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Efficient Kidney Exchange with Dichotomous Preferences1

Yao Cheng2 and Zaifu Yang3

Abstract: This paper studies a general kidney exchange model with compat-

ible patient-donor pairs, incompatible patient-donor pairs, single donors, and

patients on the waiting list. We derive an explicit formula of the maximal

number of feasible kidney transplants under several sizes of cycles and chains

of exchange, analyze the effect of different ways of exchange on efficiency, and

provide substantial simulation results based on the USA data. Our results

further show that kidney exchange can be decentralized for relatively large

populations, and that allowing compatible pairs and single donors to exchange

with incompatible pairs can significantly increase the number of feasible kidney

transplants. A more general model of two-category type-compatible exchanges

is also established.

Keywords: Kidney Exchange, Kidney Transplant, Efficiency, Simulation.

JEL classification: C78, D47, I190.

1 Introduction

Every year in the world hundreds and thousands patients of severe kidney disease need

kidney transplants. The difficulty of having suitable kidney transplants arises in three

major aspects. Firstly, there is a significant shortage of kidneys from deceased donors. For

instance, in the United States in 2017 more than 92,000 patients were waiting for kidney

transplants and only about 14,077 received transplants from deceased donors and 5,536

received transplants from living donors. While in waiting, over 4,000 patients passed away

and about 4,414 were getting too sick to have a transplant and were therefore removed

from the waiting list (see the USA OPTN/SRTR annual report by Hart et al. 2017).

Secondly, a patient may receive a kidney from a living donor who can be a family member,

a relative, or a friend. In this case the patient and the donor are called a patient-donor
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pair, and the patient is a paired patient and the donor a paired donor. But the patient

may not be compatible with the donor and therefore is unable to use the kidney directly

because of blood or tissue incompatibility. Kidney transplants can be conducted in two

ways: The first is called a cycle of exchange which involves typically several incompatible

patient-donor pairs and refers to a process in which, say two pairs, the 1st paired patient

receives a compatible kidney from the 2nd paired donor, and the 2nd paired patient receives

a compatible kidney from the 1st paired donor. The other is a chain of exchange which

involves an altruistic donor, patient-donor pairs, and a patient on the waiting list and

is a process in which the 1st paired patient if any receives a compatible kidney from an

altruistic donor, the 2nd paired patient receives a compatible kidney from the 1st paired

donor, etc, and finally the patient on the waiting list receives a compatible kidney from

the last paired donor. A k-way exchange means a cycle or a chain of exchange involving

k patients and k donors. Thirdly, although most people have one more kidney than they

need, it is almost universally illegal to buy or sell a kidney.

The operation of a suitable kidney transplant must satisfy three basic constraints. The

first are two medical constraints: the patient must be both blood-compatible and tissue-

compatible with the donor. The second is the incentive constraint. The incentive issue

arises when it involves patient-donor pairs. If a paired patient is incompatible with his/her

paired donor, the patient need to exchange one kidney for another. Then the order of

implementing kidney transplant becomes crucial to incentive-compatible exchange. To

avoid the moral hazard caused by the ordering, exchanges between the two pairs must

be carried out simultaneously. Because transplants are performed simultaneously, four

simultaneous surgical treatments are required for two pair exchanges. The third is the

capacity constraint. In practice there is a limit to the number of possible kidney transplants

in each hospital. It is desirable to have short chains or cycles of exchange.

Kidney exchange has been previously studied by medical researchers (see Rapaport

1986, Ross et al. 1997, Ross and Woodle 2000, Zenios et al. 2001, etc). Roth et al. (2004)

initialized economic analysis of kidney exchange, stimulating considerable interest in the

subject. They proposed an efficient and incentive compatible mechanism extending the

top trading cycle procedure from Shapley and Scarf (1974); see also Abdulkadiroğlu and

Sönmez (1999) for a related mechanism. In this case cycles and chains could be long.

Roth et al. (2007a) considered a simpler but more practical model where patients are in-

different between compatible kidneys and prefer compatible kidneys to incompatible ones,

i.e., patients have dichotomous preferences. Their model consists of multiple incompatible

patient-donor pairs. They proved that using two-way and three-way cycles could signifi-

cantly increase the number of possible exchanges, and at most four-way cycles suffice to

capture all potential gains of exchange. Roth et al. (2007a) and Saidman et al. (2006)
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provided simulation results using the USA OPTN/SRTR data from 1993 to 2002.

In this paper we generalize the model of Roth et al. (2007a) by allowing all possible

exchanges among incompatible, compatible patient-donor pairs, (altruistic) single donors

(decreased or living), and patients on the waiting list and making the model closer to the

reality. Our aim is to explore ways of maximizing the number of feasible kidney transplants.

Because the model of Roth et al. (2007a) consists of only incompatible patient-donor pairs,

only cycles of exchange will be needed. In our model, both cycles and chains of exchange

will be needed. We derive for each case of k-way exchange, k = 2, 3, 4, an explicit formula of

the maximal number of feasible kidney transplants and propose a procedure to find efficient

allocations of kidney transplants. We show that two-way cycles and chains of exchange

can gain most of efficient exchange, three-ways can still make a visible effect and at most

four-ways will be sufficient to capture all potential gains of exchange. This demonstrates

that the key insights of Roth et al. (2007a) still hold for the current more general model,

although the analysis inevitably becomes substantially more involved and complicated.

We further prove that in every k-way (k = 2, 3, 4) of exchange, each cycle contains at

most two blood-type compatible pairs and each chain comprises at most one blood-type

compatible pair. We provide substantial simulation results based on two data sets from the

USA OPTN/SRTR from 1993 to 2002 (see Table 3) and from 1995 to 2016 (see Table 4).

The second data set covers a longer period of time with more and better information

than those collected in the first set. We highlight two important findings: Firstly, we

find that under at most three-way exchanges allowing compatible pairs to exchange with

incompatible pairs can have at least 10% net increase of feasible kidney transplants and

that allowing both compatible pairs and single donors to exchange with incompatible pairs

can have at least 30% net increase of feasible kidney transplants (see Table 8). This

net increase of possible kidney transplants is very significant, meaning that many more

patients can be saved when both compatible pairs and single donors are allowed to exchange

with incompatible pairs. Secondly, our simulations clearly indicate that as the number of

incompatible patient-donor pairs in the population reaches 100, the slope of matching rates

(in percentage) of incompatible paired patients getting transplants becomes almost flat,

albeit slightly upwards. This has some novel policy implication: Kidney exchange can be

decentralized in the sense that in a country with a relatively large population, separate

kidney exchange programs/centers can be established in several major regions. This means

that patients and donors can have kidney transplant operations in their own regional or

nearby center and save their traveling cost and time and that medical resources can be

evenly distributed across the country and need not be concentrated in one place.

Furthermore, we propose a general and abstract model of two-category type-compatible

exchanges and prove that it is sufficient to fully achieve efficiency by using only n-way cycles
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and chains of exchange where n is the number of the primary types and is independent of

the number of secondary types. In the context of kidney exchange, primary types in the

first category correspond to blood types and have only four types and secondary types in

the second category correspond to the classification of tissue types and can vary from one

country to another. This abstract model has extended the general model of Roth et al.

(2007a) and could have applications beyond kidney exchange.

We conclude this introduction by briefly reviewing several other related studies. Ross

and Woodle (2000) suggested the idea of allowing compatible pairs to exchange with in-

compatible pairs. Roth et al. (2005a) examined a model with both compatible and in-

compatible pairs under two-way exchanges and dichotomous preferences and developed

constrained-efficient and strategy-proof procedures. Sönmez and Ünver (2014) studied a

similar model under two-way exchange by exploring the structure of Pareto-efficient kidney

transplants via the Gallai-Edmonds theorem from graph theory and also conducting com-

parative static analysis. Roth et al. (2005b) and Gentry et al. (2007) discussed the issue

of kidney paired donation with compatible pairs and provided some simulation results;

see Roth et al. (2007b) for some historical aspect. Ünver (2010) studied efficient kidney

exchanges in a dynamic environment in which agents arrive according to a stochastic Pois-

son process. Yilmaz (2011) characterized an efficient and egalitarian two-way exchange

mechanism involving paired donations and list exchanges. Nicoló and Rodŕıguez-Álvarez

(2012) presented a model with match quality and patients’ preferences. They proposed an

efficient and truthful two-way exchange mechanism. Sönmez and Ünver (2013) offered a

survey on the subject.

Ausubel and Morrill (2014) observed that incentive compatibility for kidney exchange

requires only kidney donation to occur no later than the associated kidney receipt. They

showed that sequential exchanges can increase the number of beneficial exchanges. Bilgel

and Galle (2015) examined financial incentives for kidney donation by using a synthetic

control method; see also Roth et al. (2007a) for competitive compensation. Nicoló and

Rodŕıguez-Álvarez (2017) studied a model in which patients prefer kidneys from compatible

younger donors to kidneys from older ones. They proposed sequential two-way exchange

rules being individually rational, strategy-proof and non-bossy. Biró et al. (2019) and

Sönmez et al. (2019) explored ways of incentivizing compatible pairs to participate in

exchanges with incompatible pairs. Agarwal et al. (2019) reported market failure in kidney

exchange and offered some remedy. Andersson and Kratz (2020) introduced a model of

kidney exchange that tries to relax the traditional blood type compatibility. In their model,

every patient prefers a fully acceptable donor to any donor who is not fully acceptable,

and yet prefers an acceptable donor to any unacceptable donor. They showed that more

efficiency can be made with also supporting simulation results. See Chun et al. (2015) and
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Figure 1: Blood-type compatibility between patients and donors.
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Sönmez et al. (2018) for independent related studies.

This paper is organized as follows. The model and basic concepts are introduced in

Section 2. Two-, three-, and four-way exchanges are examined with focus on two-way

exchanges in Section 3. A general and abstract multi-way exchange model is discussed in

Section 4. Simulations are presented in Section 5 and conclusion is given in Section 6.

2 The Model

Kidney exchanges involve patients and donors. A kidney can be transplanted from a willing

donor to a patient if the donor’s kidney is compatible to the patient both in blood type

and tissue type. There are four blood types, A, B, AB, and O. A patient of O type can

receive a kidney only from a donor of O type, a patient of A type can receive a kidney

from a donor of A or O type, a patient of B type can receive a kidney from a donor of

B or O type, while a patient of AB type can receive a kidney from a donor of any blood

type. Blood-compatibility is shown in Figure 1. Another medical test concerns tissue.

Tissue-compatibility is determined by six HLA (human leukocyte antigen) proteins (three

from the father and another three from the mother). If the potential recipient shows

antibodies against HLA in the donor kidney called a positive crossmatch, then the donor

kidney cannot be transplanted to the patient.

Formally our kidney exchange model consists of a set DS of single donors, a set PW

of patients on the waiting list (on TWL in short) and a set PD of patient-donor pairs.

Single donors are all altruistic and can be cadavers or living people. Patients on TWL

are also called single patients. A patient-donor pair describes a designated patient and a

living donor who is willing to give a kidney to the patient or to exchange a kidney with

another kidney for the designated patient. A patient (donor) in a patient-donor pair will

be called a paired patient (donor). Patients are indifferent between compatible kidneys,

indifferent between incompatible kidneys, and prefer compatible kidneys to incompatible

ones. In reality there is always a large pool of patients on the waiting list so that such
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patients can be found to match compatibly with any given kidney.

Our primary objective is to enable as many patients as possible to receive compatible

kidneys, i.e., to achieve a maximal number of feasible kidney transplants between patients

and donors. More precisely, we follow and extend the approach of Roth et al. (2007a) by

deriving and calculating the exact number of maximum possible feasible kidney transplants

and proposing a procedure for realizing this efficiency.

In our paper, the symbol (X, Y ) indicates a pair of a patient with blood type X and

a donor with blood type Y, and (X, Y )i ((X, Y )c) means a pair of patient and donor

who are tissue-incompatible (tissue-compatible). Furthermore, we use #Xd to denote the

number of single donors with blood-type X, #Y p the number of patients on the waiting

list with blood-type Y , and #(X, Y ) the number of patient-donor pairs with blood-type

X for patients and blood-type Y for donors. For any real number k, ⌊k⌋ stands for the

largest integer no bigger than k.

An outcome of the kidney exchange problem is a matching of kidneys (i.e., donors)/the

waiting list option to patients such that each paired patient is either assigned a compatible

kidney (i.e., donor) or stays with his paired donor, each patient on the waiting list is either

assigned a compatible kidney (i.e., donor) or stays put, and no kidney (i.e., donor) is

assigned to more than one patient. A matching µ is efficient or maximal if there exists no

other matching ν such that |ν| > |µ| where |µ| is the number of possible kidney transplants

for the matching µ.

A matching can be made through several ways of exchange between patients and donors.

