

∑

j

(

dσmeas.
i

dki
−

dσmodel
i

dki

)

V −1
ij

(

dσmeas.
j

dkj
−

dσmodel
j

dkj

)

, (8.2)

where k is either p or cos(θ),
dσmeas.

i

dki
is the differential cross-section measurement in bin i,

dσmodel
i

dki
is the differential cross-section model prediction in bin i and Vij is the covariance

matrix as defined in equation (8.1) and shown in figure 18. The χ2 is measured for each

neutrino generator individually and is summarised in table 10. NEUT 5.4.0 has the lowest

χ2 compared to our data. GENIE 2.12.10 has a slightly larger χ2. The χ2 for NuWro

19.02 is significantly larger. The χ2 is also calculated individually for the single differential

cross-sections dσ/dp and dσ/d cos(θ). A reduced covariance is used considering only the

momentum or cos(θ) part of the full covariance in figure 18. In these cases the χ2, in both

momentum and cos(θ) measurements, are smaller and similar for all neutrino generators.

This highlights the importance of using the combined cross-section measurements in mo-

mentum and cos(θ) when doing model comparisons, rather than using each cross-section

measurement in momentum or cos(θ) individually.

9 Summary and conclusions

Electron-like neutrino and anti-neutrino events are selected in the T2K off-axis near detec-

tor ND280, using both FHC and RHC modes. A significant amount of photon background

populates the low momentum and high angle regions, constrained by an independent pho-

ton control selection. The regions dominated by the photon background also show signifi-

cant data and MC discrepancies and are dominated by large systematic uncertainties. The

flux integrated single differential cross-sections, as a function of momentum and scattering

angle, are measured by fitting simultaneously the CC inclusive selections and their cor-

responding photon control selections. To minimize detector effects, the cross-sections are

measured in a limited phase-space, p > 300 MeV/c and θ ≤ 45◦. The results are consistent
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Figure 19. Flux integrated CC-νe and CC-ν̄e inclusive cross-section results in a limited phase-

space (p > 300 MeV/c and θ ≤ 45◦) with comparisons to neutrino generator models from NEUT

5.4.0, GENIE 2.12.10 and NuWro 19.02 obtained using the NUISANCE framework. The top plot

shows the results in momentum and the bottom plot the results in scattering angle. The χ2 is the

total from the combined measurements in momentum and cos(θ).
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from the two fits with both NEUT 5.3.2 and GENIE 2.8.0 predictions. The cross-section

results are also compared with more recent neutrino generator models using NEUT 5.4.0,

GENIE 2.12.10 and NuWro 19.02. The best agreement is observed with NEUT 5.4.0. These

are the first CC-νe cross-section measurements using both FHC and RHC fluxes and the

first CC-ν̄e cross-section measurement since the Gargamelle measurements in 1978. The

data release from this paper can be found here [48].
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