A one-way cycle of exchange comprises only one patient-donor pair in which the patient is

compatible with the donor and is directly transplanted a kidney from the donor. A two-

way cycle of exchange involves two patient-donor pairs in which each patient is compatible

with the other patient’s donor. For instance, we have two patient-donor pairs (A,B) and

(B,A) and use (A,B)− (B,A) to indicate a two-way cycle exchange in which blood-type

A patient in first pair receives the kidney from blood-type A paired donor in second pair

and blood-type B patient in second pair can receive the kidney from blood-type B paired

donor in first pair. A three-way cycle of exchange involves three patient-donor pairs in

which the patient in the first pair is compatible with the donor in the second pair, the

patient in the second pair is compatible with the donor in the third pair, and the patient

in the third pair is compatible with the donor in the first pair. An example consists of

three pairs (X,Z), (Z, Y ), and (Y,X), and the three-way cycle of exchange is given by

(X,Z)− (Z, Y )− (Y,X) in which each patient receives a compatible kidney. Similarly we

can define a four-way cycle of exchange.

We also need to use chain exchanges. A one-way chain of exchange involves a single

donor, denoted by Xd, and a compatible patient, denoted by Y p, on the waiting list. We
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write this exchange as Xd−Y p. A two-way chain of exchange is a chain Xd− (X, Y )−Y p

in which the patient of blood-type X in the pair receives the kidney from the single donor

Xd, and the patient Y p on the waiting list receives the kidney from the donor in the pair.

A three-way chain of exchange is a chain Xd − (X, Y ) − (Y, Z) − Zp in which the single

donor Xd gives her compatible kidney to the patient X in the first pair, the donor Y in

the first pair gives hers to the patient Y in the second pair, and the donor Z in the second

pair gives hers to the patient Zp in waiting. Four-way chains of exchange can be defined

analogously. It should be noted that chains discussed here are markedly different from

those in Roth et al. (2004). They defined a chain to be a sequence of exchanges in which

a patient-donor pair (p, d) donates a kidney to either another paired patient or a person

on the waiting list, in return for the paired patient p getting a high priority on the waiting

list. So in their definition chains involve only patient-donor pairs and the waiting option.

For a given positive integer k, we say that a matching µ is k-efficient if there exists

no other matching ν such that |ν| > |µ| when the maximum size of kidney exchanges is

no more than k-way cycles or chains of exchange. In the following when we say a k-way

exchange, it can be an l-way cycle or chain of exchange for any 1 ≤ l ≤ k.

It is natural to bring compatible patient-donor pairs and single donors into exchange

with incompatible pairs as more patients can be benefited from their involvement. In

practice single donors play a significant role. For instance, the number of total kidney

donors in USA is 19,613 including 14,077 deceased donors and 5536 living donors in 2017

according to Hart et al. (2017).

Note that cycles involve only living people who are paired patients or paired donors,

while every chain involves only one single donor and only one patient on the waiting

list and possibly patient-donor pairs. The single donor is altruistic, decreased or living.

In practice, kidneys from deceased donors cannot be preserved too long. Melcher et al.

(2016), OPTN/UNOSKT (2017), Molmenti et al. (2018), and Cornelio et. al. (2019)

reported and discussed practical implementation of deceased donor-initiated chains.

To derive an analytical expression for the maximum number of feasible transplants

among the whole kidney exchange pool, we impose the following three basic assumptions.

Assumption 1 (Upper Bound Assumption): Every patient on the waiting list is tissue-

compatible with every blood-type compatible donor and every paired patient is tissue-compatible

with a blood-type compatible single donor or paired donor of any other paired patient.

This assumption is a slight generalization of Assumption 1 of Roth et al. (2007a, p.

831) and seems extremely difficult to be relaxed as like Roth et al. (2007a, p. 831) we

want to obtain the exact number of the maximal feasible kidney transplants. Note that

advances in medical technology and practice can mitigate the tissue-incompatibility issue
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considerably. Unlike blood-compatibility, tissue-compatibility does not require exact HLA

match between a patient and a donor. The percentage of tissue-incompatibility is also

very low; see Zenios et al. (2001). With evolving clinical practice, the significance of

HLA matching has diminished (Su et al. 2004). To decide whether a person can donate a

kidney or not, the level of HLA level does not play a central role. This is consistent with

the practical evidence from OPTN/SRTR Annual Data Report in Hart et al. (2017) that

most of transplanted patients have HLA mistakes with donors (see page 45 of the report).

We will have more discussion on the issue in Section 5.

Assumption 2 #(A,B) > #(B,A).

Terasaki et al. (1998) and OPTN & SRTR annual data report in 2017 have provided

statistical evidence for this assumption that the number of pairs (A,B) is greater than the

number of pairs (B,A). This assumption is used as Assumption 3 in Roth et al. (2007a,

p. 834).

Assumption 3 Let (X, Y ) denote a blood-compatible type from (A,A), (B,B), (AB,AB),

(O,O), (A,O), (B,O), (AB,O), (AB,A) and (AB,B). There exists either no pair of type

(X, Y ) or at least one tissue-compatible pair of type (X, Y ).

This assumption can be easily satisfied for a relatively large population and is similar to

Assumption 4 of Roth et al. (2007a, p. 834).

For a relatively large population, due to blood-compatibility constraints, there will be

likely higher demand for kidneys of type O than type A or B, and higher demand for

kidneys of type A or B than type AB. As a result, pairs of type (O,A), (O,B), (O,AB),

(A,AB), or (B,AB) are on the long side of the exchange and will have to wait longer for

a feasible exchange than pairs of other types. Their opposite blood-type compatible but

tissue-type incompatible pairs are on the short side. This is used as their Assumption 2 of

Roth et al. (2007a, p. 832). Our model will dispense with this assumption and can handle

cases that violate or satisfy this assumption.

3 Efficient Kidney Exchange

In this section we derive a maximum number of feasible kidney transplants, when one-way,

two-way, three-way, or four-way cycles or chains of exchange are used. In Section 4 we will

show that at most four-way cycles and chains suffice to extract all the potential gains of

kidney exchange. This result follows from our basic Theorem 1 for a general and abstract

matching model of any finite ways of exchanges with two-category-type compatibility con-

straints like blood types and tissue types. As the current model is arguably very general,
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Figure 2: Two-way cycles (a) and chains (b) of exchange.

Blood-type Incom Pairs Blood-type Com Pairs

(O, A) (A, O)

(O, B) (B, O)

(O, AB) (AB, O)

(A,AB) (AB, A)

(B,AB) (AB, B)

(A, B) (B, A)

(O, A)

(AB, O)

(O, B)

(AB, O)

(A, AB)

(AB, O)

(B, AB)

(AB, O)

(A, B)

(AB, O)

(A, B)

(AB, A)

(a)

Single Donors Blood-type Incom Pairs Patients on TWL

Od (O, A)

(O, B)

(O, AB)

(A, AB)

(B, AB)

(A, B)

Ad

Bd

Ap

Bp

ABp

(b)

our analysis becomes inevitably much more involved due to a large number of combinato-

rial cases caused by the presence of compatible or incompatible patient-donor pairs, single

donors and patients on the waiting list. For this reason we will focus on two-way exchanges

and give an intuitive but less formal treatment of the essential cases of three-way and four-

way exchanges. For the formal and rigorous analysis of three-way and four-way exchanges,

see Cheng and Yang (2017a, b) of more than 240-page discussion paper.

3.1 Two-Way Exchange

Recall that to distinguish blood-type compatible but tissue-type incompatible pairs and

compatible pairs, we use (X, Y )i to denote the first group and (X, Y )c to denote the second

group. Obviously #(X, Y ) = #(X, Y )i+#(X, Y )c. In the following, the notation (A,B)−

(C,D)/(X, Y ) means that (A,B) − (C,D) and/or (A,B) − (X, Y ), and (A,B)/(C,D) −

(X, Y ) means that (A,B)− (X, Y ) and/or (C,D)− (X, Y ).

Figure 2 shows several basic two-way cycles and chains of exchange but do not include

pairs (X,X). In Figure 2(a) the right column above the dot line represents blood-type

compatible pairs while the left column above the dot line stands for the blood-type incom-
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patible pairs. By Assumption 3 all tissue incompatible pairs of type (X, Y )i on the right

side can be matched by two-way cycle (X, Y )i−(X, Y )i or two-way cycle (X, Y )i−(X, Y )c.

The problem becomes how to take full advantage of blood-type compatible pairs and single

donors to match a maximum number of blood-type incompatible pairs because blood-type

incompatible pairs cannot match with each other in two-way cycles.

A cell in the left column linking a cell in the right column means a two-way cycle, for

instance, (O,A) − (A,O) and (O,A) − (AB,O). In Figure 2(b) a cell in the left column

linking a cell in the middle column linking a cell in the right column implies a two-way

chain, for instance, Od− (O,A)−Ap, Od− (O,B)−Bp and Od− (O,B)−ABp. Using this

idea we propose a sequential matching procedure to find a maximal number of (feasible)

transplants when at most two-way cycles or chains of exchange will be used. We call it a

sequential 2-way matching procedure, which is delegated to the appendix.

We use the following example to show how each matching procedure assigns compatible

kidneys to patients and how efficiency will be improved as more ways of exchange are

permitted.

Example 1 There are 32 incompatible patient-donor pairs consisting of three incompatible

pairs of type (AB,AB)i, five pairs of type (O,A), one pairs of type (O,B), one pair of type

(O,AB), two pairs of type (A,AB), seven pairs of type (B,AB), seven pairs of type (A,B),

one incompatible pair of each type of (A,O)i, (B,O)i, (AB,O)i, (AB,A)i, (AB,B)i and

(B,A); three compatible patient-donor pairs consisting of one compatible pair of each type

(AB,AB)c, (AB,O)c and (A,O)c; and five single donors consisting of three single donors

of type Ad, one single donor of type Bd and one single donor of type ABd, and a large

number of single patients.

Observe that in the example there are in total 35 patient-donor pairs including 32

incompatible pairs and three compatible ones and many single patients. Table 1 shows

that if two-way exchange is implemented, 24 paired patients and 5 single patients can

receive kidney transplants and all three compatible pairs are involved in kidney exchange

with incompatible pairs. Four pairs of type (B,AB), three pairs of type (O,A) and four

pairs of type (A,B)/(A,AB) stay put. In Table 1, Step 1 has two cycles, i.e., (AB,AB)i−

(AB,AB)i and (AB,AB)i−(AB,AB)c. Note that we can randomly pick kidney exchanges

from cycles (AB,O)c−(O,A)/(O,B)/(B,AB) and chains Od−(O,A)/(O,B)/(B,AB)−Y p

in Step 4.

We have the following observation immediately from Figure 2 or by definition. What

is interesting or nontrivial is that the same conclusion holds true also for three or four or

higher-way exchanges.
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Table 1: The illustration of the two-way matching procedure.

Steps
Number of

Cycles or Chains
Cycles or Chains

Number of Remaining

Pairs and Donors

Step 1 2
(AB,AB)i − (AB,AB)i

(AB,AB)i − (AB,AB)c

Step 2

1 (O,A)− (A,O)i 4 (O,A)

1 (O,B)− (B,O)i

1 (O,AB)− (AB,O)i

1 (A,AB)− (AB,A)i (A,AB)

1 (B,AB)− (AB,B)i 6 (B,AB)

1 (A,B)− (B,A) 6 (A,B)

Step 3

1 (O,A)− (A,O)c 3 (O,A)

1 Ad − (A,AB)− ABp 2 Ad

1 Bd − (B,AB)− ABp 5 (B,AB)

2 Ad − (A,B)− Bp/ABp 4 (A,B)

Step 4 1 (AB,O)c − (B,AB) 4 (B,AB)

Step 5

(End)
1 ABd − ABp

Lemma 1 Assume that the kidney exchange model satisfies the Assumptions 1 and 3.

Let µ be a 2-efficient matching. Then in µ every cycle contains at most two blood-type

compatible pairs and every chain contains at most one blood-type compatible pair.

Our next result shows that we can actually obtain an explicit formula of the maximal

number of feasible kidney transplants under two-way exchanges and the realization of

this efficient exchange can be achieved by the sequential 2-way matching procedure. As

the formula is too long, it will be given in the appendix together with the proof of the

proposition.

Proposition 1 Assume that the kidney exchange model obeys the Assumptions 1, 2,

and 3. Then the matching µ obtained from the above mechanism is 2-efficient and the

maximum number of transplants through two-way exchanges can be given explicitly as in

the appendix.

Now we compare the lower bound of the number in Proposition 1 with the case in which

incompatible patient-donor pairs, compatible patient-donor pairs, and patients in waiting

and single donors are treated separately under two-way exchange. We consider the most

common situation that the number of blood-type incompatible pairs of each type: #(O,A),

#(O,B), #(O,AB), #(A,AB), and #(B,AB), is at least as large as the number of its

opposite blood-type compatible but tissue-type incompatible pairs: #(A,O)i, #(B,O)i,

#(AB,O)i, #(AB,A)i, and #(AB,B)i, respectively. We can do similar comparison for

other situations. Hence, the maximum number of feasible transplants for the group of
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incompatible patient-donor pairs under two-way cycles is

2(#(A,O)i +#(B,O)i +#(AB,O)i +#(AB,A)i +#(AB,B)i)

+2#(B,A) + 2(⌊#(A,A)i

2
⌋+ ⌊#(B,B)i

2
⌋+ ⌊#(AB,AB)i

2
⌋+ ⌊#(O,O)i

2
⌋)

The maximum number of transplants for patients on the waiting list under one/two-

way chains equals (#Ad + #Bd + #ABd + #Od) because the number of patients on the

waiting list exceeds the number of single donors so that a single donor can always find a

compatible patient on the waiting list to donate. The maximum number of transplants for

the group of compatible patient-donor pairs equals #(A,O)c + #(B,O)c + #(AB,O)c +

#(AB,A)c +#(AB,B)c +#(A,A)c +#(B,B)c +#(O,O)c +#(AB,AB)c because every

patient in a compatible pair can receive the kidney from its own paired donor.

Since for any blood-type compatible pair of type (X, Y ), we have #(X, Y ) = #(X, Y )i+

#(X, Y )c, the maximum number of transplants in the whole pool becomes

#(A,O) + #(B,O) + #(AB,O) + #(AB,A) + #(AB,B)

+#(A,O)i +#(B,O)i +#(AB,O)i +#(AB,A)i +#(AB,B)i

+2#(B,A) + 2(⌊#(A,A)i

2
⌋+ ⌊#(B,B)i

2
⌋+ ⌊#(AB,AB)i

2
⌋+ ⌊#(O,O)i

2
⌋)

+#(A,A)c +#(B,B)c +#(AB,AB)c +#(O,O)c

+#Ad +#Bd +#ABd +#Od

We compare the above number with the lower bound of the number in Proposition 1

and obtain

min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, N17}

−(#(A,O)i +#(B,O)i +#(AB,O)i +#(AB,A)i +#(AB,B)i +#(B,A))

+#(A,A) + #(B,B) + #(AB,AB) + #(O,O)

−(#(A,A)c +#(B,B)c +#(AB,AB)c +#(O,O)c)

−2(⌊#(A,A)i

2
⌋+ ⌊#(B,B)i

2
⌋+ ⌊#(AB,AB)i

2
⌋+ ⌊#(O,O)i

2
⌋)

≥ 0

where the numbers N1, N2, · · · , N17 are parts of the formula in Proposition 1 and are

given in the appendix. This shows the benefits of allowing compatible patient-donor pairs

to join incompatible pairs for exchange and adding two-way chain exchange.

3.2 Three-Way Exchange

To improve the potential gains of exchange, three-way cycles and three-way chains of

exchange can be used.

Figures 3 and 4 show all possible three-way cycles and chains under Assumptions 1,

2 and 3. Note that these figures do not include two-way exchanges which are discussed
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in the previous subsection. Recall that blood-compatible pairs can always be matched

by Assumption 3. To have more transplants we can make the best use of every blood-

compatible pair to match with a blood-incompatible pair. As a result, three-way cycles

can be formed.

Here we will discuss several essential cases of three-way exchanges. Firstly, consider

some beneficial three-way cycles or chains with two blood-incompatible pairs. Under three-

way exchanges, blood-compatible pair (AB,O) (the right column) can involve not one

but two blood-type incompatible pairs through 4 three-way cycles (AB,O) − (O,A) −

(A,AB), (AB,O)− (O,A)− (A,B), (AB,O)− (A,B)− (B,AB) and (AB,O)− (O,B)−

(B,AB). For blood-compatible pair (B,O), we have just one three-way cycle (B,O) −

(O,A)− (A,B). For blood-compatible pair (AB,A), we have also just one three-way cycle

(AB,A)− (A,B)− (B,AB). Similarly, we can use single donors to match with two blood-

incompatible pairs and patients on the waiting list. Consequently, three-way chains can be

generated. With one-way and two-way chains, each single donor can trade with at most

one blood-incompatible pair. If three-way chains are allowed, single donor Od can trade

with two blood-incompatible pairs through three-way chains Od− (O,A)− (A,AB)−ABp,

Od−(O,A)−(A,B)−Bp, Od−(A,B)−(B,AB)−ABp and Od−(O,B)−(B,AB)−ABp.

Moreover, if there is any (A,B) left, type (A,B) can bring an extra blood-incompatible

pair into chains through three-way chains Ad − (A,B)− (B,AB)− ABp.

Secondly, consider some beneficial three-way cycles or chains with one pair (B,A) or

with one blood-incompatible pair. Observe that (B,A) pairs are on the short side by

Assumption 2. These pairs can be very beneficial in the following situations: Firstly, there

are pairs or singles, (A,O), (O,B), Ad/(AB,A), and (B,AB). In this case, we cannot

match blood-incompatible pairs (O,B) and (B,AB) in a two-way cycle. But if we break

two-way cycle (A,B)− (B,A), we can make three-way cycles (A,O)− (O,B)− (B,A) and

(AB,A)− (A,B)− (B,AB) and thus increase the number of transplants. Also three-way

cycles (A,O)− (O,B)− (B,A) and chains Ad − (A,B)− (B,AB)− ABp can yield more

transplants. Secondly, there are pairs or singles, (A,AB), (B,O), Bd/(AB,B), and (O,A).

In this case, we cannot match blood-incompatible pairs (O,A) and (A,AB) in a two-way

cycle, but we can make three-way cycles (B,O)− (O,A)− (A,B) and (AB,B)− (B,A)−

(A,AB) and increase the number of transplants. Also three-way cycles (B,O)− (O,A)−

(A,B) and three-way chains Bd − (B,A)− (A,AB)− ABp can bring more transplants.

Furthermore, it is easy to see that (AB,A)− (A,O), or (AB,B)− (B,O) can make a

three-way cycle of exchange with any pair (X, Y ), and that Ad − (A,O) or Bd − (B,O)

can yield a three-way chain with any pair (X, Y ). In particular, when there are pairs

(B,AB), (O,B) and (O,AB), it is impossible to use them in two-way exchange but it

is easy to combine them with (AB,A) − (A,O) to yield three-way exchange (AB,A) −
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(A,O) − (B,AB)/(O,B)/(O,AB). Similarly, we can make three-way exchanges Ad −

(A,O)− (B,AB)/(O,B)/(O,AB)−Y p, (AB,B)− (B,O)− (A,AB)/(O,A)/(O,AB) and

Bd − (B,O)− (A,AB)/(O,A)/(O,AB)− Y p.

We have developed an efficient three-way exchange procedure and obtained results

similar to Proposition 1 which are omitted here but given in Cheng and Yang (2017a,

b) in detail. We use Example 1 to demonstrate how much efficiency can be gained by

three-way exchange compared with two-way exchange. In the case of three-way exchange,

31 paired patients and five single patients will receive kidney transplants and four pairs of

type (B,AB), (A,B), (O,B) and (O,AB) stay put. Compared with the previous two-way

exchange, three-way exchange increases the maximum number of kidney transplants by

seven.

Figure 3: Three-way cycles (a) and chains (b) of exchange with two blood-incompatible

pairs.

Blood-incom Pairs Blood-com Pairs

(O, A) (B, O)

(AB, O)

(O, B)

(B, AB)

(A, B) (AB, A)

(A, AB)

(a)

Single Donors Blood-incom Pairs Patients on TWL

Od (O, A)

(O, B)

(B, AB)

(A, B)Ad

(A, AB)

Bp

ABp

(b)

14



Figure 4: Three-way cycles (a) and chains (b) of exchange with (B,A) and three-way cycles

of exchange with one blood-incompatible pair.
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The following proposition shows that in three-way exchanges every cycle contains at

most two blood-type compatible pairs and every chain comprises at most one blood-type

compatible pair, extending the insight of Lemma 1.

Proposition 2 Assume that the kidney exchange model satisfies the Assumptions 1

and 3. Then every 3-efficient matching µ can be transformed to another 3-efficient matching

in which every cycle contains at most two blood-type compatible pairs and every chain

contains at most one blood-type compatible pair.

Proof. Consider any given 3-efficient matching µ as stated in the lemma. If µ consists

only of cycles with no more than two blood-type compatible pairs and chains with no

more than one blood-type compatible pair, we are done. Suppose to the contrary that µ

contains a cycle with more than two blood-type compatible pairs or a chain with more than

one blood-type compatible pair. We only need to consider the case of three-way cycles or

chains. We will show that a three-way cycle with three blood-type compatible pairs can

be decomposed into three single blood-compatible pairs and a three-way chain with two

blood-compatible pairs can be decomposed into two single blood-compatible pairs and a

one-way chain in which the single donor donates its kidney to a patient on the waiting list.

Because a blood-type compatible and tissue-type compatible pair can directly do trans-

plant, all blood-type compatible and tissue-type compatible pairs can do transplants sepa-

rately. Let D be the set of all blood-type compatible but tissue-type incompatible pairs in a

three-way cycle or chain under consideration. Let (X, Y )i present the type of a blood-type

compatible but tissue-type incompatible pair. If there exists two or more pairs of type

(X, Y )i, we can have a two-way cycle among them (X, Y )i − (X, Y )i. Therefore, at most
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one pair of type (X, Y )i left after the process. By Assumption 3, there exists at least one

blood-type and tissue-type compatible pair of type (X, Y )c. If the compatible pair (X, Y )c

does not involve in any cycle or chain, then we can match the remaining pair (X, Y )i

with pair (X, Y )c. Otherwise, the compatible pair (X, Y )c involves in a cycle consisting

of no more than two blood-type compatible pairs or a chain consisting of no more than

one blood-type compatible pair. Then we can use pair (X, Y )i instead of (X, Y )c based

on Assumption 1 and pair (X, Y )c do transplant directly. Therefore, all remaining pairs of

type (X, Y )i can be matched. ✷

3.3 Four-Way Exchange

If four-way cycles and chains of exchange are used, more kidney transplants will be made

possible. Figures 5 and 6 show all four-way cycles and chains of exchange but do not include

two- or three-way exchange, which are already discussed in the previous two subsections.

In this case we have a four-way cycle with three blood-incompatible pairs (AB,O) −

(O,A) − (A,B) − (B,AB), a four-way chain with three blood-incompatible pairs Od −

(O,A) − (A,B) − (B,AB) − ABp, two four-way cycles with two blood-compatible pairs

(AB,A)−(A,O)−(O,B)−(B,AB) and (AB,B)−(B,O)−(O,A)−(A,AB), two four-way

chains with one blood-compatible pair Ad − (A,O)− (O,B)− (B,AB) and Bd − (B,O)−

(O,A)− (A,AB), one four-way cycle (AB,A)− (A,B)− (B,O)− (X, Y ) and one four-way

chain Ad − (A,B) − (B,O) − (X, Y ) − Zp, where (X, Y ) is any pair and Zp is any single

patient.

Figure 5: Four-way cycles (a) and chains (b) of exchange with three blood-incompatible pairs.
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Figure 6: Four-way cycles (a) and chains (b) of exchange with two blood-incompatible pairs.
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An efficient four-way exchange procedure has been proposed and also results similar to

Proposition 1 are obtained in Cheng and Yang (2017a, b). If we apply four-way exchange to

Example 1, then 32 paired patients and five single patients will receive kidney transplants

and three pairs of type (A,AB), (O,B) and (O,AB) will be left. In comparison with the

previous three-way exchange, the four-way exchange increases the maximum number of

kidney transplants by only one. This indicates that four-way exchanges can make only

minor improvement of efficiency.

The next result demonstrates that the same insight of Proposition 2 holds also for

four-way exchanges. Namely, as in three-way exchanges, in four-way exchanges, for every

four-way cycle we need at most two compatible pairs and for every four-way chain we need

at most one compatible pair. It proof can be found in Cheng and Yang (2017a, b).

Proposition 3 Assume that the kidney exchange model satisfies the Assumptions 1

and 3. Then every 4-efficient matching µ can be transformed to another 4-efficient matching

in which every cycle contains at most two blood-type compatible pairs and every chain

contains at most one blood-type compatible pair.

In the next section we will show in Corollary 1 that at most four-way exchanges are

sufficient to achieve all the potential gains of possible and feasible kidney transplants

under Assumptions 1 and 3 and this number of four is nothing but the number of four

blood types. This will easily follow from a basic theorem (i.e., Theorem 1) for a general

and abstract matching model of multi-way exchanges.

4 Multi-Way Cycles and Chains of Exchange

In the previous sections we have focused on two-way, three-way, and four-way cycles and

chains of exchange and derived the upper bounds of the possible number of kidney trans-
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plants under those given assumptions. In the current section, we consider a more general

model of kidney exchange and show that under similar conditions, five or higher-way cycles

and chains of exchange even if available will not further increase the number of feasible

kidney transplants. In other words, four or less-way exchanges are sufficient to capture all

the potential gains of kidney exchange.

Our general model consists of pairs, single donors and patients on the waiting list. We

also call a patient on the waiting list a single patient. Each pair i has a patient P p
i and a

donor Dp
i . Each single patient is denoted by P s

i and each single (decreased or living) donor

is denoted as Ds
i .

Let B be the family of primary types such as blood shared by patients and donors with

|B| = n > 2. In other words, all patients and donors have their types X in ∈ B. For any

given two primary types X, Y ∈ B, X � Y means that agent of type X is primary type

compatible with agent of type Y . In the context of kidney exchange, a patient of type

Y is blood-type compatible with a donor of type X. Following Roth et al. (2007a), we

assume that the compatibility relation � for primary types satisfies reflexivity, asymmetry

and transitivity properties:

1. (Reflexivity) X � X for any X ∈ B,

2. (Asymmetry) X � Y and X 6= Y ⇒ Y � X for any X, Y ∈ B, and

3. (Transitivity) X � Y and Y � Z ⇒ X � Z for any X, Y ∈ B.

Blood-type compatibility possesses the properties of reflexivity, asymmetry and transi-

tivity.

Different from and improving Roth et al. (2007a), we also introduce secondary types

to reflect and grasp important properties like tissue shared by patients and donors and

also to accommodate other economic models going beyond blood-type and tissue-type

compatibility. Although we know from the medical practice that the requirement on tissue-

type compatibility is not as stringent as on blood-type compatibility, some degree of tissue-

type compatibility is still required. As will be discussed in the following section, tissue types

can be roughly divided into several groups according to their percentage of incompatibility.

In this way, it is desirable and reasonable to imbed secondary types into the model rather

than to simply assume away or ignore them.

Let C be the family of secondary types with |C| = m ≥ 2. For any given two secondary

types Z,W ∈ C, Z ∼ W means that agent of type Z is secondary type compatible with

agent of type W . In the context of kidney exchange, a patient of type Z is tissue-type

compatible with a donor of type W . We assume that the compatibility relation ∼ for

secondary types satisfies symmetry and intransitivity properties:
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I. (Symmetry) Z ∼ W ⇒ W ∼ Z for any Z,W ∈ C, and

II. (Intransitivity) Z ∼ W and W ∼ L ; Z ∼ L for any Z,W,L ∈ C.

Tissue-type compatibility possesses the properties of symmetry and intransitivity.

An agent of primary type X ∈ B and secondary type Z ∈ C is compatible with an agent

of primary type Y ∈ B and secondary type W ∈ C if and only if X � Y and Z ∼ W . In

the context of kidney exchange, a patient of type Y ∈ B and W ∈ C can accept a kidney

from a donor of type X ∈ B and Z ∈ C.

Because the compatibility of secondary types is symmetric and intransitive, we use

symbol i to stand for ≁ and symbol c to stand for ∼. Let (X, Y )t describe a pair which has

a patient of primary type X ∈ B and a donor of primary type Y ∈ B and the compatibility

relation of secondary types between the patient and the doctor is t ∈ {i, c}. Therefore, we

can divide all pairs into four groups:

1. (X, Y )i for any X, Y ∈ B, and Y � X,

2. (X, Y )c for any X, Y ∈ B, and Y � X,

3. (X, Y )i for any X, Y ∈ B, and Y � X,

4. (X, Y )c for any X, Y ∈ B, and Y � X.

In this model, group 4 demonstrates compatible pairs and the other three groups cover

incompatible pairs. To simplify the notation, we write incompatible pairs from groups 1

and 2 as (X, Y ) for which donors are primary type incompatible with patients, i.e., Y � X.

We can describe a three-way cycle as

E = ((P p
1 , D

p
1), (P

p
2 , D

p
2), (P

p
3 , D

p
3)),

which means that the paired donor Dp
1 is matched with the paired patient P p

2 , the paired

donor Dp
2 is matched with the paired patient P p

3 , and the paired donor Dp
3 is matched with

the paired patient P p
1 . Any size cycle can be defined similarly. A cycle E is feasible if the

type of each donor in E is compatible with the type of patient who is matched with the

donor. Also, we can describe a three-way chain as

C = (Ds
1, (P

p
1 , D

p
1), (P

p
2 , D

p
2), P

s
1 ),

in which the single donor Ds
1 is matched with the paired patient P p

1 , the paired donor Dp
1

is matched with the paired patient P p
2 , and the paired donor Dp

2 is matched with the single

patient P s
1 . Any size chain can be defined in a similar way. A chain C is feasible if the

type of every donor in C is compatible with the type of patient who is matched with the

donor.
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We can recast and generalize the Assumptions 1 and 3 into the present more general

model, respectively.

Assumption 4 Every single agent of primary type X ∈ B and secondary type Z ∈ C

is Z ∼ W with every agent of type Y ∈ B and W ∈ C who is Y � X. Every agent in a

pair of type X ∈ B and Z ∈ C is Z ∼ W with every agent other than agents in the pair of

type Y ∈ B and W ∈ C who is Y � X.

Assumption 5 Let X, Y ∈ B be such that Y � X. There exists either no pair of type

(X, Y ) or at least one pair of type (X, Y )c.

We will show that when the compatibility relation of primary type satisfies reflexiv-

ity, asymmetry and transitivity, and the compatibility relation of secondary type satisfies

symmetry and intransitivity, a maximal size of exchange in the model can be achieved

through no more than n-way cycles and n-way chains. The next two results generalize

those of Roth et al. (2007a) to the setting which comprises all kinds of pairs, single donors

and patients on the waiting list and uses both cycles and chains of exchange. It is worth

pointing out that our model studies two-category type-compatible exchanges with the first

category B of primary types and the second category C of secondary types and the number

of types in each category can be different, while the model of Roth et al. (2007a) examines

one-category type-compatible exchanges. Observe that in the following theorem the max-

imal n-way exchange depends only on the number n of types in the first category B and

is independent of the number m of types in the second category C, although the matching

requires two-category type-compatibility. This result somewhat bears a resemblance to

the famous Modigliani-Miller Theorem (1958) in finance that a firm’s capital structure is

irrelevant to the firm’s value; see also Stiglitz (1969).

Theorem 1 Assume that there are n ≥ 2 primary types in B and m ≥ 2 secondary

types in C and the Assumptions 4 and 5 hold. Let µ be any maximal matching in the

sense that any size of kidney exchanges is permitted in the matching. Then there exists a

maximal matching ν which contains at most n-way cycles and chains of exchange but has

the same set of patients matched with compatible donors as in the matching µ.

A basic intuition behind this general theorem comes from a key observation that we can

always reduce any large k(> n)-efficient matching ν into a lower (k− 1)-efficient matching

ν ′, which contains the same set of compatible matched pairs as ν does. We can do this

exercise recursively until we reach the number of n-the total number of primary types,

which is the number of building blocks of the general matching model. The proof of this

theorem is given in the appendix.
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The following is an immediate consequence of the theorem, because in the context of

kidney exchange we have only four blood types, corresponding to n = 4, the total number

of primary types in the theorem. As a result, at most four-way exchanges will be needed

to capture all the potential gain of feasible kidney transplants.

Corollary 1 Consider a kidney exchange model under the Assumptions 1 and 3. Let

µ be any maximal matching without any restriction on the size of exchange. Then there

exists a maximal matching ν which contains at most four-way exchanges but has the same

set of patients who can benefit from exchanges as in the matching µ.

5 Simulations Based on the USA Data

In this section, we use two data sets from the U.S. Organ Procurement and Transplantation

Network (OPTN) and the Scientific Registry of Transplant Recipients (SRTR) from 1993

to 2002 and from 1995 to 2016, respectively,4 to generate simulated data reflecting the

characteristics of the population involved and to test how well our theoretical results can

predict. Although the simulated population which is almost identical or very close to the

real life situation may not fully meet the simplifying assumptions (in particular Assump-

tion 1) made for the model, we find that the predicted maximum number of transplants

given by our derived formulas is surprisingly close to the number of transplants that can

be actually realized.

Dickerson et al. (2019) have reported a fairly high percentage of last minute failures

in planned matches recommended by kidney exchange algorithms/procedures. This is a

type of failure before the transplant surgery takes place. One of the main reasons concerns

the tissue-type incompatibility because it is not possible to obtain the full tissue-type

compatibility data prior to any actual kidney transplants as this information is very specific

to the donor and the intended recipient. Fortunately, there are now several ways of resolving

the tissue-type incompatibility problem. Dickerson et al. (2019) suggested to take failure-

awareness and some uncertainty into exchange design and showed a significant gain of

successful transplants. Another effective and practical approach is to make use of the

historic data of actual crossmatch tests between patients and donors; see Sönmez and

Ünver (2013) for detailed and informed discussions. Also the desensitization in HLA or

ABO incompatible living donors to their kidney transplantation to end-stage kidney disease

patients has been successfully carried out in experienced hospitals; see Becker et al. (2013)

and Thukral et al. (2019).

4They are retrieved from http://optn.transplant.hrsa.gov/data/view-data-reports/

national-data.
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5.1 Data Construction

Data is collected for two time slots. The first time slot data is from 1993 to 2002 and

is shown in Table 3, and the second time slot data is from 1995 to 2016 and is shown

in Table 4. These data sets illustrate the national characteristics of the USA population

involved in kidney exchanges. The first period data from 1993 to 2002 is largely similar to

those used by Roth et al. (2007a), and Saidman et al. (2006), except that in our new data

set we include more relevant information like the distribution of compatible patient-donor

pairs and single donors, which are not used in Roth et al. (2007a), and Saidman et al.

(2006). The second data set from 1995 to 2016 stretches over a long period of time and

reveals more and better information on the national characteristics of the USA population.

5.1.1 Patient-Donor Pairs and Single Donors Construction

Following Roth et al. (2007a), to avoid the complications of possible impact of genetics on

immunological incompatibilities we exclude all blood-related incompatible patient-donor

pairs in all our samples.

In the first time slot from 1993 to 2002, we use the same characteristics of incompatible

pairs as that of Roth et al. (2007a) but add the blood-type characteristics for compatible

patients, compatible donors and single donors; see Table 3. The second time slot data

from 1995 to 2016 covers a long period of time and contains more detailed information

about characteristics of the population. Compared to three levels of PRA (Percent Reac-

tive Antibody) of patients from the data of the first time slot, five levels of PRA called

CPRA (Calculated Percent Reactive Antibody) are provided in the data of the second

time slot. The second time slot data contains also the information of compatible paired

patient gender, compatible paired patient CPRA types and the blood-type information of

incompatible paired donor; see Table 4. It should be noted that the percentages 39.83

and 36.02 of single donors on Tables 3 and 4, respectively, include only those (deceased or

living) single donors whose kidneys have been transplanted.

It is important to point out that in the OPTN/SRTR annual report there is no clear

information about the number of incompatible patient-donor pairs. Following Roth et

al. (2007a) we use newly-added patients on the waiting list every year as approximately

incompatible paired patients and the blood-type distribution of donors whose kidneys have

been transplanted as the blood-type distribution of incompatible paired donors.

Because there exist a large number of patients on the waiting list, we can always find a

patient who is compatible with any given kidney. Hence, we do not need to simulate any

data for patients on the waiting list.
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5.1.2 Tissue-type Incompatibility

Tissue-type compatibility is the second condition for kidney transplants. In our simulations

of the first time slot from 1993 to 2002, we adopt the same method as used by Roth et

al. (2007a) such that patients are divided into three groups based on the difficult level of

tissue-type compatible with a random donor. In the first group called Low PRA group,

patients are tissue-type incompatible with less than 10 percent of the population. The

second group called Medium PRA contains patients who are tissue-type incompatible with

10-80 percent of the population. And, the third one called High PRA has patients who

have a tissue-type incompatibility problem with more than 80 percent of the population.

We use the following categories as used by Roth et al. (2007a):

1. In Low PRA group, each patient is tissue-type incompatible with 5 percent of the

population,

2. In Medium PRA group, each patient is tissue-type incompatible with 45 percent of

the population, and

3. In High PRA group, each patient is tissue-type incompatible with 90 percent of the

population.

In our simulations for the second time slot from 1995 to 2016, CPRA index is used to

check whether a patient is sensitive or not according to OPTN/SRTR database. Five levels

are calculated in CPRA index, which are 0, 1-19, 20-79, 80-97, and 98-100. If a patient

CPRA equals 0, it means the patient has no PRA problem with potential donors; 1-19

means the patient has 1 percent to 19 percent to have problem with potential donors and

so on. In this simulation, we divide patients into five groups based on the difficult levels

of tissue-type compatibility with a random donor. Based on the CPRA data, we use the

following five groups:

1. In 0 CPRA group, each paired patient is tissue-type incompatible with 0 percent of

the population;

2. In 1-19 CPRA group, each paired patient is tissue-type incompatible with 9.5 percent

of the population;

3. In 20-79 CPRA group, each paired patient is tissue-type incompatible with 50 percent

of the population;

4. In 80-97 CPRA group, each paired patient is tissue-type incompatible with 88 percent

of the population;

5. In 98-100 CPRA group, each paired patient is tissue-type incompatible with 99

percent of the population;

Because the data from 1995 to 2016 contains more detailed information on the tissue-

type compatibility of patients and donors, it provides more accurate information than the

first time slot data does. This has important implications: it will yield better results as
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shown in the subsequent section.

According to Zenios et al. (2001), a female patient is more likely to have a positive

crossmatch with her husband. For instance, when positive crossmatch probability is 11.1

percent between random pairs, it becomes 33.3 percent between female patients and their

donor husbands. Hence, when a patient is female and her potential donor is her husband,

we adjust the probability of tissue-type incompatibility between them by using the formulas

PRA∗ = 100− 0.75(100− PRA) and CPRA∗ = 100− 0.75(100− CPRA).

5.2 Simulations

We generate a Monte-Carlo simulation size of 5,000 random population constructions for

five population sizes n of 25, 50, 100, 150 and 200 incompatible patient-donor pairs together

with the corresponding population sizes of compatible patient-donor pairs and single donors

according to the population distributions given by Table 3 based on the 1993-2002 data set

and by Table 4 based on the 1995-2016 data set, respectively. In addition we do a Monte-

Carlo simulation size of 500 random population constructions for two big population sizes

of 300 and 400 incompatible patient-donor pairs. Note that for these big population sizes

we only generate 500 instead of 5,000 random population constructions in order to save

time as it involves a relatively large and computationally difficult integer programming

problem. By comparison, Roth et al. (2007a) have done Monte-Carlo simulations of 500

random population constructions for 25, 50, and 100 incompatible patient-donor pairs and

Saidman et al. (2006) have tested the case of 25 and 100 incompatible patient-donor pairs

both papers based on the 1993-2002 data set.

For each sample of the population, we try to compute the maximal number of incom-

patible paired patients who can receive a compatible kidney when

(1) exchanges are allowed only among incompatible patient-donor pairs. This is called

the exclusive exchange, which is the case studied by Roth et al. (2007a);

(2) compatible patient-donor pairs are allowed to exchange with incompatible patient-

donor pairs. This is called the first degree inclusive exchange;

(3) compatible patient-donor pairs, single donors, and patients on the waiting list are

allowed to exchange with incompatible patient-donor pairs. It is called the second

degree inclusive exchange;

(4) only two-way exchanges are allowed; or two-way and three-way exchanges are allowed;

or two-way, three-way and four-way exchanges are allowed.
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This maximal number will be simply called simulation. We compare these numbers with

those predicted by the formula given by Proposition 1 in Section 3 and Propositions 3.5 and

3.7 in Cheng and Yang (2017a) to see how close or far the actual maximal number of kidney

transplants can be from the predicted number based on the formula. For two-way exchanges

we use Edmonds’ algorithm-an improvement of the Hungarian method (Edmonds, 1965).

For three-way and four-way exchanges we use the software package called CPLEX. It is

well-known in mathematics that two-way exchanges can be solved in polynomial time, but

three-way or higher-way exchanges are NP-complete in the sense that it can be extremely

time-consuming. In our simulation we did not observe any visible net increase of efficiency

through four-way exchanges for population sizes n = 25, n = 50 and n = 100. Because it

was extremely time-consuming and also very costly, we did not pursue four-way exchanges

for higher sizes.

Following Roth et al. (2007a), we make use of two types of upper bound:

Upper Bound (UB) 1. This is the number given by the formula in Proposition 1

in Section 3 and Propositions 3.5 and 3.7 in Cheng and Yang (2017a) for the simulated

population sample of 25, 50, 100, 150, 200, 300, and 400 incompatible patient-donor pairs.

Upper Bound (UB) 2. For each simulated population sample, there may exist some

patients who cannot find a compatible donor in the simulated population. We exclude

those hopeless patients from the sample and compute the number given by the formula in

Proposition 1 in Section 3 and Propositions 3.5 and 3.7 in Cheng and Yang (2017a) for the

remaining population. This number is called the Upper Bound 2 and clearly gives a more

accurate upper bound for the number of feasible transplants that can be realized.

For each population size of 25, 50, 100, 150, and 200 incompatible patient-donor pairs,

we generate 5000 random samples and calculate the average of all 5000 simulations, up-

perbound 1’s and upperbound 2’s. For each population size of 300 and 400 incompatible

patient-donor pairs, we generate 500 random samples and calculate the average of all 500

simulations, upperbound 1’s and upperbound 2’s. All results are collected in Tables 5 and

6 for the period of 1993-2002 and the period of 1995-2016, respectively.

5.3 Discussion of the Simulation Results

Before highlighting the major simulation results, we introduce two performance measures.

The first is the deviation of each simulation from the upper bound 1 and upper bound 2

by

upper bound i− simulation

upper bound i
, i=1, 2

All deviations are given in Table 7. It is clear that as the size of the population increases,

the deviation becomes smaller.
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The second is the matching rate for each case of feasible transplants for incompatible

paired patients over the number of incompatible patient-donor pairs under each exchange

by

the number of feasible transplants for incompatible paired patients

the number of all incompatible paired patients

All matching rates are collected in Table 8 and shown in Figure 7. It is also obvious that

as the size of the population increases, the matching rate increases.

The major findings are summarized as follows:

A. Figure 7 demonstrates that overall the slope of matching rate is upward and when

the number of incompatible patient-donor pairs is below 100-a kind of threshold, the slope

is relatively steep, but after 100, the slope becomes almost flat albeit upward, i.e., efficiency

of exchange is nearly a constant or efficiency of exchange becomes asymptotically constant.

This has important and novel policy implications: Kidney exchanges could be decentralized

in the sense that any country with a large population like USA can have several separate

kidney exchange programs/centers spread across the country where each program/center

covers a sufficient number of patients and donors, say, no less than 100 of incompatible

patient-donor pairs. Patients and donors can have kidney transplant operations in their

own regional or nearby center. This can be very important and useful in practice because

saving traveling cost can be extremely helpful for patients and the life of kidneys. This

also means that medical resources can be evenly distributed across the country and need

not be concentrated in one place. Recall that in order to avoid the moral hazard problem,

kidney exchanges involving patient-donor pairs have to be operated simultaneously in one

hospital or very close hospitals.

B. When both compatible patient-donor pairs and single donors participate in kidney

exchanges with incompatible pairs, efficiency of exchange increases significantly. More

precisely, allowing compatible pairs to exchange with incompatible pairs (the first degree

inclusive exchange) can have at least 10% net increase of feasible kidney transplants and al-

lowing compatible pairs and single donors to exchange with incompatible pairs (the second

degree inclusive exchange) can have at least 30% net increase of feasible kidney trans-

plants. To see this, let us look at Table 8 for the 1993-2002 data set. By comparison

with the exclusive exchange, for the size n = 25 the net increase of efficiency by using

the 1st deg. inclusive exchange is equal to 0.62592 − 0.472 ≈ 0.15, i.e., 15%. For all

seven sizes, we take the smallest difference among all as the net increase of efficiency which

is given by min{0.15, 0.14, 0.12, 0.12, 0.12, 0.11, 0.11}, i.e., 11%. Similarly, by comparison

with the exclusive exchange, the 2nd deg. inclusive exchange brings the net increase of

efficiency by min{0.42, 0.41, 0.37, 0.36, 0.36, 0.36, 0.36}, i.e., 36%. Now look also at Table 8

for the 1995-2016 data set. By comparing with the exclusive exchange, the 1st deg. in-

clusive exchange yields the net increase of efficiency by min{0.15, 0.13, 0.12, 0.12, 0.12, 0.12,
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Figure 7: Matching rates of incompatible paired patients through at most three-way exchanges

based on the 1993-2002 data (a) and based on the 1995-2016 data (b).
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0.10}, i.e., 10%, and the 2nd deg. inclusive exchange raises min{0.38, 0.35, 0.32, 0.32, 0.31, 0.30,

0.30}, i.e., 30%.

C. The simulation results are very close to the theoretical bounds predicted by the for-

mula in Proposition 1. Note that all our simulated population samples contain tissue-type

incompatibilities, whereas our model basically assumes away the issue of tissue-type in-

compatibility. For the two data sets, Table 7 shows that the 2nd degree inclusive exchange

performs better than the 1st degree inclusive exchange which outperforms the exclusive

exchange. First let us look at the case of the 1993-2002 data set. The deviations for Upper

Bound 1 under the exclusive exchange are 17.7%, 7.9%, 2.3%, 1%, 0.6%, 0.3%, 0.2%, under

the 1st deg. inclusive exchange are 8%, 3%, 0.8%, 0.4%, 0.3%, 0.1%, 0.1%, and under the

2nd deg. inclusive exchange are 3.1%, 0.5%, 0.0%, 0.0%, 0.0%, 0.0%, 0.0%. Now look at the

case of the 1995-2016 data set. The deviations for Upper Bound 1 under the exclusive

exchange are 17.6%, 12.5%, 8.5%, 6.2%,

5.2%, 3.7%, 3%, under the 1st deg. inclusive exchange are 9.7%, 6.6%, 4.5%, 3.6%, 2.7%, 1.9%,

1.3%, and under the 2nd deg. inclusive exchange are 5.4%, 3.7%, 2.6%, 1.7%, 1.4%, 0.8%, 0.5%.

D: Simulation in Table 8 shows for the seven sizes of the population two increasing se-

ries of matching rates 0.89384, 0.95848, 0.97054, 0.973973, 0.97763, 0.983867, 0.98478 for the

data set of 1993-2002 and 0.70544, 0.72636, 0.72972, 0.738667, 0.73936, 0.74404, 0.746815 for

the data set of 1995-2016. In other words, the matching rate is an increasing function of

the population size. This is also consistent with those found by Akbarpour et al. (2017)

for general matching markets.
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E: Two-way exchanges can reap most benefits of exchange and will gain more benefits

of exchange as the size of the population increases. Three-way exchanges can make some

visible gain of exchange. As stated earlier in our simulation for the population sizes 25,

50 and 100 the effect of four-way exchanges on efficiency is negligible and we expect it

remains so for larger sizes of population (see Point A above) because the matching rate

increases rapidly before n = 100 but the rate becomes almost flat after n = 100. Let us

look at Table 5 of the 1993-2002 data set. For instance, when n = 25 through the 2nd

deg. inclusive exchange (simulation), three-way exchanges yields a net increase of feasible

transplants by 22.346 − 19.5904 = 2.7556, i.e., 2.7556
22.346

% = 12%, and two-way exchanges

produce 19.5904 feasible transplants, i.e., 19.5904
22.346

% = 88%. For the seven sizes of population,

two-way exchanges contribute roughly 87%, 89%, 92%, 94%, 94%, 95%, 95% to the number

of feasible transplants and the remaining is due to three-way exchanges. Now turn to

Table 6 for the 1995-2016 data set. For the seven sizes of population, similarly two-way

exchanges contribute roughly 91%, 93%, 95%, 95%, 96%, 96%,

96% to the number of feasible transplants and the remaining is due to three-way exchanges.

F: More accurate information can improve the quality of transplants and at the same

time reduce the matching rate. This will be explained in the following subsection.

5.3.1 An Explanation of the Matching Rate on the Second Dataset

In this subsection we explain why the matching rate in the 1995-2016 data set (the second

time slot) is lower than in the 1993-2002 dataset (the first time slot). In our simulations,

we first draw a population of n incompatible pairs from the pool. Each incompatible pair

is either blood-type incompatible or tissue-type compatible or both. When a compatible

pair is drawn, we put the compatible pair back to the pool and keep drawing pairs from

the pool until the population of n incompatible pairs is generated.

From the information given in Tables 3 and 4, we can calculate the percentage of

incompatible pairs in the pool. The percentage of blood-type incompatible pairs for the

first time slot and the second time slot are 0.3163 5 and 0.30767 6, respectively.

We give an example of the calculation by using the first group of each time slot. 89.24

percent of patients have no tissue type problem (CPRA=0) in the second time slot while

70.19 percent of patients have a low PRA value of 5 percent in the first time slot. Therefore,

the percentages of drawing incompatible pairs from this group in the first and second time

slots are given as follows, respectively:

(Low PRA): 5% + 95% ∗ 0.3163 = 0.05 + 0.300485 = 0.350485

548.14% ∗ (1− 48.14%) + (33.73% ∗ 14.28%) ∗ 2 + 33.73% ∗ 3.85% + 3.85% ∗ 14.28% = 0.3163.
648.46%∗ (1−55.3%)+33.22%∗9.9%+14.48%∗32.46%+33.22%∗2.34%+2.34%∗14.48% = 0.30767.
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(0): 0% + 100% ∗ 0.30767 = 0.30767.

When an incompatible paired patient is tissue-type compatible with a paired donor,

the patient is blood-type incompatible with the donor. We have seven types of blood-type

incompatible pairs (O,A), (O,B), (O,AB), (A,B), (B,A), (A,AB) and (B,AB). From

the theoretical part, we can see that the blood-type incompatible pairs are difficult to

find compatible pairs because they cannot match with each other except (A,B)− (B,A),

especially among incompatible pairs.

Table 2: The percentage of incompatible pairs in the pool

Groups from 1992-2003
The rate of tissue type

incompatible pairs (%)

The rate of blood-type

incompatible but tissue type

compatible pairs (%)

The rate of

incompatible

pairs (%)

Low PRA 5 30.0485 35.0485

Medium PRA 45 17.3965 62.3965

High PRA 9 3.163 93.163

Average 21.3385 24.88 46.2185

Groups from 1995-2016
The rate of tissue type

incompatible pairs (%)

The rate of blood-type

incompatible but tissue type

compatible pairs (%)

The rate of

incompatible

pairs (%)

0 0 30.767 30.767

1-19 9.5 27.844 37.344

20-79 50 15.3835 65.3835

80-97 88 3.692 91.692

98-100 99 0.30767 99.30767

Average 5.658 29.026 34.68445

We can see that blood-type incompatible pairs account for 53.89 (0.213385*0.3163+

0.2488/0.462185) percent of the total incompatible pairs in the first time slot. While blood-

type incompatible pairs account for 83.69 (0.05658*0.30767 + 0.29026/0.3468) percent of

the total incompatible pairs in the second time slot, which is 29.8 percent higher than that

of the first time slot. This means that the number of blood-type incompatible pairs from

the second time slot is larger than those from the first time slot.

On the other hand, the number of blood-type compatible but tissue type incompatible

pairs (0.213385 ∗ (1 − 0.3163) = 0.146) in the first time slot is larger than that in the

second one (0.05658 ∗ (1− 0.30767) = 0.039). Since blood-type incompatible pairs cannot

be matched except (A,B)−(B,A) with each other, it will be more difficult for incompatible

paired patients to be matched in the second time slot than in the first time slot. This shows

why the matching rate in the second time slot is lower than that in the second time slot.
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6 Conclusion

The current study was motivated by practical and theoretical issues concerning kidney

exchange. The first one is very practical and concerns kidney exchanges in a real life

environment. In this environment as in our current model, there are many compatible

patient-donor pairs, incompatible patient-donor pairs, patients on the waiting list, and

single donors who are altruistic living or cadaver donors, and kidney exchanges can be done

mostly by two-way, occasionally by three-way, and rarely by four-way. We have examined

what will be the maximal number of possible feasible transplants in the environment. The

second one is theoretical and concerns the derivation of the maximum number of feasible

kidney transplants from two-way, three-way, and four-way exchanges, respectively.

Following and extending Roth et al. (2007a) on exchanges among incompatible patient-

donor pairs, our current study has focused on deriving and calculating the exact number of

maximum possible feasible kidney transplants and providing ways of realizing these efficient

kidney transplants. The number of possible transplants can be known before any practical

implementation or simulation. This approach is different from most other studies, which

have discussed and proposed ways and procedures of achieving efficient kidney exchanges.

In such cases, the number of possible kidney transplants will be known only after the

proposed procedure is implemented by computer or in hospital.

Besides, our other major contributions include: Firstly, we have derived a precise max-

imum number of feasible kidneys transplants under two-way, three-way, and four-way ex-

changes respectively. We have shown that even for this general model at most four-way

cycles or chains will be sufficient to accomplish all potential gains of kidney exchange, and

that two-way exchanges can achieve most benefits of exchange. We have also proposed

a general but abstract model of two-category type-compatible exchanges and proved that

it suffices to fully achieve efficiency by using only n-way cycles and chains of exchanges

where n is the number of the primary types in the first category and is independent of the

number of secondary types in the second category. The number of primary types can be

different from the number of secondary types. We found that in every efficient exchange,

each cycle contains at most two blood-type compatible pairs and each chain contains at

most one blood-type compatible pair. Secondly, we have provided substantial simulation

results based on the USA data for the periods of 1993-2002 and of 1995-2016. We found

that even just under two-way exchanges allowing compatible pairs to exchange with incom-

patible pairs can increase the number of feasible transplants considerably (net increase at

least 10%), and that allowing both compatible pairs and single donors to participate in ex-

change with incompatible pairs can significantly increase the number of feasible transplants

(net increase at least 30%).

Thirdly, our results demonstrate that our theory can predict very well in the sense that
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the actual maximal number of feasible kidney transplants is very close to the predicated

number given by our derived formula. As the size of the population increases, the predictive

power of our theory becomes stronger; two-way exchange can accomplish most of the

potential gains of exchange. If the population is large enough, it is sufficient to use two-way

exchange to clear all incompatible pairs. Finally, our results have a novel and meaningful

policy implication: kidney exchange can be decentralized in the sense that in a country with

a large population, several separate kidney exchange programs/centers can be established

across the country, not just one centralized program/center for the entire country.

The current paper leaves some important open questions for further investigation: The

first one is how to estimate and ultimately conduct the maximum number of possible

feasible kidney transplants when patients or/and donors appear at random or follow some

reasonable stochastic process; see Ünver (2010). The second is to conduct a study on a

setting extending our current model by adopting the approach of Andersson and Kratz

(2020) that relaxes the standard blood type compatibility constraint.

We hope this study will be useful in helping design practical kidney exchange program

and stimulate further research.

The Appendix

In the following matching procedure, whenever cycles or chains of exchange are going

to be made, priority is given to incompatible pairs.

A Sequential Two-Way Matching Procedure

Step 1: Make a maximum number of two-way cycles of exchange (A,A)i − (A,A)i.

Then make a maximum number of two-way cycles of exchange (A,A)i − (A,A)c if

any. Carry out transplants for the remaining pairs (A,A)c. Repeat the same process

for each type (B,B), (O,O), (AB,AB), respectively.

Step 2: Make a maximum number of two-way cycles of exchange (O,A) − (A,O)i,

(O,B)− (B,O)i, (O,AB)− (AB,O)i, (A,AB)− (AB,A)i, (B,AB)− (AB,B)i, and

(A,B)− (B,A), respectively.

Step 3: Make a maximum number of two-way cycles or chains of exchange (O,A)−

(A,O)c, (O,B) − (B,O)c, (A,AB) − (AB,A)c, (B,AB) − (AB,B)c, Ad − (A,B) −

ABp/Bp, Ad − (A,AB) − ABp, and Bd − (B,AB) − ABp, respectively. Match a

maximum number of two-way cycles (B,O)c − (A,B), (AB,A)c − (A,B), (B,O)i −

(A,B), (AB,A)i − (A,B) and two-way chain Ad − (A,B)− Y p.

31



Step 4: Make a maximal number of two-way cycles of exchange

(AB,O)c/(AB,O)i − (O,A)/(O,B)/(O,AB)/(A,AB)/(B,AB)/(A,B),

respectively. And then match a maximum number of single donors Od with the

remaining pairs (O,A)/(O,B)/(O,AB)/(A,AB)/(B,AB)/(A,B), respectively.

Step 5: Match a maximum number of the remaining single donors Od, Ad, Bd, ABd

with any remaining single patients Op, Ap, Bp, ABp. Match a maximum number

of two-way cycles of exchange (A,O)i − (A,O)i. Then make a maximum number

of two-way cycles of exchange (A,O)i − (A,O)c if any. Repeat the same process

for each type (B,O)i, (AB,O)i, (AB,A)i, (AB,B)i. Match any remaining paired

patients from compatible patient-donor pairs with their own paired donors.

This is the end of the description of the procedure.

The maximum number of transplants through two-way exchanges in Proposition 1 is given

by the following formula:

#(A,O) + #(B,O) + #(AB,O) + #(AB,A) + #(AB,B) + #(B,A)

+#(A,A) + #(B,B) + #(O,O) + #(AB,AB)

+#Ad +#Bd +#ABd +#Od

+min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, N17}

where

N1 = #(O,A) + #(O,B) + #(O,AB) + #(A,AB) + #(A,B) + #(B,AB)

N2 = #(O,A) + #(O,B) + #Od +#(AB,O) + #Ad +#(AB,A) + #(B,AB) + #(A,B)

N3 = #(O,A) + #(O,B) + #Od +#(AB,O) + #(A,AB) + #(A,B) + #(B,AB)

N4 = #(O,A) + #(O,B) + #Od +#(AB,O) + #Ad +#(AB,A) + #Bd +#(AB,B) + #(A,B)

N5 = #(O,A) + #(O,B) + #Od +#(AB,O) + #(A,AB) + #(A,B) + #Bd +#(AB,B)

N6 = #(A,O) + #(O,B) + #Od +#(AB,O) + #Ad +#(AB,A) + #(B,AB) + #(A,B)

N7 = #(A,O) + #(O,B) + #Od +#(AB,O) + #(A,AB) + #(A,B) + #(B,AB)

N8 = #(A,O) + #(O,B) + #Od +#(AB,O) + #Ad +#(AB,A) + #Bd +#(AB,B) + #(A,B)

N9 = #(A,O) + #(O,B) + #Od +#(AB,O) + #(A,AB) + #(A,B) + #Bd +#(AB,B)

N10 = #(O,A) + #(B,O) + #Od +#(AB,O) + #Ad +#(AB,A) + #(B,AB) + #(B,A)

N11 = #(O,A) + #(B,O) + #Od +#(AB,O) + #(A,AB) + #(A,B) + #(B,AB)

N12 = #(O,A) + #(B,O) + #Od +#(AB,O) + #Ad +#(AB,A) + #Bd +#(AB,B) + #(B,A)

N13 = #(O,A) + #(B,O) + #Od +#(AB,O) + #(A,AB) + #(A,B) + #Bd +#(AB,B)

N14 = #(A,O) + #(B,O) + #Od +#(AB,O) + #Ad +#(AB,A) + #(B,AB) + #(B,A)

N15 = #(A,O) + #(B,O) + #Od +#(AB,O) + #(A,AB) + #(A,B) + #(B,AB)

N16 = #(A,O) + #(B,O) + #Od +#(AB,O) + #Ad +#(AB,A) + #Bd +#(AB,B) + #(B,A)

N17 = #(A,O) + #(B,O) + #Od +#(AB,O) + #(A,AB) + #(A,B) + #Bd +#(AB,B)
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This is the end of the description of the formula.

Proof of Proposition 1: Under Assumptions 1 to 3, all blood-type compatible but tissue-

type incompatible pairs and pairs of type (B,A) can be matched through two-way cycles.

All compatible pairs can be matched because even if paired patients from compatible pairs

are not involved into two-way cycles, they can receive their own donors. All pairs of types

(A,A), (B,B), (O,O), (AB,AB) can be also matched in two-way cycles. As long as a

kidney can be allocated to a patient in waiting, we can always find a compatible patient in

waiting because of the large population of patients in waiting. Hence, the maximal number

of transplantations for patients in waiting, paired patients from blood-type compatible pairs

and paired patients from pairs of type (B,A) is

#(A,O) + #(B,O) + #(AB,O) + #(AB,A) + #(AB,B)

+#(B,A) + #(A,A) + #(B,B) + #(AB,AB) + #(O,O)

+#Ad +#Bd +#ABd +#Od

Next, let N be the maximum number of transplants for blood-type incompatible paired

patients of types (O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B). The number of

two-way cycles (A,B) − (B,A) is bounded by #(B,A) by Assumption 2. The number

of two-way cycles (O,A) − (A,O) is bounded by min{#(O,A),#(A,O)}. Similarly, the

number of two-way cycles (O,B) − (B,O) is bounded by min{#(O,B),#(B,O)}; the

number of two-way cycles and chains (AB,A) − (A,AB), Ad − (A,AB) − Y p is bounded

by min{#Ad+#(AB,A),#(A,AB)}; the number of two-way cycles and chains (AB,A)−

(A,B), Ad−(A,B)−Y p, (B,O)−(A,B) is bounded by min{#Ad+#(AB,A)−min{#Ad+

#(AB,A),#(A,AB)}+#(B,O)−min{#(O,B),#(B,O)},#(A,B)−#(B,A)}; the num-

ber of two-way cycles and chains (AB,B)− (B,AB), Bd − (B,AB)−ABp is bounded by

min{#Bd +#(AB,B),#(B,AB)}; and the number of two-way cycles and chains

(AB,O)− (O,A)/(O,B)/(O,AB)/(A,B)/(A,AB)/(B,AB), and,

Od − (O,A)/(O,B)/(O,AB)/(A,B)/(A,AB)/(B,AB)− Y w

is bounded either by #Od +#(AB,O) or all blood-type incompatible paired patients are

matched. Therefore, we have either

N ≤ #(B,A) + min{#(O,A),#(A,O)}+min{#(O,B),#(B,O)}+

min{#Ad +#(AB,A),#(A,AB)}+

min{#Ad +#(AB,A)−min{#Ad +#(AB,A),#(A,AB)}

+#(B,O)−min{#(O,B),#(B,O)},#(A,B)−#(B,A)}+

min{#Bd +#(AB,B),#(B,AB)}+

min{#Bd +#(AB,B),#(B,AB)}+#Od +#(AB,O)
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or

N ≤ #(O,A) + #(O,B) + #(O,AB) + #(A,AB) + #(A,B) + #(B,AB).

The expressions can be rewritten as follows

N ≤ min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, N17} and

hence the maximum number of transplants can be reached is:

N = min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, N17}.

We now prove that the sequential matching procedure achieves the maximum number

of kidney transplants.

Since for every one/two-way chains, we can always find a compatible single patient, the

number of transplantations for single patients equals #Ad +#Bd +#ABd +#Od.

By Assumption 3, all pairs of type (A,A)i, (B,B)i, (O,O)i, (AB,AB)i can be matched

through two-way cycles in Step 1. By Assumption 3, all remaining blood-type compatible

but tissue-type incompatible pairs (A,O)i, (B,O)i, (AB,O)i, (AB,A)i, (AB,B)i can be

matched through two-way cycles in Step 5. All compatible pairs (A,O)c, (B,O)c, (AB,O)c,

(AB,A)c, (AB,B)c, (A,A)c, (B,B)c, (O,O)c, (AB,AB)c can be matched either through

two-way cycles or doing transplantations with their own donors. Moreover, by Assump-

tion 2, all pairs of type (B,A) can be matched through two-way cycle (A,B) − (B,A) in

Step 2 so that the remaining number of pairs of type (A,B) is #(A,B)−#(B,A). Hence,

the number of transplants for compatible pairs, blood-type compatible pairs and pairs of

type (B,A) in the procedure is

#(A,O) + #(B,O) + #(AB,O) + #(AB,A) + #(AB,B)

+#(B,A) + #(A,A) + #(B,B) + #(AB,AB) + #(O,O)

Next, we prove that the maximum number of transplants for blood-type incompatible

pairs of types (O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B) can be achieved in the

procedure.

Denote X1 as the number of blood-type incompatible paired patients from pairs of types

(O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B) involved in Step 2 so that

X1 = #(B,A) + e1 + e2 + e3 + e4 + e5

where

e1 = min{#(O,A),#(A,O)i}

e2 = min{#(O,B),#(B,O)i}

e3 = min{#(O,AB),#(AB,O)i}

e4 = min{#(A,AB),#(AB,A)i}

e5 = min{#(B,AB),#(AB,B)i}
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Denote X2 as the number of blood-type incompatible paired patients from pairs of types

(O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B) involved in Step 3 so that

X2 = a1 + a2 + b1 + b2 + b3

where

a1 = min{#(O,A)− e1,#(A,O)c}

a2 = min{#(O,B)− e2,#(B,O)c}

b1 = min{#Ad +#(AB,A)c,#(A,AB)− e4}

b2 = min{#Bd +#(AB,B)c,#(B,AB)− e5}

b3 = min{#Ad +#(AB,A)c +#(AB,A)i − e4 − b1 +#(B,O)c

+#(B,O)i − e2 − b2,#(A,B)−#(B,A)}

Denote X3 as the number of blood-type incompatible paired patients from pairs of types

(O,A),(O,B), (O,AB), (A,AB), (B,AB), (A,B) involved in Step 4 so that

X3 = min{#Od +#(AB,O)c +#(AB,O)i − e3,#(O,A)− e1 − a1

+#(O,B)− e2 − a2 +#(O,AB)− e3 +#(A,AB)− e4 − b1

+#(B,AB)− e5 − b2 +#(A,B)−#(B,A)− b3}

Therefore, the total number of transplants for paired patients from pairs of types (O,A),

(O,B), (O,AB), (A,AB), (B,AB), (A,B) in the procedure is X = X1+X2+X3; one may

refer to Tables from A1 to A15 in Supplement A of Cheng and Yang (2017b) for detail.

Then the equation can be rewritten as follows:

X = min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, N17}.

Therefore, the total number of transplants can be achieved in the mechanism is that

#(A,O) + #(B,O) + #(AB,O) + #(AB,A) + #(AB,B)

+#(B,A) + #(A,A) + #(B,B) + #(AB,AB) + #(O,O)

+#Ad +#Bd +#ABd +#Od

+min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, N17}

We proved that every matching produced by the procedure achieves the maximum

number of transplants in the pool and hence the procedure is 2-efficient. ✷

Proof of Theorem 1: Consider an efficient matching µ for a population stated in the

theorem. If the maximal matching µ only consists of n-way cycles and chains, or smaller

cycles and chains, we are done. Otherwise, we will prove that there exists a matching ν

which consists of at most n-way cycles or chains can match the same set of receiving agents

as matching µ.
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We will prove the theorem for the case in which the largest exchanges (cycles or chains)

in matching µ is (n+1)-way. The same proof can be applied to show that for any maximal

matching in which the largest exchanges is k-way where k > (n+ 1), there exists another

matching which matches the same set of receiving agent through (k − 1)-way or smaller

exchanges. Then, repeating the same argument yields the desired result. It is worth noting

that this argument holds only for k(> n+1)-way exchanges. When the maximal matching

µ only consists of at most n-way cycles and chains, the argument may not hold. To see this

point, consider the blood-type as the primary type. Suppose that there are four patient-

donor pairs (AB − O),(O − A), (A − B), (B − AB) in the pool, and patients have no

tissue-type problem with donors. The maximum number of feasible transplants can be

reached through a 4-way exchange (AB,O) − (O,A) − (A,B) − (B,AB) which is unique

and cannot be reduced to 3 or 2-way exchanges.

Three cases may occur in the matching µ which has (n + 1)-way cycles and chains, or

only (n + 1)-way cycles or (n + 1)-way chains. We will prove the most complicated case

that µ consists of both (n + 1)-way cycles and (n + 1)-way chains. Then, the other two

case follow automatically.

Let

E0 = ((P p
1 , D

p
1), (P

p
2 , D

p
2), (P

p
3 , D

p
3), ..., (P

p
n , D

p
n), (P

p
n+1, D

p
n+1))

C0 = (Ds
1, (P

p
1 , D

p
1), (P

p
2 , D

p
2), ..., (P

p
n , D

p
n), P

s
1 )

be any (n + 1)-way cycle and chain respectively in matching µ. We will prove that all

receiving agents in these two ways of exchange can be matched via smaller ways of exchange

without changing the set of pairs that are matched.

Because we have only n types, there are at least two receiving agents in cycle E0 who

have the same type. Pick any two such receiving agents. We have two cases to consider.

Case 1. The two receiving agents are not matched together.

Suppose these receiving agents are P p
1 and P p

n in cycle E0. The receiving agent P p
1 is

matched with donating agent Dp
n+1 and the receiving agent P p

n is matched with donating

agent Dp
n−1. Since agents P

p
1 and P p

n have the same type, donating agents Dp
n−1 and Dp

n+1

are compatible with the two receiving agents P p
1 and P p

n . Hence, the (n+1)-way cycle can

be divided into two smaller cycles as follows.

E1
1 = ((P p

1 , D
p
1), (P

p
2 , D

p
2), (P

p
3 , D

p
3), ..., (P

p
n−1, D

p
n−1)), E

1
2 = ((P p

n , D
p
n), (P

p
n+1, D

p
n+1))

Suppose these receiving agents are P p
1 and P s

1 in chain C0. The receiving agent P p
1

is matched with donating agent Ds
1 and the receiving agent P s

1 is matched with donating

agent Dp
n. Since agents P p

1 and P s
1 have the same type, donating agents Ds

1 and Dp
n are

compatible with both the two agents. Hence, the (n+1)-way chain C0 can be divided into
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one cycle and one chain as follows.

C1
2 = (Ds

1, P
s
1 ), E

1
2 = ((P p

1 , D
p
1), (P

p
2 , D

p
2), ..., (P

p
n , D

p
n))

Case 2. The two receiving agents are matched together. Suppose agents P p
1 and P p

2

have the same type.

Under cycle E0, since agent P p
1 is matched with donating agent Dn+1, donating agent

Dn+1 is compatible with the receiving agent P p
2 . Hence, the following n-way exchange is

feasible.

E2
1 = ((P p

2 , D
p
2), (P

p
3 , D

p
3), ..., (P

p
n−1, D

p
n−1))

Under chain C0, since agent P p
1 is matched with donating agent Ds

1, donating agent Ds
1

is compatible with receiving agent P p
2 . Hence, the following n-way chain is feasible.

C2
2 = (Ds

1, (P
p
2 , D

p
2), ..., (P

p
n−1, D

p
n−1), (P

p
n , D

p
n), P

s
1 )

Now, we will prove that the remaining pair (P p
1 , D

p
1) can be matched in an exchange

without affecting pairs that are matched under µ. Because of the Assumption 4, we can

directly use “type” to present the primary type. Let pair (P p
1 , D

p
1) be of type (X, Y )t where

t ∈ {i, c}, and hence receiving agent P p
2 is type X. Since donating agent Dp

1 of type Y

is compatible with receiving agent P p
2 , we have Y � X. Therefore, pair of type (X, Y ) is

primary type compatible pair.

Let A be the set of n+ 1-way cycles and n+ 1-way chains in Case 2. From the above

proof, every cycle can be separated into an n-way cycle and one remaining primary type

compatible pair and every chain can be separated into an n-way chain and one remaining

primary type compatible pair. Let D be the set of remaining primary type compatible

pairs in A. Then, we have Y � X. If remaining pairs are compatible, we can do trans-

plants directly. Otherwise, let (X, Y )i present the type of a primary type compatible but

secondary type incompatible pair. If there exists two or more pairs of type (X, Y )i, we

can match them by two-way cycles (X, Y )i − (X, Y )i. Therefore, at most one pair of type

(X, Y )i will be left. By Assumption 5, there exists at least one pair of type (X, Y )c. If

the pair (X, Y )c does not involve in a cycle or a chain, we can match the remaining pair

(X, Y )i with pair (X, Y )c. Otherwise, pair (X, Y )c involves in a cycle or chain no larger

than n-way, then the remaining pair (X, Y )i can replace the position of pair (X, Y )c and

pair (X, Y )c can do the transplant straightforwardly. ✷

37



Table 3: Patient-donor pair and single donor distributions used in simu-

lations based on OPTN/SRTR database from 1993 to 2002, retrieved from

https://optn.transplant.hrsa.gov/data/view-data-reports/national-data.

Incompatible paired patient blood type Percent

O 48.14

A 33.73

B 14.28

AB 3.85

Patient gender Percent

Female 40.9

Male 59.1

Relationship of patient-donor pair Percent

Spouse 48.97

Other 51.03

PRA types Percent

Low PRA 70.19

Medium PRA 20.00

High PRA 9.81

Compatible paired patient blood type Percent

O 45.12

A 38.54

B 12.64

AB 3.7

Compatible paired donor blood type Percent

O 63.74

A 27.12

B 8.08

AB 1.06

Single donor blood type Percent

O 47.31

A 38.14

B 11.16

AB 3.39

Transplant ratio by donor types Percent

Single Donors 39.83

Paired Donors 22.77
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Table 4: Patient-donor pair and single donor distributions used in simu-

lations based on OPTN/SRTR database from 1995 to 2016, retrieved from

https://optn.transplant.hrsa.gov/data/view-data-reports/national-data.

Incompatible paired patient blood type Percent S.D.

O 48.46 0.0032

A 33.22 0.0047

B 14.48 0.0028

AB 3.84 0.0011

Incompatible paired patient gender Percent S.D.

Female 40.1 0.0117

Male 59.9 0.0117

Incompatible paired patient CPRA type Percent S.D.

0 89.24 0.0145

1-19 2.79 0.0071

20-79 4.64 0.005

80-97 2.03 0.001

98-100 1.3 0.002

Compatible paired patient blood type Percent S.D.

O 44.71 0.0092

A 38.47 0.0075

B 12.99 0.0044

AB 3.83 0.0029

Compatible paired patient gender Percent S.D.

Female 39.95 0.0204

Male 60.05 0.0204

Compatible paired patient CPRA type Percent S.D.

0 73.11 0.0241

1-19 9.43 0.0154

20-79 12.82 0.0084

80-97 3.38 0.0041

98-100 1.26 0.0025

Relationship of patient-donor pair Percent S.D.

Spouse 35.8 0.1201

Other 64.2 0.1201

Incompatible paired donor blood type Percent S.D.

O 55.3 0.0122

A 32.46 0.0081

B 9.9 0.0041

AB 2.34 0.0022

Compatible paired donor blood type Percent S.D.

O 64.66 0.011

A 26.45 0.0074

B 7.91 0.0044

AB 0.98 0.0021

Single donor blood type Percent S.D.

O 47.59 0.0068

A 37.41 0.0084

B 11.57 0.0055

AB 3.43 0.0026

Transplant ratio by donor type Percent S.D.

Single Donors 36.02 0.0398

Paired Donors 19.9 0.039
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Table 5: Simulation results about average maximal number of incompatible paired patients

receiving transplants and average predicted number by the formula based on the 1993-2002 data.

Size of

Incompat.

Pairs Method

Number of incompatible paired patients getting transplants

At most two-way exchanges At most three-way exchanges

The Exclusive

Exchange

The 1st Deg.

Inclusive

Exchange

The 2nd Deg.

Inclusive

Exchange

The Exclusive

Exchange

The 1st Deg.

Inclusive

Exchange

The 2nd Deg.

Inclusive

Exchange

n=25

Simulation
8.9992

(3.3465)

12.8388

(3.36736)

19.5904

(3.1966)

11.8

(4.1432)

15.6480

(3.347)

22.3460

(2.7910)

UB 1
12.4444

(3.62319)

15.8782

(3.55402)

21.919

(3.0039)

14.3480

(3.7968)

17.1380

(3.2815)

23.062

(2.5806)

UB 2
9.7012

(3.69614)

14.0782

(3.59381)

20.964

(3.02684)

12.424

(4.2280)

16.242

(3.3636)

22.6540

(2.626)

n=50

Simulation
21.7872

(5.04759)

29.599

(5.17304)

42.8134

(4.77275)

27.566

(5.6835)

34.754

(5.1818)

47.9240

(3.0537)

UB 1
27.0408

(5.16082)

33.5676

(5.31818)

45.413

(4.45821)

29.96

(5.2792)

35.896

(5.1418)

48.178

(2.9448)

UB 2
23.7656

(5.47378)

31.9192

(5.4182)

44.8486

(4.41678)

28.468

(5.676)

35.412

(5.1788)

48.096

(2.9448)

n=100

Simulation
49.8772

(7.36965)

64.2164

(7.4473)

89.8862

(6.9542)

60.232

(7.434)

72.214

(7.1707)

97.054

(4.4116)

UB 1
56.7104

(7.36069)

68.614

(7.58903)

92.2014

(6.59551)

61.696

(7.2799)

72.814

(7.1843)

97.15

(4.3733)

UB 2
53.4844

(7.70327)

67.4584

(7.6945)

92.0746

(6.57535)

60.934

(7.3839)

72.69

(7.2076)

97.142

(4.369)

n=150

Simulation
78.9256

(9.29992)

100.014

(9.42842)

137.567

(8.63815)

92.072

(8.9213)

109.852

(9.1063)

146.096

(5.3979)

UB 1
86.692

(9.1035)

104.442

(9.48898)

139.417

(8.33299)

93.038

(8.7667)

110.33

(9.0828)

146.1080

(5.3869)

UB 2
83.6704

(9.54597)

103.647

(9.58259)

139.383

(8.31955)

92.686

(8.9142)

110.29

(9.0811)

146.108

(5.3869)

n=200

Simulation
108.716

(10.7764)

135.571

(10.9588)

184.819

(10.3357)

123.714

(9.8055)

146.72

(10.6069)

195.5260

(5.9048)

UB 1
116.799

(10.5688)

139.742

(11.0306)

186.254

(10.1569)

124.474

(9.8062)

147.174

(10.6329)

195.5420

(5.8993)

UB 2
114.232

(10.9591)

139.168

(11.0965)

186.245

(10.1546)

124.258

(9.8394)

147.148

(10.6529)

195.542

(5.8993)

n=300

Simulation
170.54

(13.8317)

208.974

(13.8698)

280.91

(13.4347)

187.8

(12.8155)

221.74

(13.5413)

295.16

(7.4243)

UB 1
178.668

(13.6163)

212.676

(14.0197)

281.688

(13.4062)

188.442

(12.8354)

222.136

(13.5083)

295.162

(7.4233)

UB 2
176.948

(13.9028)

212.404

(14.0379)

281.688

(13.4062)

188.386

(12.8539)

222.136

(13.5083)

295.162

(7.4233)

n=400

Simulation
231.628

(15.1099)

281.492

(15.1398)

375.198

(15.2474)

250.7081

(14.9844)

296.082

(15.0974)

393.912

(9.0612)

UB 1
239.524

(14.592)

284.636

(15.0674)

375.65

(15.2176)

251.2801

(15.0512)

296.464

(15.1327)

393.912

(9.0612)

UB 2
238.36

(14.8267)

284.466

(15.1155)

375.65

(15.2176)

251.2411

(15.0499)

296.464

(15.1327)

393.912

(9.0612)
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Table 6: Simulation results about average maximal number of incompatible paired patients

receiving transplants and average predicted number by the formula based on the 1995-2016 data.

Size of

Incompat.

Pairs Method

Number of incompatible paired patients getting transplants

At most two-way exchanges At most three-way exchanges

The Exclusive

Exchange

The 1st Deg.

Inclusive

Exchange

The 2nd Deg.

Inclusive

Exchange

The Exclusive

Exchange

The 1st Deg.

Inclusive

Exchange

The 2nd Deg.

Inclusive

Exchange

n=25

Simulation
6.6844

(3.02308)

9.6722

(3.16884)

16.1756

(3.39085)

8.032

(3.4985)

11.71

(3.4753)

17.636

(3.3892)

UB 1
8.3772

(3.29944)

11.3094

(3.4135)

17.6964

(3.55437)

9.754

(3.5387)

12.968

(3.4454)

18.654

(3.4546)

UB 2
6.832

(3.12092)

10.0494

(3.30825)

16.7298

(3.50851)

8.208

(3.5976)

11.898

(3.5203)

17.824

(3.4212)

n=50

Simulation
15.008

(4.5394)

21.5734

(4.71549)

33.8482

(4.9819)

18.83

(5.4835)

25.118

(4.6548)

36.318

(5.1957)

UB 1
18.5984

(4.79534)

24.1956

(4.9522)

36.1456

(5.1907)

21.5260

(5.2418)

26.894

(4.751)

37.734

(5.2416)

UB 2
16.0188

(4.75009)

22.3364

(4.88135)

34.7956

(5.1391)

19.228

(5.4714)

25.37

(4.6661)

36.46

(5.2164)

n=100

Simulation
34.496

(6.8107)

46.3272

(7.05924)

69.7068

(7.42242)

40.57

(7.078)

52.874

(6.3209)

72.972

(6.8957)

UB 1
39.6832

(6.96165)

50.2572

(7.27533)

73.0118

(7.62722)

44.368

(6.7903)

55.378

(6.4366)

74.936

(6.9059)

UB 2
35.8428

(7.01817)

47.6532

(7.22253)

71.1594

(7.55584)

41.196

(6.9782)

53.302

(6.4019)

73.376

(6.9255)

n=150

Simulation
54.2632

(8.65407)

71.5348

(8.9778)

105.994

(9.24828)

63.19

(8.573)

81.106

(7.6125)

110.8

(8.3508)

UB 1
60.934

(8.82225)

76.3784

(9.16827)

110.046

(9.4449)

67.438

(8.5153)

84.154

(7.6895)

112.816

(8.3451)

UB 2
56.2608

(8.89426)

73.313

(9.17326)

107.991

(9.44535)

63.986

(8.5644)

81.78

(7.6938)

111.364

(8.4599)

n=200

Simulation
74.134

(10.0771)

96.6472

(10.4245)

142.411

(10.6297)

85.9

(10.4493)

109.078

(9.7596)

147.926

(10.5832)

UB 1
81.8596

(10.1768)

102.143

(10.691)

146.966

(10.8525)

90.666

(10.2872)

112.206

(9.9683)

150.066

(10.6476)

UB 2
76.5832

(10.2132)

98.7708

(10.659)

144.941

(10.8549)

87.078

(10.3492)

110.008

(9.8715)

148.63

(10.6966)

n=300

Simulation
114.904

(11.8696)

147.89

(12.4127)

215.976

(13.0876)

131.898

(12.8419)

166.8680

(11.4042)

223.212

(12.5156)

UB 1
124.292

(11.9257)

154.37

(12.6063)

221.19

(13.282)

137.078

(12.7128)

170.142

(11.4801)

225.194

(12.5067)

UB 2
118.272

(12.0396)

150.724

(112.6819)

219.358

(13.3162)

133.566

(2.7571)

168.064

(11.4839)

224.002

(12.5993)

n=400

Simulation
155.572

(13.846)

198.49

(14.1654)

288.54

(14.4048)

177.972

(13.8102)

221.428

(12.7008)

298.7260

(14.6946)

UB 1
166.024

(13.8123)

205.776

(14.4168)

294.304

(14.7397)

183.614

(13.4576)

224.45

(12.7107)

300.412

(14.7551)

UB 2
159.384

(13.8554)

202.008

(14.3976)

292.802

(14.7343)

179.95

(13.5565)

222.762

(12.7487)

299.6260

(14.7936)
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Table 7: Deviation from upper bounds 1 and 2 in simulation through at most three-way exchanges

based on the 1993-2002 data and 1995-2016 data.

Data from 1993-2002

Population Size

of Incompatible

Pairs Method

Deviation Value

The Exclusive

Exchange

The First

Degree Inclusive

Exchange

The Second

Degree Inclusive

Exchange

n=25

Upper Bound 1 0.177586 0.08694 0.03105

Upper Bound 2 0.050225 0.03657 0.013596

n=50

Upper Bound 1 0.07991 0.031814 0.005272

Upper Bound 2 0.031685 0.01858 0.003576

n=100

Upper Bound 1 0.023729 0.00824 0.00099

Upper Bound 2 0.01152 0.006548 0.00091

n=150

Upper Bound 1 0.01038 0.004332 0.000082

Upper Bound 2 0.006624 0.00397 0.000082

n=200

Upper Bound 1 0.00611 0.003085 0.000081

Upper Bound 2 0.004378 0.002909 0.000081

n=300

Upper Bound 1 0.003407 0.001783 0.000007

Upper Bound 2 0.003111 0.001783 0.000007

n=400

Upper Bound 1 0.002276 0.001288 0

Upper Bound 2 0.002122 0.001288 0

Data from 1995-2016

Population Size

of Incompatible

Pairs Method

Deviation Value

The Exclusive

Exchange

The First

Degree Inclusive

Exchange

The Second

Degree Inclusive

Exchange

n=25

Upper Bound 1 0.176543 0.09701 0.05457

Upper Bound 2 0.021443 0.0158 0.01055

n=50

Upper Bound 1 0.12524 0.06604 0.037526

Upper Bound 2 0.0207 0.009933 0.003895

n=100

Upper Bound 1 0.0856 0.04522 0.02621

Upper Bound 2 0.015196 0.00803 0.005506

n=150

Upper Bound 1 0.06299 0.03622 0.01787

Upper Bound 2 0.01244 0.00824 0.005065

n=200

Upper Bound 1 0.052567 0.027877 0.01426

Upper Bound 2 0.01353 0.008454 0.004737

n=300

Upper Bound 1 0.037789 0.019243 0.0088

Upper Bound 2 0.012488 0.007116 0.003268

n=400

Upper Bound 1 0.030728 0.013464 0.005612

Upper Bound 2 0.01099 0.005988 0.003004
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Table 8: Matching rates of incompatible paired patients in simulation through at most three-way

exchanges based on the 1993-2002 data and 1995-2016 data.

Data from 1993-2002

Population Size

of Incompatible

Pairs Method

Matching Rate

The Exclusive

Exchange

The First

Degree Inclusive

Exchange

The Second

Degree Inclusive

Exchange

n=25

Simulation 0.472 0.62592 0.89384

Upper Bound 1 0.57392 0.68552 0.92248

Upper Bound 2 0.49696 0.64968 0.90616

n=50

Simulation 0.55132 0.69508 0.95848

Upper Bound 1 0.5992 0.71792 0.96356

Upper Bound 2 0.56936 0.70824 0.96192

n=100

Simulation 0.60232 0.72214 0.97054

Upper Bound 1 0.61696 0.72814 0.9715

Upper Bound 2 0.60934 0.7269 0.97142

n=150

Simulation 0.613813 0.732347 0.973973

Upper Bound 1 0.620253 0.73553 0.974053

Upper Bound 2 0.617907 0.735267 0.974053

n=200

Simulation 0.61857 0.7336 0.97763

Upper Bound 1 0.62237 0.73587 0.97771

Upper Bound 2 0.62129 0.73574 0.97771

n=300

Simulation 0.626 0.739133 0.983867

Upper Bound 1 0.62814 0.74045 0.983873

Upper Bound 2 0.62795 0.74045 0.983873

n=400

Simulation 0.62677 0.740205 0.98478

Upper Bound 1 0.6282 0.74116 0.98478

Upper Bound 2 0.6281 0.74116 0.98478

Data from 1995-2016

Population Size

of Incompatible

Pairs Method

Matching Rate

The Exclusive

Exchange

The First

Degree Inclusive

Exchange

The Second

Degree Inclusive

Exchange

n=25

Simulation 0.32128 0.4684 0.70544

Upper Bound 1 0.39016 0.51872 0.74616

Upper Bound 2 0.32832 0.47592 0.71296

n=50

Simulation 0.3766 0.50236 0.72636

Upper Bound 1 0.43052 0.53788 0.75468

Upper Bound 2 0.38456 0.5074 0.7292

n=100

Simulation 0.4057 0.52874 0.72972

Upper Bound 1 0.44368 0.55378 0.74936

Upper Bound 2 0.41196 0.53302 0.73376

n=150

Simulation 0.421267 0.540707 0.738667

Upper Bound 1 0.449587 0.561027 0.752107

Upper Bound 2 0.426573 0.5452 0.742427

n=200

Simulation 0.4295 0.54539 0.73936

Upper Bound 1 0.45333 0.56103 0.75033

Upper Bound 2 0.43539 0.55004 0.74315

n=300

Simulation 0.43966 0.556227 0.74404

Upper Bound 1 0.456927 0.56714 0.750647

Upper Bound 2 0.44522 0.560213 0.746673

n=400

Simulation 0.44493 0.55357 0.746815

Upper Bound 1 0.459035 0.561125 0.75103

Upper Bound 2 0.448975 0.556905 0.749065
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